首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 705 毫秒
1.
In this work, the deposition of clay-sized fine particles (d50 = 0.006 mm) and its subsequent influence on the dune-induced hyporheic exchange are investigated. Fine sand (D50 = 0.28 mm), coarse sand (D50 = 1.7 mm), and gravel (D50 = 5.5 mm) grains were used to form homogenous model streambeds; one control - no clay input, and two treatments - increasing clay inputs for each grain type. The results indicate that the clogging profiles of clay-sized sediments may not be predicted accurately using the previously proposed metric based on the relative sizes of infiltrating and substrate sediments. Further, the depositional patterns vary with the initial concentration of clay particles in the surface water. The assessment of clogging profiles in coarse-grained model streambeds also reveals a preferential infiltration of the clay particles in the hyporheic downwelling regions. The results from the dye tracer test suggest that the accumulation of clay particles altered the exchange characteristics in the treatment flumes. For each grain size, the treatment flumes exhibit lower hyporheic flux and higher median residence times compared to their respective control flumes. The dye penetration depths were lower in treatment flumes with fine and coarse sand compared to their respective control flumes. Interestingly, higher penetration depths were observed in treatment flumes with gravel compared to their respective control flume potentially due to the generation of preferential flow paths in the partially clogged gravel beds. The clogging altered the hyporheic fluxes and residence times in the coarse-grained model beds to a greater degree in comparison to the fine sand beds. Overall, our findings indicate that the properties of both fine and substrate sediments influence the clogging patterns in streambeds, and the subsequent influence of fine sediment clogging on hyporheic exchange and associated processes may vary across stream ecosystems.  相似文献   

2.
Tsunami Sediment Characteristics at the Thai Andaman Coast   总被引:1,自引:0,他引:1  
This paper describes and summarizes the 2004 Indian Ocean tsunami sediment characteristics at the Thai Andaman coast. Field investigations have been made approximately 3 years after the 2004 Indian Ocean tsunami event. Seven transects have been examined at five locations. Sediment samples have been collected for grain-size analyses by wet-sieve method. Tsunami sediments are compared to three deposits from coastal sub-environments. The mean grain-size and standard deviation of deposits show that shoreface deposits are fine to very fine sand, poorly to moderately well sorted; swash zone deposits are coarse to fine sand, poorly to well sorted; berm/dune deposits are medium to fine sand, poorly to well sorted; and tsunami deposits are coarse to very fine sand, poorly to moderately well sorted. A plot of deposit mean grain-size versus sorting indicates that tsunami deposits are composed of shoreface deposits, swash zone deposits and berm/dune deposits as well. The tsunami sediment is a gray sand layer deposited with an erosional base on a pre-existing soil (rooted soil). The thickness of the tsunami sediment layer is variable. The best location for observation of the recent tsunami sediment is at about 50–200 m inland from the coastline. In most cases, the sediment layer is normally graded. In some cases, the sediment contains rip-up clasts of muddy soils and/or organic matter. The vertical variation of tsunami sediment texture shows that the mean grain-size is fining upward and landward. Break points of slope in a plot of standard deviation versus depth mark a break in turbulence associated with a transition to a lower or higher Reynolds number runup. This can be used to evaluate tsunami sediment main layer and tsunami sediment sub layers. The skewness of tsunami sediment indicates a grain size distribution with prominent finer-grain or coarse-grain particles. The kurtosis of tsunami sediment indicates grain-size distributions which are flat to peak distribution (or multi-modal to uni-modal distribution) upward. Generally, the major origins of tsunami sediment are swash zone and berm/dune zone sands where coarse to medium sands are the significant material at these locations. The minor origin of tsunami sediment is the shoreface where the significant materials are fine to very fine sands. However, for a coastal area where the shoreface slope is mild, the major origin of tsunami sediment is the shoreface. The interpretation of runup number from tsunami sediment characteristics gets three runups for the 2004 Indian Ocean tsunami at the Thai Andaman coast. It corresponds to field observations from local eyewitnesses. The 1st runup transported and deposited more coarse particles than the following runups. Overall, the pattern of onshore tsunami sediment transportation indicates erosion at swash zone and berm/dune zone, followed by dynamic equilibrium at an area behind the berm/dune zone and after that deposition at inland zone until the limit of sediment inundation. The total deposition is a major pattern in onshore tsunami sediment transportation at the deposition zone which the sediment must find in the direction of transport.  相似文献   

