首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Porosity and permeability in sediment mixtures   总被引:1,自引:1,他引:0  
Porosity in sediments that contain a mix of coarser- and finer-grained components varies as a function of the porosity and volume fraction of each component. We considered sediment mixtures representing poorly sorted sands and gravely sands. We expanded an existing fractional-packing model for porosity to represent mixtures in which finer grains approach the size of the pores that would exist among the coarser grains alone. The model well represents the porosity measured in laboratory experiments in which grain sizes and volume fractions were systematically changed within sediment mixtures. Permeability values were determined for these sediment mixtures using a model based on grain-size statistics and the expanded fractional-packing porosity model. The permeability model well represents permeability measured in laboratory experiments using air- and water-based permeametry on the model sediment mixtures.  相似文献   

2.
In both sand quarry faces and boreholes the Old Alluvium of Singapore is a matrix supported pebbly sand with minor beds of better sorted sands and clays. The beds can be grouped into four textural classes (pebbles, coarse sand with fine pebbles, medium to coarse sand, clay, and silt), each with characteristic sedimentary structures. The deposit appears to be the proximal facies of an ancient braided river alluvium of possible Pleistocene age. This widespread but scattered alluvium is found both on land and offshore on the Sunda Shelf in Southeast Asia. It is believed to have been deposited during low sea levels. In Singapore, the mineralogy of the grains forming the Old Alluvium suggests a mixed provenance of granitic and low-grade metamorphic origin. The volume and freshness of the deposited material indicate an environment of considerable relief, seasonal rainfall, and extremely active erosional processes, conditions considerably different from the current ones. The Old Alluvium was probably deposited by seasonal rivers which experienced periodic large floods. Such regional conditions could have prevailed over much of Southeast Asia at the time of deposition of the Old Alluvium.  相似文献   

3.
This study presents the results of experimental compaction while measuring ultrasonic velocities of sands with different grain size, shape, sorting and mineralogy. Uniaxial mechanical compaction tests up to a maximum of 50 MPa effective stress were performed on 29 dry sand aggregates derived from eight different sands to measure the rock properties. A good agreement was found between the Gassmann saturated bulk moduli of dry and brine saturated tests of selected sands. Sand samples with poor sorting showed low initial porosity while sands with high grain angularity had high initial porosity. The sand compaction tests showed that at a given stress well‐sorted, coarse‐grained sands were more compressible and had higher velocities (Vp and Vs) than fine‐grained sands when the mineralogy was similar. This can be attributed to grain crushing, where coarser grains lead to high compressibility and large grain‐to‐grain contact areas result in high velocities. At medium to high stresses the angular coarse to medium grained sands (both sorted sands and un‐sorted whole sands) showed high compaction and velocities (Vp and Vs). The small grain‐to‐grain contact areas promote higher deformation at grain contacts, more crushing and increased porosity loss resulting in high velocities. Compaction and velocities (Vp and Vs) increased with decreasing sorting in sands. However, at the same porosity, the velocities in whole sands were slightly lower than in the well‐sorted sands indicating the presence of loose smaller grains in‐between the framework grains. Quartz‐poor sands (containing less than 55% quartz) showed higher velocities (Vp and Vs) compared to that of quartz‐rich sands. This could be the result of sintering and enlargement of grain contacts of ductile mineral grains in the quartz‐poor sands increasing the effective bulk and shear stiffness. Tests both from wet measurements and Gassmann brine substitution showed a decreasing Vp/Vs ratio with increasing effective stress. The quartz‐rich sands separated out towards the higher side of the Vp/Vs range. The Gassmann brine substituted Vp and Vs plotted against effective stress provide a measure of the expected velocity range to be found in these and similar sands during mechanical compaction. Deviations of actual well log data from experimental data may indicate uplift, the presence of hydrocarbon, overpressure and/or cementation. Data from this study may help to model velocity‐depth trends and to improve the characterization of reservoir sands from well log data in a low temperature (<80–100o C) zone where compaction of sands is mostly mechanical.  相似文献   

4.
Size and Fourier-shape characteristics of quartz sand grains were determined by computerized image analysis in order to distinguish between aeolian and fluvial soil parent materials in the Dallol Bosso in Niger. Factor analysis of grain-size distributions gave four sand end-members that can be related to fluvial transport dynamics operating when the sediments were initially deposited. The medium to fine (and more angular shaped) sand fractions are being reworked by wind. Aeolian deposits were well sorted whereas fluvial deposits were poorly sorted in both size and shape. Although gross-shape characteristics (lower harmonics of Fourier series expansion) indicated a common source rock for all sands, the aeolian sands were well rounded whereas the fluvial sands tended to be more angular (upper harmonics of Fourier series).  相似文献   

