首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wind characteristics and aeolian transport were measured on a naturally evolving beach and dune and a nearby site where the beach is raked and sand‐trapping fences are deployed. The beaches were composed of moderately well sorted to very well sorted fine to medium sand. The backshore at the raked site was wider and the foredune was more densely vegetated and about 1 m higher than at the unraked site. Wind speeds were monitored using anemometers placed at 1 m elevation and sand transport was monitored using vertical traps during oblique onshore, alongshore and offshore winds occurring in March and April 2009. Inundation of the low backshore through isolated swash channels prevented formation of a continuously decreasing cross‐shore moisture gradient. The surface of the berm crest was dryer than the backshore, making the berm crest the greatest source of offshore losses during offshore winds. The lack of storm wrack on the raked beach reduced the potential for sediment accumulation seaward of the dune crest during onshore winds, and the higher dune crest reduced wind speeds and sediment transport from the dune to the backshore during offshore winds. Accretion at wrack seaward of the dune toe on the unraked beach resulted in a wider dune field and higher, narrower backshore. Although fresh wrack is an effective local trap for aeolian transport, wrack that becomes buried appears to have little effect as a barrier and can supply dry sand for subsequent transport. Aeolian transport rates were greater on the narrower but dryer backshore of the unraked site. Vegetation growth may be necessary to trap sand within zones of buried wrack in order to allow new incipient foredunes to evolve. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Onshore tsunami deposits resulting from the 1993 Southwest Hokkaido and 1983 Japan Sea earthquakes were described to evaluate the feasibility of tsunami deposits for inferring paleoseismic events along submarine faults. Tsunami deposits were divided into three types, based on their composition and aerial distribution: (A) deposits consisting only of floating materials, (B) locally distributed siliclastic deposits, and (C) widespread siliclastic deposits. The most widely distributed tsunami deposits consist of the first two types. Type C deposits are mostly limited to areas where the higher tsunami runup was observed. The scale of tsunami represented by vertical tsunami runup is an important factor controlling the volume of tsunami deposits. The thickest deposits, about 10 cm, occur behind coastal dunes. To produce thick siliclastic tsunami deposits, a suitable source area, such as sand bar or dune, must be available in addition to sufficient vertical tsunami runup. Estimation of the amounts of erosion and deposition indicates that tsunami deposits were derived from both onshore and shoreface regions. The composition and grain size of the tsunami deposits strongly reflect the nature of the sedimentary materials of their source area. Sedimentary structures of the tsunami deposits suggest both low and high flow régimes. Consequently, it seems very difficult to identify tsunami deposits based only on grain size distribution or sedimentary structure of a single site in ancient successions.  相似文献   

3.
Size and Fourier-shape characteristics of quartz sand grains were determined by computerized image analysis in order to distinguish between aeolian and fluvial soil parent materials in the Dallol Bosso in Niger. Factor analysis of grain-size distributions gave four sand end-members that can be related to fluvial transport dynamics operating when the sediments were initially deposited. The medium to fine (and more angular shaped) sand fractions are being reworked by wind. Aeolian deposits were well sorted whereas fluvial deposits were poorly sorted in both size and shape. Although gross-shape characteristics (lower harmonics of Fourier series expansion) indicated a common source rock for all sands, the aeolian sands were well rounded whereas the fluvial sands tended to be more angular (upper harmonics of Fourier series).  相似文献   

4.
The tsunami in the Indian Ocean caused by the earthquake of December 26, 2004, near Sumatra Island had catastrophic consequences in coastal areas of many countries in this region. Notwithstanding extensive investigations of this phenomenon at various laboratories of the world, the focal mechanism of the aftershock remains unclear. The paper analyzes possible seafloor movements in the source area of the earthquake on the basis of the keyboard model of tsunamigenic earthquakes and describes numerical simulation of the generation, propagation, and runup of water surface waves in terms of this model involving vertical displacements of seafloor “keyboard-blocks.” It is shown that generated tsunami waves are essentially dependent on the combination of keyboard-block movements, which results in an irregular distribution of maximum runups along the shoreline. If the oblique nature of the subduction zone associated with the Sumatra-Andaman earthquake of December 26, 2004, is taken into account, the model results fit well the runup values observed at the Thailand shoreline. It is noted that this model of the subduction zone accounts more adequately for the tsunami wave field pattern in both areas of the Indian Ocean and other water areas such as the region of the Kurile-Kamchatka Island Arc and the Sea of Okhotsk.  相似文献   