3.
A flume study was made of bed skin friction and phytoplankton (Thalassiosira weissf ogii) deposition about a sea scallop (Placopecten magellanicus) mimic on a coarse (mean grain dia. =1200 μm), medium (615 μm) and fine (170 μm) quarry sand. Bed skin friction immediately upstream, and at one shell diameter downstream of the mimic was 1.2–2.4 times higher than ambient values (8.1 × 10−2 Pa). Directly downstream of the mimic there was a region of near-zero skin friction. Bed diatom density was correlated with changes in skin friction; after 21 h, cell densities were 36–87% greater in the regions of high skin friction upstream and downstream of scallop than in control experiments. The pattern of bed diatom density about the scallop was similar in the coarse and medium sands, but deposition to the fine bed was not affected by the mimic. Diatom density was significantly correlated with grain diameter; deposition in the coarse bed was 2.3 times higher than in the medium sand, and 7.4 times higher than in the fine sand. A field experiment confirmed that the coarse sand was a greater sink of phytoplankton pigment than the fine sand. Previous studies and scaling arguments suggest that the differences in bed diatom density were controlled by the magnitude of interfacial solute fluxes. Regions of high skin friction about the mimic increased the porewater exchange, resulting in greater concentrations of diatoms retained within the bed. Similarly, the more permeable coarse sand would have a greater rate of porewater exchange than the fine sand, explaining the higher bed diatom density. Differences in the predicted volume of interstitial void space as a function of grain size closely matched the observed differences in bed diatom density. Results suggest that alteration of boundary layer flows by centimetre scale topography such as scallops, increases the flux of particulate organic matter toward the bed, but whether it is retained within the bed, and thus made available to the benthos is dependent on the sediment granularity.  相似文献   

4.
This study aims at comparing and contrasting two different models for sand transport by currents in a shallow sea to illustrate the effect of velocity veering. The first model uses the Bailard-type formulation, which allows calculation of erosion/deposition rates at a fixed location on the sea floor via the divergence of horizontal sediment fluxes. The second model is a semi-analytical 2.5-dimensional model, which takes into account the time lag between erosion and deposition events and the velocity veering within the sediment-laden (nepheloid) layer caused by the Coriolis force. The velocity veering implies that the direction of the sediment flux is generally different from the direction of the surface flow. The latter model was designed for rapid, semi-analytical computations of sediment transport, using flow fields from 2-DH numerical models. The two models use a matching set of parameters to provide identical values for the bottom stress and suspended sediment load for a uniform steady current at any given surface velocity. The two models were compared in a range of sand grain sizes 50–500 m and current speeds up to 1 m s–1 for an idealised square region (100 × 100 km) of a shelf sea of constant depth. The erosion/deposition patterns and suspension load were examined in three settings: (1) uniform steady flow, (2) straight jet, (3) meandering jet. It was found that both the rates and, in particular, the spatial distribution of the areas of erosion/deposition differ significantly between the models in cases (2) and (3). This difference can be attributed to additional flux divergence due to velocity veering. A comparison of model results with field data, collected at Long Island Shelf, supports the relevance of Coriolis-induced veering of currents on the direction of the sediment flux.Responsible Editor: Jens Kappenberg  相似文献   

5.
The distribution of grain size parameters along 11 km stretch of the beach sediments between Karikal and Nagore,reveals that the mean grain size exhibits a marked decreasing trend on either side of the mouth of the Tirumalairajanar River which flow from west to east.The sediments are mainly of medium to coarse grained,moderately sorted,near-symmetrical skewed to fine skewed and leptokurtic to mesokurtic in nature.Interrelationship of various parameters shows bimodal nature of sediments having dominance of medium to coarse sand.The major part of the sediment fall in a coarse to fine grained category(sand and silt).Based on the CM(Coarser one percentile value in micron) pattern,the sediment fall in rolling and suspension field.These factors includes the sediments discharged from the river mixes with offshore sediments and with the sediments eroded from a source rock.The effect of wave sorting, and the northward drifting of sediments by littoral current are understandable.Results indicate that the Tirumalairajanar River is the most important source for modern sediments in the study area.The agitation by waves is an important sorting mechanism in the study area,and the net sediment transport in the study area is northward.The findings are based on the grain sizes and also corroborated by shortterm observations of the beach sediment dynamics and transport during the monsoon and summer seasons between Karaikal and Nagore region.  相似文献   