5.
The sound-producing mechanism of booming sand has long been a pending problem in the blown sand physics. Based on the earlier researches, the authors collected some silent sand samples from Teng- ger Desert, Australian Desert, Kuwait Desert, beaches of Hainan Island and Japanese coast as well as the soundless booming sand samples from the Mingsha Mountain in Dunhuang to make washing ex- periments. In the meantime the chemical corrosion experiment of glass micro-spheres, surface coating experiment and SEM examination were also conducted. The experimental results show that the sound production of booming sand seems to have nothing to do with the presence of SiO2 gel on the surface of sand grains and unrelated to the surface chemical composition of sand grains but is related to the resonance cavities formed by porous (pit-like) physical structure resulting from a number of factors such as wind erosion, water erosion, chemical corrosion and SiO2 gel deposition, etc. Its resonance mechanism is similar to that of Hemholz resonance cavity. Under the action of external forces, nu- merous spherical and sand grains with smooth surface and porous surface are set in motion and rub with each other to produce extremely weak vibration sound and then become audible sound by human ears through the magnification of surface cavity resonance. However the booming sands may lose their resonance mechanism and become silent sand due to the damping action caused by the invasion of finer particles such as dust and clay into surface holes of sand grains. Therefore, clearing away fine pollutants on the quartz grain surface is an effective way to make silent sand emit audible sound.  相似文献   

6.
Simple, and locally compound, transverse and barchanoid dunes dominate the 2000 km2 Skeleton Coast dunefield in northwestern Namibia/South West Africa. Dune height and spacing are closely correlated (r = 0-89) and decrease across the dunefield from southwest to northeast, with an accompanying change from transverse to barchanoid ridges and ultimately barchans. The dunes are aligned transverse to the dominant strong south and south southwest onshore winds. Alignment patterns indicate that surface roughness changes between coastal plain and dunes cause dune-forming winds to swing to the right over the dunes, but resume their original direction beyond. Grain size and sorting vary at three scales: the dune, the dune landscape and through the dunefield. Overall the sands, derived from three localities by deflation from beaches supplied by vigorous longshore drift, become progressively finer and better sorted across the dunefield paralleling changes in dune height and spacing. A statistically significant relationship (r = ?0?65) was established between dune spacing and the phi grain size of the coarser fraction of the dune sands, demonstrating the importance of the protective effects of coarse grains, and suggesting that the morphometry of simple transverse dunes may be controlled by the scale of turbulence associated with the threshold wind speed required to move the coarsest fraction of the dune sand.  相似文献   

7.
Dam break flows and resulting river bed erosion can have disastrous impacts on human safety,infrastructure,and environmental quality.However,there is a lack of research on the mobility of non-uniform sediment mixtures resulting from dam break flows and how these differ from uniform sized sediment.In this paper,laboratory flume experiments revealed that coarse and fine fractions in non-uniform sediment had a higher and a lower bed-load parameter,respectively,than uniform sediments of the same size.Thus,the finer fractions were more stable and the coarser fractions were more erodible in a nonuniform bed compared to a uniform-grained bed.These differences can be explained by the hiding and protrusion of these fractions,respectively.By investigating changes in mobility of the mixed-size fractions with reservoir water levels,the results revealed that at low water levels,when the coarser fractions were only just mobile,the bed-load parameter of the finer fractions was higher than the coarser fractions.The opposite was observed at a higher water level,when a significant proportion of the coarsest fractions was mobilized.The higher protrusion of these grains had an important effect on their mobility relative to the finer grains.The transported sediment on these mixed-sized beds was coarser than the initial bed sediment,and became coarser with an increase in reservoir water level.  相似文献   

8.
Analysis of grain size statistics of upper foreshore sediments on sand beaches at two tidal inlets in New Jersey, U.S.A. reveals that sediments are coarser at beaches flanking the inlets than updrift, although sediments become finer downdrift at the broad, regional scale. The local reversal of the regional trend in size grading is attributed to: (1) the offshore diversion of the finer sands along the surf zone on the ebb tidal delta, and (2) the removal of the finer sands from the inlet flank beach caused by low wave energy conditions at low stages of the tide and by deflation. Sediments thus become coarser at inlet beaches as a result of alterations in the interaction of waves with the beach and as a result of aeolian processes, not solely as a result of increased tidal current velocities as previously reported. The distance along the New Jersey barrier islands over which inlet processes are likely to affect changes in sediment size updrift averages less than 1100 m, but the impacts of inlets on the sedimentary record can be extended greater distances as a result of inlet migration.  相似文献   

