首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 670 毫秒
1.
The effectiveness of the design recommendations made by various major building codes to account for torsional coupling effects is evaluated with respect to the parametric responses to earthquake ground motion of a simple single-storey asymmetric building model supported on an elastic foundation. The objectives are to determine the extent to which the response trends observed in previous studies of asymmetric rigidly based buildings are affected by changes in the flexibility of the foundation medium and to comment on and suggest necessary amendments to the design recommendations in order that suitable allowance be made for the resultant changes in the magnitude of torsional coupling effects. It is concluded that whilst the qualitative effects of torsional coupling are not affected by soil–structure interaction, their magnitude depends significantly on the frequency content of the free-field motion. The response to the El Centro earthquake record is conservatively accounted for by assuming the structure to be supported on a rigid foundation. An allowance for increased response effects due to soil–structure interaction is suggested for incorporation in the torsional design recommendations when European earthquake records are employed.  相似文献   

2.
This study aims to determine the influence of torsional coupling on the inelastic response of a series of models representing typical structural configurations in real buildings. The lake bed (SCT) east-west component of the 1985 Mexico City earthquake was employed in the analysis, and is representative of a severe ground motion known to have induced large inelastic structural deformations in a high proportion of those buildings having asymmetrical distributions of stiffness and/or strength. Material non-linearity in lateral load-resisting elements has been defined using a hysteretic Ramberg-Osgood model. Structural eccentricities have been introduced into the building models by (i) asymmetrical distributions of stiffness and/or strength, (ii) asymmetrical configuration of lateral load-resisting elements, or (iii) varying post-elastic material behaviour in the resisting elements. The dynamic inelastic response of these models has been obtained by a numerical integration of the relevant equations of motion, expressed in a non-dimensional incremental form.

In the elastic range, the results correlate well with those of previous studies. In the inelastic range, it is concluded that the peak ductility demand of the worst-affected element increases with the ground excitation level across the range of building periods considered, and that the influence of torsional coupling on the key response parameters is model dependent. Most significantly, the strength eccentricity relative to the centre of mass has been shown to influence the peak edge displacement response more than conventionally employed stiffness eccentricity.  相似文献   


3.
Presented in this paper is a detailed parametric study of the coupled lateral and torsional response of single-storey building models subjected to earthquake base loadings. The aim is to assess the influence of torsional coupling on the elastic responses of buildings subjected to transient ground motion records, and to make comparisons with current code provisions which make allowance for coupling effects by means of empirical design procedures. The study of building responses to selected earthquake excitations shows that the qualitative effects of the controlling parameters on the maximum translational and torsional responses of the coupled system are similar to those observed in analyses using idealized response spectra to represent the input ground motion. It is also demonstrated that for particular ranges of the key parameters defining the structural system, typical of the properties of many actual buildings, torsional coupling induces significant amplification of earthquake forces. This amplification is shown to be inadequately accounted for in the current design provisions of major building codes. Recommendations for improving existing design practice for asymmetric structures are outlined.  相似文献   

4.
An analysis is made of the coupled lateral-torsional response of a partially symmetric single-storey building model to horizontal translatory earthquake excitation. Interest centres on the evaluation of realistic estimates for two equivalent static actions (a shear and a torque) which account for the worst dynamic consequences of torsional unbalance. The results substantiate the findings of previous investigations which have given rise to the belief that strong modal coupling and severely coupled lateral and torsional responses are possible even in nominally symmetric buildings. The response of the model is assumed to be linearly elastic and viscously damped. In a preliminary analysis the equations of motion are solved using the modal analysis technique and the conditions necessary for full modal coupling are ascertained. Then by employing the design spectrum concept, together with suitably conservative procedures for combining the modal maxima, dimensionless forms of the equivalent static actions are evaluated as functions of two independent parameters. The final results are furnished by modified square root of the sum of the squares (SRSS) combination functions which take account of the spacing between the translational and torsional frequencies. Examples at the end of the paper illustrate the practical significance of the work.  相似文献   