6.
Spatio-temporal cross-shore profiles and textural characteristics are the key parameters for understanding dynamics of the inter-tidal sedimentary environment.This study describes short-term dynamics of the inter-tidal sedimentary environment at beaches along the micro-tidal coast.Further a correlation is estimated in cross-shore morphodynamics and textural characteristics of surface sediments.The sedimentary environment is examined for a complete annual cycle using monthly collected cross-shore profiles and sediment samples.The Devbag beach(northern side) and Ravindranath Tagore beach(southern side) at the Kali river mouth,Karwar,west coast of India are characterized from extremely gentle to average slope,and broadly composed of unimodal sands.The sedimentary environment is significantly composed of textures having fine to medium sand,well to moderately sorted,fine to coarse skewed,and platykurtic to leptokurtic in nature.During the annual cycle a reversal pattern is observed between the two adjacent beaches,where a slower rate of sediment accretion is observed at Devbag beach while Ravindranath Tagore beach exhibited erosion.The beach dynamics along with the propagation of south-west(SW) and south-west-west(SWW) waves towards the coast significantly exhibit a dominance of northward sediment transport with the existence of a northerly alongshore current.In addition,the study reveals that an eroded beach may not be significantly identified composed of coarse grains.The poor correlation in morpho-sedimentary characteristics reveals the prediction of grain characteristics based on beach profile and vice-versa is unrealistic.  相似文献   

7.
Compared to downstream fining of a gravel‐bedded river, little field evidence exists to support the process of downstream fining in large, fine sand‐bedded rivers. In fact, the typically unimodal bed sediments of these rivers are thought to produce equal mobility of coarse and fine grains that may discourage downstream fining. To investigate this topic, we drilled 200 sediment cores in the channel beds of two fine‐grained sand‐bedded reaches of the Yellow River (a desert reach and a lower reach) and identified a fine surface layer (FSL) developed over a coarse subsurface layer (CSL) in the 3‐m‐thick bed deposits. In both reaches downstream, the thickness of the FSL increased, while that of the CSL decreased. Comparison of the depth‐averaged median grain sizes of the CSL and the FSL separately in both reaches shows a distinct downstream fining dependence to the median grain size, which indicates that at a large scale of 600‐800 km, the CSL shows a significant downstream fining, but the FSL shows no significant trends in downstream variations in grain size. This result shows that fine sediment supply (<0·08 mm median grain size) from upstream, combined with lateral fine sediment inputs from tributaries and bank erosion, can cause a rapid fining of the downstream channel bed surface and can develop the FSL layer. However, in the desert reach, lateral coarse sediment supply (>0·08 mm median grain size) from wind‐borne sediments and cross‐desert tributaries can interrupt the FSL and coarsen the channel bed surface locally. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This numerical investigation was carried out to advance mechanistic understanding of sediment transport under sheet flow conditions. An Euler–Euler coupled two-phase flow model was developed to simulate fluid–sediment oscillatory sheet flow. Since the concentration of sediment particles is high in such flows, the kinematics of the fluid and sediment phases are strongly coupled. This model includes interaction forces, intergranular stresses and turbulent stress closure. Each phase was modeled via the Reynolds-Averaged Navier–Stokes equations, with interphase momentum conservation accounting for the interaction between the phases. The generation and transformation of turbulence was modeled using the two-equation k–εkε turbulence model. Concentration and sediment flux profiles were compared with experimental data for sheet flow conditions considering both symmetric and asymmetric oscillatory flows. Sediment and fluid velocity variations, concentration profiles, sediment flux and turbulence parameters of wave-generated sheet flow were studied numerically with a focus on sediment transport characteristics. In all applications, the model predictions compared well with the experimental data. Unlike previous investigations in which the flow is driven by a horizontal pressure gradient, the present model solves the Navier–Stokes equations under propagating waves. The model’s ability to predict sediment transport under oscillatory sheet flow conditions underscores its potential for understanding the evolution of beach morphology.  相似文献   