5.
Erosion and Sedimentation from the 17 July, 1998 Papua New Guinea Tsunami   总被引:1,自引:0,他引:1  
— This paper describes erosion and sedimentation associated with the 17 July 1998 Papua New Guinea tsunami. Observed within two months of the tsunami, distinct deposits of a layer averaging 8-cm thick of gray sand rested on a brown muddy soil. In most cases the sand is normally graded, with more coarse sand near the base and fine sand at the top. In some cases the deposit contains rip-up clasts of muddy soil and in some locations it has a mud cap. Detailed measurements of coastal topography, tsunami flow height and direction indicators, and deposit thickness were made in the field, and samples of the deposit were collected for grain-size analysis in the laboratory. Four shore-normal transects were examined in detail to assess the shore-normal and along shore distribution of the tsunami deposit. Near the shoreline, the tsunami eroded approximately 10–25 cm of sand from the beach and berm. The sandy layer deposited by the tsunami began 50–150 m inland from the shoreline and extended across the coastal plain to within about 40 m of the limit of inundation; a total distance of up to 750 m from the beach. As much as 2/3 of the sand in the deposit originated from offshore. Across most of the coastal plain the deposit thickness and mean grain size varied little. In the along-shore direction the deposit thickness varied with the tsunami wave height; both largest near the entrance to Sissano Lagoon.  相似文献   

6.
Historic‐ and prehistoric‐tsunami sand deposits are used to independently establish runup records for tsunami hazard mitigation and modeled runup verification in Crescent City, California, located in the southern Cascadia Subduction Zone. Inundation from historic (1964) farfield tsunami (~5–6 m runup height) left sand sheet deposits (100–200 m width) in wetlands located behind a low beach ridge [3–4 m elevation of the National Geodetic Vertical Datum of 1988 (NAVD88)]. The most landward flooding lines (4·5–5 m elevation) in high‐gradient alluvial wetlands exceed the 1964 sand sheet records of inundation by 1–2 m in elevation. The most landward flooding in low‐gradient alluvial wetlands exceed the corresponding sand sheet record of inundation distance by 1000 m. Nevertheless, the sand sheet record is an important proxy for high‐velocity inundation. Sand sheet deposition from the 1964 historic tsunami closely corresponds to the landward extent of large debris transport and structural damage in the Crescent City waterfront. The sand sheet deposits provide a proxy for maximum hazard or ‘kill zone’ in the study area. Six paleotsunami sand sheets (0·3–3 ka) are recorded in the back‐ridge marshes in Crescent City, yielding a ~450 year mean recurrence interval for nearfield Cascadia tsunami. Two paleotsunami sand deposit records, likely correlated to Cascadia ruptures between 1·0 and 1·5 ka, are traced to 1·2 km distance and 9–10 m elevation, as adjusted for paleo‐sea level. The paleotsunami sand deposits demonstrate at least twice the runup height, and four times the inundation distance of the farfield 1964 tsunami sand sheet in the same marsh system. The preserved paleotsunami deposits in Crescent City are compared to the most landward flooding, as modeled by other investigators from a predicted Cascadia (~ Mw 9) rupture. The short geologic record (~1·5 ka) yields slightly lower runup records than those predicted for the modeled Mw 9 rupture scenario in the same marsh, but it generally verifies predicted maximum tsunami runup for use in the planning of emergency response and rapid evacuation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Measurements of thickness and grain size along flow‐parallel transects across onshore deposits of the 2004 Indian Ocean tsunami revealed macroscopic horizontal variations and provided new insights into tsunami sedimentation. The tsunami caused severe erosion of beaches, river mouths, and the shallow seafloor along the coast of southwestern Thailand and supplied sufficient sediment to deposit a kilometer‐wide blanket of sand on the land surface. The tsunami deposits generally fine landward with some fluctuations caused by local entrainment and settlement of sediments. Sediments of medium and fine sand are restricted to a few hundreds of meters inland from their source, whereas finer grained sediments were suspended longer and deposited 1 km or more inland. Although the thickness of the tsunami deposits is strongly influenced by local topography, they generally thin landward. In areas of low‐relief topography, the rate of landward thinning is exponential and reflects the dominance of sediment supply to nearshore areas over that to areas farther inland.  相似文献   