5.
A study is made of the effect of soil-structure interaction on the coupled lateral and torsional responses of asymmetric buildings subjected to a series of historical free-field earthquake base motions. It sh shown that for particular classes of actual buildings the equivalent rigid-base responses are significantly increased for structures founded on medium-stiff soils, and hence the assumption of the major building codes that a conservative estimate of response is obtained by considering the structure to be fixed rigidly at its base is shown to be inconsistent with the presented dynamic results. It is shown that foundation interaction produces greatest amplification of torsional coupling effects for structures subjected to a particular class of European strong-motion earthquake records, identified by similarities in their spectral shape, for which the vibrational energy of the ground motion is distributed approximately uniformly over the range of frequencies which are of interest for real structures. It is recommended that provision be made in the torsional design procedures of building codes for the increase in the coupled torsional response due to soil-structure interaction as indicated in this study. Such provision should be based on the results of comprehensive parametric studies employing a wide selection of earthquake records and accounting for expected variations in localized soil conditions.  相似文献   

6.
Response of asymmetric buildup under earthquake excitation often involves lateral vibration coupled with torsional vibration. Floor slab is, in general, assumed as rigid along the in‐plane direction. Building code provisions to account for the torsional effect in static force procedure are based on centre of rigidity or shear centre of the building. A convenient procedure is developed here to locate the centre of rigidity or shear centre, which can be implemented, using any standard building analysis software. The procedure is applicable for orthogonal as well as non‐orthogonal building systems and accounts for all possible definitions of static eccentricity to compute the design response. An irregular building is analysed to illustrate the proposed methodology. Significant variation in member force resultants is observed due to different definitions of static eccentricity. Finally, a mathematical proof is presented to substantiate the applicability of the proposed procedure to a non‐orthogonal building. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
This article investigates the characteristics of the accidental eccentricity in symmetric buildings due to torsional response arising from wave passage effects in the near‐fault region. The soil–foundation–structure system is modeled as a symmetric cylinder placed on a rigid circular foundation supported on an elastic halfspace and subjected to obliquely incident plane SH waves simulating the action of near‐fault pulse‐like ground motions. The translational response is computed assuming that the superstructure behaves as a shear beam under the action of translational and rocking base excitations, whereas the torsional response is calculated using the mathematical formulation proposed in a previous study. A broad range of properties of the soil–foundation–structure system and ground motion input are considered in the analysis, thus facilitating a detailed parametric investigation of the structural response. It is demonstrated that the normalized accidental eccentricity is most sensitive to the pulse period (TP) of the near‐fault ground motions and to the uncoupled torsional‐to‐translational fundamental frequency ratio (Ω) of the structure. Furthermore, the normalized accidental eccentricities due to simplified pulse‐like and broadband ground motions in the near‐fault region are computed and compared against each other. The results show that the normalized accidental eccentricity due to the broadband ground motion is well approximated by the simplified pulse for longer period buildings, while it is underestimated for shorter period buildings. For symmetric buildings with values of Ω commonly used in design practice, the normalized accidental eccentricity due to wave passage effects is less than the typical code‐prescribed value of 5%, except for buildings with very large foundation radius. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
The inelastic behaviour of eccentric single-storey building structures subjected to sinusoidal ground excitation is examined. The Kryloff-Bogoliuboff method is employed to provide approximate solutions in the amplitude-frequency domain. Structural resisting elements are assumed to exhibit bilinear hysteretic behaviour and coupled response is investigated in terms of both system response as well as individual element ductility requirements. In addition to demonstrating the well-known softening property inherent in yielding systems, the importance of the principal parameters governing coupled response is evaluated in a consistent parametric fashion. Within the context of earthquake resistant building design, the results indicate the absence of amplified response when torsional and translational frequencies are close, in contrast to the much emphasized observation of internal resonance for linear elastic structures. Equally important, structural elements located on the stiff edge of eccentric buildings are found to be only marginally affected by the magnitude of the eccentricity, thus indicating that seismic building codes which reduce design requirements for these elements underestimate actual behaviour substantially.  相似文献   