9.
The results of studying the scour of bed composed of fine and coarse sand around models of large-diameter vertical cylinder under the effect of regular waves are presented. Comparison of the results of experiments with fine and coarse sand showed essential qualitative and quantitative distinctions between the two cases. The results of experiments with coarse sand were used to derive, for the first time, a formula for the estimation of the score depth, including two similarity criteria—the sediment motion factor (SM-factor), and Keulegan-Carpenter number. This formula is applicable to both the engineering analysis of the scour depth of gravel bed or protective riprap by crashed rock or fine stone and the approximate prediction of the scour depth of sand bed around structures under real storm conditions. The conditions for correct modeling of wave scour around structures with large horizontal dimensions are considered and the irrelevance of modeling such scour with the use of fine-sand models is demonstrated.  相似文献   

10.
《国际泥沙研究》2021,36(6):723-735
This numerical modeling study (i) assesses the influence of the sediment erosion process on the sediment dynamics and subsequent morphological changes of a mixed-sediment environment, the macrotidal Seine estuary, when non-cohesive particles are dominant within bed mixtures (non-cohesive regime), and (ii) investigates respective contributions of bedload and suspended load in these dynamics. A three dimensional (3D) process-based morphodynamic model was set up and run under realistic forcings (including tide, waves, wind, and river discharge) during a 1-year period. Applying erosion homogeneously to bed sediment in the non-cohesive regime, i.e., average erosion parameters in the erosion law (especially the erodibility parameter, E0), leads to higher resuspension of fine sediment due to the presence of coarser fractions within mixtures, compared to the case of an independent treatment of erosion for each sediment class. This results in more pronounced horizontal sediment flux (two-fold increase for sand, +30% for mud) and erosion/deposition patterns (up to a two-fold increase in erosion over shoals, generally associated with some coarsening of bed sediment). Compared to observed bathymetric changes, more relevant erosion/deposition patterns are derived from the model when independent resuspension fluxes are considered in the non-cohesive regime. These results suggest that this kind of approach may be more relevant when local grain-size distributions become heterogeneous and multimodal for non-cohesive particles. Bedload transport appears to be a non-dominant but significant contributor to the sediment dynamics of the Seine Estuary mouth. The residual bedload flux represents, on average, between 17 and 38% of the suspended sand flux, its contribution generally increasing when bed sediment becomes coarser (can become dominant at specific locations). The average orientation of residual fluxes and erosion/deposition patterns caused by bedload generally follow those resulting from suspended sediment dynamics. Sediment mass budgets cumulated over the simulated year reveal a relative contribution of bedload to total mass budgets around 25% over large erosion areas of shoals, which can even become higher in sedimentation zones. However, bedload-induced dynamics can locally differ from the dynamics related to suspended load, resulting in specific residual transport, erosion/deposition patterns, and changes in seabed nature.  相似文献   

11.
Based on data from the middle Yellow River basin, a wind-water two-phase mechanism for erosion and sediment-producing processes has been found. By using this mechanism, the extremely strong erosion and sediment yield in the study area can be better explained. The operation of wind and water forces is different in different seasons within a year. During winter and spring, strong wind blows large quantities of eolian sand to gullies and river channels, which are temporally stored there. During the next summer, rainstorms cause runoff that contains much fine loessic material and acts as a powerful force to carry the previously prepared coarse material. As a result, hyperconcentrated flows occur, resulting in high-intensity erosion and sediment yield.  相似文献   