8.
The evolution of barchan-to-parabolic dunes can be driven by vegetation establishment, which may be linked to climate change and/or human activity. However, little is known of the impact of changes in wind strength on vegetation development and the resulting impacts on the evolution of dune morphology and sedimentological characteristics. To address this issue, we studied the morphology and grain-size characteristics of barchan, barchan-to-parabolic and parabolic dunes in the Mu Us Desert in north China, which was combined with an analysis of changes in normalized difference vegetation index (NDVI) and climatic variables during 1982–2018. The results reveal a trend of increasing growing-season NDVI which was related to a significant decrease in drift potential (DP). Therefore, we suggest that the initiation of dune transformation was caused by the reduced wind strength which favored the establishment and development of vegetation. To reveal the response of sedimentological reorganization during the processes of dune transformation, grain-size characteristics along the longitudinal profile of the three different types of dunes were examined. The decreasing wind strength led to the transport of fine sands on the upper part of the windward face of the dunes, resulting in a progressive coarsening of the grain-size distribution (GSD) and a reduction in dune height at the crest area. No distinct trend in sorting and mean grain-size was observed on the windward slope of the barchan-to-parabolic dune, indicating that the sand in transit had little influence on the GSD. Conversely, progressive sorting and coarsening of the sand occurred towards the crest of the parabolic dune. This indicates that vegetation development limited the transport of sand from upwind of the dune, and affected a shift in the dune source material to the underlying source deposits, or to reworked pre-existing aeolian deposits, and resulted in the trapping of sand in the crest area. © 2020 John Wiley & Sons, Ltd.  相似文献   

9.
《国际泥沙研究》2020,35(5):484-503
The current study aimed to describe textural characteristics, heavy mineral composition, and grain microtextures of the sediment from three micro-environments (foreshore, berm, and dune). A total of forty-one (41) representative surficial sediment samples have been collected from fifteen (15) locations along the beach area between the Sarada and Gosthani rivers on the east coast of India, where the length of the stretch is more than 100 km. The study reveals that most of the coastal sediment is medium to fine sand with relatively high ratios of coarse sand at Yarada beach, and the nature of the sediment is moderately to well sorted. These characteristics indicate a high energy environment. The heavy mineral analysis of the sediment in the current study was done for coarse (+60#) and fine (+230#) size fractions. Studying the weight percentage (WT%) reveals that a high percentage of heavy minerals is associated with fine fractions. Ilmenite, sillimanite, garnet, zircon, and rutile are the major heavy minerals identified in the current investigation. The concentrations of these heavy minerals show great variations from south to north of the study area. From an economic point of view, a considerable amount of heavy minerals (average 48.41%) are present on both sides (north and south) of the Gosthani River mouth. In the Sarada Estuary, the concentration of the economic heavy minerals was found under the minimum economic range. The grain microtextures of the major heavy minerals from the different locations along the study area demonstrate the variation in grain microtextures, which is controlled by the chemical and mechanical processes. These microtextures reflect moderate to high wave energy on the beach area, in addition to high mechanical impact on the grains from the estuary point.  相似文献   