9.
In order to carry out parametric analysis of eccentric structure–soil interaction system, an analytical model based on branch mode decoupling method is presented in this paper. The solution of system equations is implemented in the frequency domain by assuming that the superstructure maintains classic normal modes. The transfer functions of translational and torsional response are derived later. The influence of eccentricity ratio, torsional to translational frequency ratio, height-to-base ratio and foundation flexibility on the curve and peak value of transfer functions and torsionally coupled degree are analyzed and discussed systematically. Results of analysis indicate that the flexibility of foundation soil can weaken the torsional response of superstructure substantially, and the natural frequencies of interaction system reduce as the flexibility of foundation soil increase. The influence of eccentricity ratio on the peak values of transfer functions varies with the torsional to translational frequency ratio, which can be summarized as the decrease of translational component and the increase of torsional component. The translational displacement of SSI system is larger than that of fixed-base condition, while the deformation amplitude is notably reduced. The torsional response decreases as well. As the height-to-base ratio increase, the varying tendency of response is further enhanced. The torsionally coupled degree of eccentric structure is remarkably affected by the torsional to translational frequency ratio, which is significantly reduced under soft soil condition.  相似文献   

10.
Plan asymmetric buildings are very susceptible to earthquake induced damage due to lateral torsional coupling, and the corners of these systems suffer heavy damage during earthquakes. Therefore, it is important to investigate the seismic behavior of an asymmetric plan building with MR dampers. In this study, the effectiveness of MR damper-based control systems has been investigated for seismic hazard mitigation of a plan asymmetric building. Furthermore, the infl uence of the building parameters and damper command voltage on the control performance is examined through parametric study. The building parameters chosen are eccentricity ratio and frequency ratio. The results show that the MR damper-based control systems are effective for plan asymmetric systems.  相似文献   

11.
Damage assessments after past earthquakes have frequently revealed that plan configuration irregular buildings have more severe damage due to excessive torsional responses and stress concentration than regular buildings. The plan configuration irregularities introduce major challenges in the seismic design of buildings. One such form of irregularity is the presence of re-entrant corners in the L-shaped buildings that causes stress concentration due to sudden changes in stiffness and torsional response amplification; hence causes early collapse. A constructive research into re-entrant corner and torsional irregularity problems is essentially needed greater than ever. Therefore, the focus of this study is to investigate structural seismic response demands for the class of L-shaped buildings through evaluating the plan configuration irregularity of re-entrant corners and lateral–torsion coupling effects on measured seismic response demands. The measured responses include story drift, inter-story drift, story shear force, overturning moment, torsion moment at the base and over building height, and torsional irregularity ratio. Three dimensional finite element model for nine stories symmetric buildings as reference model is developed. In addition, six L-shaped building models are formulated with gradual reduction in the plan of the reference building model. The results prove that building models with high irregularity are more vulnerable due to the stress concentration and lateral torsional coupling behavior than that with regular buildings. In addition, the related lateral shear forces in vertical resisting elements located on the periphery of the L-shaped buildings could be significantly increased in comparison with the corresponding values for a symmetric building.  相似文献   

12.
The dynamic equations of motion of asymmetric offshore platforms under three different environmental conditions:seismic action,wave action and their combination are established in this paper. In establishing these motion equations,three typical eccentricity types including mass eccentricity,rigidity eccentricity and their combination were considered,as are eccentricities that occur un-idirectionally and bi-directionally. The effects of the eccentricity type,the dynamic characteristics and the environmental conditions on the torsional coupling response of platforms are investigated and compared. An effort has also been made to analyze the inffluence of accidental eccentricity on asymmetric platforms with different eccentricity in two horizontally orthogonal directions. The results are given in terms of non-dimensional parameters,accounting for the uncoupled torsional to lateral frequency ratio. Numerical results reveal that the eccentricity type has a great inffluence on the torsionally coupled response under different environmental conditions. Therefore,it is necessary to consider the combination of earthquake and wave action in the seismic response analysis of some offshore platforms.  相似文献   