12.
A three-dimensional k-ε-Ap two-fluid turbulence model is proposed to study liquid-particle two-phase flow and bed deformation.By solving coupled liquid-phase and solid-phase governing equations in a finite-volume method,the model can calculate the movement of both water and sediment.The model was validated by water-sediment transport in a 180° channel bend with a movable bed.The validation concerns two-phase time-averaged velocities,bed deformation,water depth,depth-averaged streamwise velocity,cross-stream bed profiles,and two-phase secondary flow velocity vectors.The agreement between numerical results and experimental results was generally good.The comparisons of the numerical results of different models show that the three-dimensional k-ε-Ap two-fluid turbulence model has a relatively higher accuracy than one-fluid model.  相似文献   

13.
The composition, grain‐size, and flux of stream sediment evolve downstream in response to variations in basin‐scale sediment delivery, channel network structure, and diminution during transport. Here, we document downstream changes in lithology and grain size within two adjacent ~300 km2 catchments in the northern Rocky Mountains, USA, which drain differing mixtures of soft and resistant rock types, and where measured sediment yields differ two‐fold. We use a simple erosion–abrasion mass balance model to predict the downstream evolution of sediment flux and composition using a Monte Carlo approach constrained by measured sediment flux. Results show that the downstream evolution of the bed sediment composition is predictably related to changes in underlying geology, influencing the proportion of sediment carried as bedload or suspended load. In the Big Wood basin, particle abrasion reduces the proportion of fine‐grained sedimentary and volcanic rocks, depressing bedload in favor of suspended load. Reduced bedload transport leads to stronger bed armoring, and coarse granitic rocks are concentrated in the stream bed. By contrast, in the North Fork Big Lost basin, bedload yields are three times higher, the stream bed is less armored, and bed sediment becomes dominated by durable quartzitic sandstones. For both basins, the geology‐based mass balance model can reproduce within ~5% root‐mean‐square error the composition of the bed substrate using realistic erosion and abrasion parameters. As bed sediment evolves downstream, bedload fluxes increase and decrease as a function of the abrasion parameter and the frequency and size of tributary junctions, while suspended load increases steadily. Variable erosion and abrasion rates produce conditions of variable bed‐material transport rates that are sensitive to the distribution of lithologies and channel network structure, and, provided sufficient diversity in bedrock geology, measurements of bed sediment composition allow for an assessment of sediment source areas and yield using a simple modeling approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Source rock lithology and immediate modifying processes, such as chemical weathering and mechanical erosion, are primary controls on fluvial sediment supply. Sand composition and Chemical Index of Alteration (CIA) of parent rocks, soil and fluvial sand of the Savuto River watershed, Calabria (Italy), were used to evaluate the modifications of source rocks through different sections of the basin, characterized by different geomorphic processes, in a sub‐humid Mediterranean climate. The headwaters, with gentle topography, produce a coarse‐grained sediment load derived from deeply weathered gneiss, having sand of quartzofeldspathic composition, compositionally very different from in situ degraded bedrock. Maximum estimated CIA values suggest that source rock has been affected significantly by weathering, and it testifies to a climatic threshold on the destruction of the bedrock. The mid‐course has steeper slopes and a deeply incised valley; bedrock consists of mica‐schist and phyllite with a very thin regolith, which provides large cobble to very coarse sand sediments to the main channel. Slope instability, with an areal incidence of over 40 per cent, largely supplies detritus to the main channel. Sand‐sized detritus of soil and fluvial sand is lithic. Estimated CIA value testifies to a significant weathering of the bedrock too, even if in this part of the drainage basin steeper slopes allow erosion to exceed chemical weathering. The lower course has a braided pattern and sediment load is coarse to medium–fine grained. The river cuts across Palaeozoic crystalline rocks and Miocene siliciclastic deposits. Sand‐sized detritus, contributed from these rocks and homogenized by transport processes, has been found in the quartzolithic distal samples. Field and laboratory evidence indicates that landscape development was the result of extensive weathering during the last postglacial temperature maximum in the headwaters, and of mass‐failure and fluvial erosional processes in the mid‐ and low course. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
A one‐dimensional uncoupled model governed by this research is a physics‐based modelling of the rainfall‐runoff induced erosion process. The presented model is composed of three parts of a three‐dimensional (3D) hillslope geometry, a nonlinear storage (kinematic wave) model for hillslope hydrological response, and an unsteady physically based surface erosion model. The 3D hillslope geometry model allows describing of the hillslope morphology by defining their plan shape and profile curvature. By changing these two topographic parameters, nine basic hillslope types are derived. The modelling of hillslope hydrological response is based on a flow continuity equation as the relation of discharge and flow depth is passed on kinematic wave approximation. The erosion model is based on a mass conservation equation for unsteady flow. The model assumes that suspended sediment does not affect flow dynamics. The model also accounts for the effect of flow depth plus loose soil depth on soil detachment. The presented model was run for two different precipitations, slope content, and length, and results were plotted for sediment detachment/deposition rate. Based on the obtained results, in hillslopes with convex and straight profile curvatures, sediment detachment only occurred in the whole length of the hillslope. However, in concave ones, sediment detachment and deposition only occurred together in hillslope. The hillslopes with straight profiles and convergent plans have the highest rate of detachment. Also, results show that most detachment rates occur in convex profile curvatures, which are about 15 times more than in straight profiles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The purpose of this study is to investigate the capability of a newly developed process-based model for sediment transport under a wide variety of wave and current conditions.The model is based on the first-order boundary layer equation and the sediment advection-diffusion equation.In particular,a modified low Reynolds number k-e model is coupled to provide the turbulence closure.Detailed model verifications have been performed by simulating a number of laboratory experiments,covering a considerable range of hydrodynamic conditions such as sinusoidal waves,asymmetric waves and wave-current interactions.The model provides satisfactory numerical results which agree well with the measured results,including the time-averaged/dependent sediment concentration profiles and sediment flux profiles,as well as the time series of concentration at given elevations.The observed influences of wave orbital velocity amplitude,wave period and sediment grain size are correctly reproduced,indicating that the fundamental physical mechanisms of those processes are properly represented in the model.It is revealed that the present model is capable of predicting sediment transport under a wide range of wave and current conditions,and can be used to further study the morphodynamic processes in real coastal regions.  相似文献   