10.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
Changes in wind speed and sediment transport are evaluated at a gap and adjacent crest of a 2 to 3 m high, 40 m wide foredune built by sand fences and vegetation plantings on a wide, nourished fine sand beach at Ocean City, New Jersey. Anemometer masts, cylindrical sand traps and erosion pins were placed on the beach and dune during two obliquely onshore wind events in February and March 2003. Results reveal that: (1) changes in the alongshore continuity of the beach and dune system can act as boundaries to aeolian transport when winds blow at an angle to the shoreline; (2) oblique winds blowing across poorly vegetated patches in the dune increase the potential for creating an irregular crest elevation; (3) transport rates and deflation rates can be greater within the foredune than on the beach, if the dune surface is poorly vegetated and the beach has not had time to dry following tidal inundation; (4) frozen ground does not prevent surface deflation; and (5) remnant sand fences and fresh storm wrack have great local but temporary effect on transport rates. Temporal and spatial differences due to sand fences and wrack, changes in sediment availability due to time‐dependent differences in surface moisture and frozen ground, combined with complex topography and patchy vegetation make it difficult to specify cause–effect relationships. Effects of individual roughness elements on the beach and dune on wind flow and sediment transport can be quantified at specific locations at the event scale, but extrapolation of each event to longer temporal and spatial scales remains qualitative. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Sediment deposited by the Tohoku tsunami of March 11, 2011 in the Southern Kurils (Kunashir, Shikotan, Zeleniy, Yuri, Tanfiliev islands) was radically different from sedimentation during local strong storms and from tsunamis with larger runup at the same location. Sediments from the 2011 Tohoku tsunami were surveyed in the field, immediately and 6 months after the event, and analyzed in the laboratory for sediment granulometry, benthos Foraminifa assemblages, and diatom algae. Run-up elevation and inundation distance were calculated from the wrackline (accumulations of driftwood, woody debris, grass, and seaweed) marking the distal edge of tsunami inundation. Run-up of the tsunami was 5 m at maximum, and 3–4 m on average. Maximum distance of inundation was recorded in river mouths (up to 630 m), but was generally in the range of 50–80 m. Although similar to the local strong storms in runup height, the tsunami generally did not erode the coast, nor leave a deposit. However, deposits uncharacteristic of tsunami, described as brown aleuropelitic (silty and clayey) mud rich in organic matter, were found in closed bays facing the South Kuril Strait. These closed bays were covered with sea ice at the time of tsunami. As the tsunami waves broke the ice, the ice floes enhanced the bottom erosion on shoals and destruction of low-lying coastal peatland even at modest ranges of runup. In the muddy tsunami deposits, silt comprised up to 64 % and clay up to 41.5 %. The Foraminifera assemblages displayed features characteristic of benthic microfauna in the near-shore zone. Deep-sea diatoms recovered from tsunami deposits in two closely situated bays, namely Krabovaya and Otradnaya bays, had different requirements for environmental temperature, suggesting these different diatoms were brought to the bays by the tsunami wave entraining various water masses when skirting the island from the north and from the south.  相似文献   

13.
The southwest Hokkaido tsunami of July 12th, 1993, left continuous onshore sand deposits along the west coast of Oshima Peninsuka, Hokkaido, northern Japan. We investigated spatial distribution and lithofacies of the new tsunami deposits for its identification of ancient tsunami deposits. An eyewitness acount and bent plants helped our interpretation of the onshore tsunami behavior. We regard the following properties as typical of the coastal tsunami sand deposits: (1) The deposits cover the surface almost continuously on gentle topography. (2) Deposit thicknesses and mean grain sizes descrease with distance from the sea. (3) Deposit thicknesses and lithofacies vary greatly across local surface undulation. (4) Graded bedding reflecting tsunami runup and backwash is present in thick deposits. (5) The deposits are widely distributed along the coast and extend inland several tens of meters to 100 m. We examined a candidate for the paleo-tsunami deposits associated with the 1640 Komagatake eruption, and confirmed that the similar patterns are typical of ancient tsunami deposits.  相似文献   

14.
We considered small-scale measurement of permeability in pebbly sands having coarser grains supported in a finer grained matrix (fine packing). Our central question was whether air-based measurements are representative if made with a permeameter tip seal pressed in the sand matrix. We created pebbly sands and variably sorted sands, with systematic variation in aspects of their fine packing. We made permeability measurements by inserting the tip seal of an air permeameter in the matrix of these samples and compared them to the permeability of the composite sample determined by both water-based methods and theory. The air-permeameter measurements made in this way represent the permeability of the composite mixtures of coarser and finer grains and allow for the discernment of permeability between samples with different matrix compositions, ranging from fine to coarse sand. Furthermore, the collective results show that permeability differences in the pebbly sands and variably sorted sands with fine packing, however measured, are primarily due to differences in matrix permeability and not due to differences in the size or the percentage of the coarser grains.  相似文献   

15.
A model was developed and analyzed to quantify the effect of graded sediment on the formation of tidal sand ridges. Field data reveal coarse (fine) sediment at the crests (in the troughs), but often phase shifts between the mean grain-size distribution and the bottom topography occur. Following earlier work, this study is based on a linear stability analysis of a basic state with respect to small bottom perturbations. The basic state describes an alongshore tidal current on a coastal shelf. Sediment is transported as bed load and dynamic hiding effects are accounted for. A one-layer model for the bed evolution is used and two grain size classes (fine and coarse sand) are considered. Results indicate an increase in growth and migration rates of tidal sand ridges for a bimodal mixture, whilst the wavelength of the ridges remains unchanged. A symmetrical externally forced tidal current results in a grain-size distribution which is in phase with the ridges. Incorporation of an additional external M4 tidal constituent or a steady current results in a phase shift between the grain-size distribution and ridge topography. These results show a general agreement with observations. The physical mechanism responsible for the observed grain-size distribution over the ridges is also discussed.Responsible Editor: Jens Kappenberg  相似文献   