13.
In this paper a probabilistic approach has been adopted to study both the effects of uncertainty in earthquake frequency content and the correlation between earthquake frequency content and ground motion intensity on the response of a single-storey torsionally coupled elastic structure. The earthquake ground motion has been assumed to be a Gaussian, zero mean, stationary random process which is fully characterized by a power spectrum. The ground acceleration power spectrum is idealized as a probabilistic normalized power spectrum computed from actual earthquake records. The advantage of such an idealization is that it enables the effect of the natural frequency as a controlling structural parameter in torsional coupling to be assessed. Comparisons of the dynamic amplifications of eccentricity with those obtained from modern codes of practice and conventional response spectrum analyses have been made. The results of this study have shown that the variation in the frequency content has a significant effect on the response of low frequency structures, while the correlation between the frequency content and the intensity of seismic ground motion is insignificant for the wide range of structures considered. The structure natural frequency has been shown to be an important controlling parameter in the torsionally coupled response of structures subject to seismic loading. The frequency dependence of the dynamic amplification of eccentricity was found not to be reflected in the response spectrum analysis and the torsional provisions of modern building codes.  相似文献   

14.
Analysis and comparison of the dynamic responses of three well instrumented (with accelerographs) high-rise buildings shaken during the 1984 Morgan Hill earthquake are presented. The buildings examined in the present work are (i) the Town Park Towers Apartment building, a 10-storey, concrete shear wall building; (ii) the Great Western Savings and Loan building, a 10-storey building with concrete frames and shear walls; and (iii) the Santa Clara County Office building, a 13-storey, moment-resistant steel frame building. The structures are located within 2 km of each other and, as may be confirmed by visual inspection of the recorded seismograms, experienced similar ground motions. One-dimensional and three-dimensional linear structural models are fitted to the observations using the modal minimization method' for structural identification, in order to determine optimal estimates of the parameters of the dominant modes of the buildings. The time-varying character of these parameters over the duration of the response is also investigated. Comparison of the recorded earthquake response of the structures reveals that the type of lateral-load-resisting system has an important effect on the dynamic behaviour of the structures because it controls the spacing of the characteristic modes on the frequency axis. The Santa Clara County Office building has closely spaced natural frequencies and exhibits strong torsional response and modal coupling. Its dynamic behaviour is contrasted with that of the Great Western Savings and Loan building which has well separated natural frequencies and exhibits small torsional response and no modal coupling. Strong modal coupling causes a beating-type phenomenon and makes earthquake response of structures different from that envisioned by codes.  相似文献   

15.
The differences between the increase in building response due to accidental eccentricity predicted by code-specified static and dynamic analyses are studied for symmetric and unsymmetric single and multistorey buildings. The increase in response computed from static analysis of the building is obtained by applying the equivalent static forces at distance ea, equal to the storey accidental eccentricity, from the centre of mass at each floor. Alternatively, this increase in response is computed by dynamic analysis of the building with the centre of mass of each floor shifted through a distance ea from its nominal position. A parametric study is performed on single-storey systems in order to evaluate the differences in response predicted by both analysis procedures. It is shown that these results are essentially the same as the ones obtained for a special class of multistorey systems. Upper and lower bounds for the differences in response computed from static and dynamic analyses are obtained for general multistorey systems. These differences in response depend primarily on the ratio of the fundamental torsional and lateral frequencies of the building. They are larger for small values of the frequency ratio and decrease to zero as the frequency ratio becomes large. Further, these discrepancies are in many cases of the same order as the code-intended increase in response due to accidental eccentricity. This implies that the code-specified static and dynamic analyses to account for accidental torsion should be modified to be mutually consistent.  相似文献   