17.
Sediment transport models require appropriate representation of near-bed processes. We aim here to explore the parameterizations of bed shear stress, bed load transport rate and near-bed sediment erosion rate under the sheet flow regime. To that end, we employ a one-dimensional two-phase sheet flow model which is able to resolve the intrawave boundary layer and sediment dynamics at a length scale on the order of the sediment grain. We have conducted 79 numerical simulations to cover a range of collinear wave and current conditions and sediment diameters in the range 210–460 μmμm. The numerical results confirm that the intrawave bed shear stress leads the free stream velocity, and we assess an explicit expression relating the phase lead to the maximum velocity, wave period and bed roughness. The numerical sheet flow model is also used to provide estimates for the bed load transport rate and to inspect the near-bed sediment erosion. A common bed load transport rate formulation and two typical reference concentration approaches are assessed. A dependence of the bed load transport rate on the sediment grain diameter is observed and parameterized. Finally, the intrawave near-bed vertical sediment flux is further investigated and related to the time derivative of the bed shear stress.  相似文献   

18.
The origin of the sands in the Venice lagoon has been the subject of an extensive field survey in parallel with numerical modelling. Four transects along Treporti and Burano canals were conducted from which 33 bottom sediment samples were collected. These samples were analysed for grain size and sorting to examine any trends in the granulometry of these sediments that might shed light on transport paths. The modelling study consists of three parts: the sediment transport model sedtrans96 was used with a finite-element hydrodynamic model (Shyfem) and an empirical wave model (US Army Corps of Engineering) to simulate sand transport in the Treporti canal. A type of link box model was created where finite elements of the hydrodynamic model have been combined to macro-boxes on which the water and sediment flux over the sections, and a mass balance has been computed. Several grain size classes were simulated; the distributions before and after the simulation were examined. Idealised wind and tidal values were initially used to force 12 h simulations to test the sediment transport sensitivity. Finally, a full-year simulation (1987) has been carried out using measured tidal and wind data. Only a part of Venice lagoon was covered by the simulation: a major channel (Treporti) running from Lido inlet towards the northern lagoon. The total sand transport through all of the sections was computed for 1 year. Sediment mass balance was determined, and the resulting trends of erosion and deposition were computed. There were no trends in the median grain diameter and sorting of bottom samples from the Treporti canal; all sands were fine (120 μm, one outlier of 300 μm was removed). The absence of a trend in grain size suggests that there is no significant import of sand to the lagoon through the Lido inlet. The results from the simulations seem therefore to confirm the hypothesis of reworking of sand within the lagoon. The computed erosion is some centimeters per year diagnostic of channel scouring and enlargement with time. The Treporti canal is subject to strong current velocities of around 1 m/s, which hold fine sand in suspension and thus prevent sedimentation.  相似文献   