16.
Runup data in Hokkaido and in three prefectures in the Tohoku District are described with a few witnessed arrival times and with comments of tide records. The highest runup of 31.7 m was found at the bottom of a narrow valley on the west coast of Okushiri Island. In order to explain high runups of 20 m at Hamatsumae in the sheltered area, roles of edge waves, refraction of the Okushiri Spur and tsunami generation by causes other than the major fault motion should be understood. An early arrival of the tsunami on the west coast of Hokkaido suggests another tsunami generation mechanism in addition to the major fault motion.  相似文献   

17.
Spatial variations in sand sea geochemistry relate to mixing of different sediment sources and to variations in weathering. Due to problems of accessibility, adequate spatial coverage cannot be achieved using field surveys alone. However, maps of geochemical composition produced from remotely sensed data can be calibrated against limited field data and the results extrapolated over large, inaccessible areas. This technique is applied to part of the Rub' Al Khali in the northern United Arab Emirates. Trend surface analysis of the results suggests that the sand sea at this location can be modelled as an east–west mixing zone of two spectral components: terrestrial reddened quartz sands and marine carbonate sands. Optical dating of these sediments suggests that dune emplacement occurred rapidly around 10 ka BP , when sea level was rising rapidly. The spatial distribution of mineralogical components suggests that this phase of dune emplacement resulted from coastal dune sands being driven inland during marine transgression, thereby becoming mixed with rubified terrestrial sands. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
A numerical simulation of the 26th December, 2004 Indian Ocean tsunami of the Tamil Nadu coastal zone is presented. The simulation approach is based on a fully nonlinear Boussinesq tsunami propagation model and included an accurate computational domain and a robust coseismic source. The simulation is first confronted to available tide gauge and runup observations. The agreement between observations and the predicted wave heights allowed a reasonable validation of the simulation. As a result, a full picture of the tsunami impact is provided over the entire coastal zone Tamil Nadu. The processes responsible for coastal vulnerability are discussed.  相似文献   

19.
The relation between grain-size distribution of the bed and in suspension was critically examined under a uniform flow velocity of 50 cm/s over two beds: one of mainly fine sands and the other of medium sands. Two sections – one 2.85 m downstream and the other 6.35 m downstream in the experimental channel-were selected for sampling to study the grain-sorting pattern in the vertical direction along the direction of transport. The shape and type of the grain-size distribution pattern were critically studied with height above the bed. The change in the distribution pattern has been attributed to the change of local bed roughness causing scouring against the protruded relatively coarse grains on the bed. Such trends are important to predict the nature of river bed topography. The sand of Bed-1 initially exhibits a log-skew-Laplace distribution at different heights of suspension. The distribution pattern, however, changes but this changing pattern is not consistent along the upstream side. For Bed-2, which initially exhibits a log-normal distribution, the same pattern persists from the height of suspension at 5 cm up to 20 cm. Such consistency in log-normality is also observed at the downstream points of measurement. It is generally expected that the mean grain-size would reduce with increases of suspension height but the results of the experiments, in some occasions, differ significantly from the gradual fining upward trend. This result has been attributed to local changes of bed roughness arising from the protruded relatively coarse grains causing eddies, scouring, and turbulent phenomena which moves coarse particles higher in suspension adding a coarse tail to the distribution increasing the mean grain-size.  相似文献   

20.
Porosity and permeability in sediment mixtures   总被引:1,自引:1,他引:0  
Porosity in sediments that contain a mix of coarser- and finer-grained components varies as a function of the porosity and volume fraction of each component. We considered sediment mixtures representing poorly sorted sands and gravely sands. We expanded an existing fractional-packing model for porosity to represent mixtures in which finer grains approach the size of the pores that would exist among the coarser grains alone. The model well represents the porosity measured in laboratory experiments in which grain sizes and volume fractions were systematically changed within sediment mixtures. Permeability values were determined for these sediment mixtures using a model based on grain-size statistics and the expanded fractional-packing porosity model. The permeability model well represents permeability measured in laboratory experiments using air- and water-based permeametry on the model sediment mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号