16.
Dynamic response behaviour of a simple torsionally coupled system with Multiple-Tuned Mass dampers (MTMDs) is investigated. The system is subjected to lateral excitation that is modelled as a broad-band stationary random process. MTMDs with uniformly distributed frequencies are considered for this purpose and they are arranged in a row covering the width of the system. A parametric study is conducted to investigate the effectiveness of MTMDs on reducing the response of torsionally coupled system. The parameters include the eccentricity of the main system, its uncoupled torsional to lateral frequency ratio and the damping of MTMDs. It is shown that the effectiveness of MTMDs in controlling the lateral response of the torsionally coupled system decreases with the increase in the degree of asymmetry. Further, the effectiveness of MTMDs, designed for an asymmetric system by ignoring the effect of the torsional coupling, is overestimated. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
18.
An analytical study of the seismic response of typical base isolated structures mounted on rubber bearings is presented. Isolated buildings are liable to have closely spaced lower modes of vibration with small eccentricity between centres of mass and rigidity. The isolated structure is modelled as a rigid deck with lumped masses supported on axially inextensible elastomeric rubber bearings. This simplified system has three degrees of freedom (dof), two translations and one rotation in the horizontal plane. The Green's functions for the displacement response of the 3 dof system are derived for both undamped and damped cases with small and large eccentricities. The small eccentricity case is taken from a specific isolated building, while the large eccentricity case arises from the 5 per cent accidental eccentricity which is required by various seismic codes. An interaction equation for normalized displacements is established for an idealized flat velocity spectrum or hyperbolic acceleration spectrum. An isolated building on rubber bearings would have its fundamental period fall into this range of a design spectrum. Numerical results for the specific building subjected to the El Centro earthquake of 1940 are presented. Both the time history and the response spectrum modal superposition analysis were performed. In the response spectrum analysis, the Complete Quadratic Combination (CQC) showed superiority over the Square Root of the Sum of Squares (SRSS) in estimating maximum responses. It is concluded that the effect of torsional coupling on the transient response of base isolated structures is insignificant, due to the combined effect of the time lag between the maximum translational and torsional responses and the influence of damping in the isolation system which for elastomeric bearings can be as high as 8 to 10 per cent.  相似文献   

19.
Based on an asymmetric multistorey frame building model, this paper investigates the influence of a building's higher vibration modes on its inelastic torsional response and evaluates the adequacy of the provisions of current seismic building codes and the modal analysis procedure in accounting for increased ductility demand in frames situated at or near the stiff edge of such buildings. It is concluded that the influence of higher vibration modes on the response of the upper-storey columns of stiff-edge frames increases significantly with the building's fundamental uncoupled lateral period and the magnitude of the stiffness eccentricity. The application of the equivalent static torsional provisions of certain building codes may lead to non-conservative estimates of the peak ductility demand, particularly for structures with large stiffness eccentricity. In these cases, the critical elements are vulnerable to excessive additional ductility demand and, hence, may be subject to significantly more severe structural damage than in corresponding symmetric buildings. It is found that regularly asymmetric buildings excited well into the inelastic range may not be conservatively designed using linear elastic modal analysis theory. Particular caution is required when applying this method to the design of stiff-edge frame elements in highly asymmetric structures.  相似文献   

20.
为了建立单轴平扭耦联基础隔震结构的动力简化分析方法,探讨了影响结构扭转反应的参数取值规律,首先基于层单元模型,通过假定上部结构楼层回转半径、偏心距、弹力半径相等,推导了单轴平扭耦联基础隔震结构线性化的动力计算方程;其次,运用该简化分析方程,通过一算例进行了动力响应的参数分析。结果表明:调整隔震层刚心使其与上部结构质心位置接近,可显著降低偏心隔震结构扭转反应;增大隔震层刚度半径及阻尼半径可有效减少或抑制结构扭转反应;所建简化分析方程能有效模拟偏心隔震结构动力响应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号