19.
《国际泥沙研究》2020,35(5):484-503
The current study aimed to describe textural characteristics, heavy mineral composition, and grain microtextures of the sediment from three micro-environments (foreshore, berm, and dune). A total of forty-one (41) representative surficial sediment samples have been collected from fifteen (15) locations along the beach area between the Sarada and Gosthani rivers on the east coast of India, where the length of the stretch is more than 100 km. The study reveals that most of the coastal sediment is medium to fine sand with relatively high ratios of coarse sand at Yarada beach, and the nature of the sediment is moderately to well sorted. These characteristics indicate a high energy environment. The heavy mineral analysis of the sediment in the current study was done for coarse (+60#) and fine (+230#) size fractions. Studying the weight percentage (WT%) reveals that a high percentage of heavy minerals is associated with fine fractions. Ilmenite, sillimanite, garnet, zircon, and rutile are the major heavy minerals identified in the current investigation. The concentrations of these heavy minerals show great variations from south to north of the study area. From an economic point of view, a considerable amount of heavy minerals (average 48.41%) are present on both sides (north and south) of the Gosthani River mouth. In the Sarada Estuary, the concentration of the economic heavy minerals was found under the minimum economic range. The grain microtextures of the major heavy minerals from the different locations along the study area demonstrate the variation in grain microtextures, which is controlled by the chemical and mechanical processes. These microtextures reflect moderate to high wave energy on the beach area, in addition to high mechanical impact on the grains from the estuary point.  相似文献   

20.
Lake Markermeer is a large (680?km2), shallow body of water in the middle of the Netherlands, with a mean water depth of 3.6?m. One of the major problems in the lake is its decreasing ecological value which is, among other reasons, caused by a gradual increase of suspended sediment concentration and associated increase of light attenuation in the water column. A thorough understanding of fine sediment dynamics in the lake is a prerequisite for solving this problem. This paper addresses the 3D nature of near-bed sediment dynamics in Lake Markermeer, based on data sampled from a 1-month field experiment in autumn 2007. The campaign involved the collection of 71 bed samples across the lake. At each location, dual-frequency echo soundings were carried out to assess the thickness of the silt layer, and sediment concentration throughout the water column was measured with an Optical Backscatter Sensor (OBS). Moreover, 2-week time series of wave height, water level, current velocities, and near-bed sediment concentration were collected at a single location. The time series of sediment concentration were measured with a regular OBS and an Argus Surface Meter IV (ASM). During the measurement period, flow velocities ranged between 2 and 15?cm/s, wave heights up to 1.2?m were observed and turbidity levels varied between 40?mg/l to more than 300?mg/l. The ASM data generally showed uniform concentration profiles. However, profiles with steep concentration gradients near the bed were found for wave heights above 0.5?m. The field experiments further revealed pronounced 3D structures near the bed during discrete storms. The results are generalized for a wider range of conditions and across the full water depth through application of a 1DV point model, using a two-fraction representation of the grain size distribution. The fine and coarse fractions are found to resuspend rapidly for wind speeds above 5?m/s and 10??2?m/s, respectively, forming a uniform concentration profile if these wind conditions persists. High-concentration (???g/l) layers near the bed, containing the coarse sediment fraction, only occur at the onset and towards the end of a storm, when wind speed changes rapidly. It is under these conditions that horizontal gradients in layer density or thickness can transport considerable fine sediment. This transport provides an additional mechanism for the infill of, for instance, silt traps and navigation channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号