9.
Tsunami Sediment Characteristics at the Thai Andaman Coast   总被引:1,自引:0,他引:1  
This paper describes and summarizes the 2004 Indian Ocean tsunami sediment characteristics at the Thai Andaman coast. Field investigations have been made approximately 3 years after the 2004 Indian Ocean tsunami event. Seven transects have been examined at five locations. Sediment samples have been collected for grain-size analyses by wet-sieve method. Tsunami sediments are compared to three deposits from coastal sub-environments. The mean grain-size and standard deviation of deposits show that shoreface deposits are fine to very fine sand, poorly to moderately well sorted; swash zone deposits are coarse to fine sand, poorly to well sorted; berm/dune deposits are medium to fine sand, poorly to well sorted; and tsunami deposits are coarse to very fine sand, poorly to moderately well sorted. A plot of deposit mean grain-size versus sorting indicates that tsunami deposits are composed of shoreface deposits, swash zone deposits and berm/dune deposits as well. The tsunami sediment is a gray sand layer deposited with an erosional base on a pre-existing soil (rooted soil). The thickness of the tsunami sediment layer is variable. The best location for observation of the recent tsunami sediment is at about 50–200 m inland from the coastline. In most cases, the sediment layer is normally graded. In some cases, the sediment contains rip-up clasts of muddy soils and/or organic matter. The vertical variation of tsunami sediment texture shows that the mean grain-size is fining upward and landward. Break points of slope in a plot of standard deviation versus depth mark a break in turbulence associated with a transition to a lower or higher Reynolds number runup. This can be used to evaluate tsunami sediment main layer and tsunami sediment sub layers. The skewness of tsunami sediment indicates a grain size distribution with prominent finer-grain or coarse-grain particles. The kurtosis of tsunami sediment indicates grain-size distributions which are flat to peak distribution (or multi-modal to uni-modal distribution) upward. Generally, the major origins of tsunami sediment are swash zone and berm/dune zone sands where coarse to medium sands are the significant material at these locations. The minor origin of tsunami sediment is the shoreface where the significant materials are fine to very fine sands. However, for a coastal area where the shoreface slope is mild, the major origin of tsunami sediment is the shoreface. The interpretation of runup number from tsunami sediment characteristics gets three runups for the 2004 Indian Ocean tsunami at the Thai Andaman coast. It corresponds to field observations from local eyewitnesses. The 1st runup transported and deposited more coarse particles than the following runups. Overall, the pattern of onshore tsunami sediment transportation indicates erosion at swash zone and berm/dune zone, followed by dynamic equilibrium at an area behind the berm/dune zone and after that deposition at inland zone until the limit of sediment inundation. The total deposition is a major pattern in onshore tsunami sediment transportation at the deposition zone which the sediment must find in the direction of transport.  相似文献   

10.
The grain‐size distribution of aeolian dune sands in the Thar Desert, India was analyzed and compared with three model distributions – log‐normal, log‐hyberbolic and log‐skew‐Laplace – to determine the best‐fit statistical model. In total, 51 samples were collected along a single transect over a transverse dune, of which 15 were from the stoss side, 12 from the crest and 24 from the lee side. Samples were collected during a calm period in the afternoon of a winter's day. It was observed that of these 51 samples, 33 fit best to a log‐hyperbolic distribution, 14 fit best to a normal distribution and only four fit best to a Laplace distribution. However, it was further observed that of 24 samples from the lee side, 13 fit best to a normal distribution, eight fit best to a hyperbolic distribution, and three fit best to a Laplace distribution. Of 12 samples from the crest of the dune, 11 fit best to the log‐hyperbolic distribution, only one to the Laplace distribution but none to a normal distribution. Of 15 samples from the stoss side of the dune, only one sample best‐fits a normal distribution, 14 fit best to a log‐hyperbolic distribution, and none best fit to a Laplace distribution. During sample collection a calm period prevailed and there was no dusty wind. It was therefore assumed that in the initial stage a mixture of coarse, medium and fine sands was laid down on the stoss side of the dune. As wind speeds increased and saltation started, the coarser fractions were segregated and lagged behind on the stoss slope. In the final stage when the remaining intermediate and finer fractions reached the dune crest, the finer fractions were winnowed away to suspension from the crest of the dune. As a result, a narrow range of intermediate sized sediments was deposited by rolling down the lee side to explain the development of log‐normality. In such a situation, both the coarser and finer fractions, to which the skewed distributions can be attributed, are separated from the initial mixture of coarse, intermediate and fine fractions. Hence the main criteria for the development of a normal distribution is the lack of skewed fractions and the concentration of the narrow, intermediate size fractions in the final grain size distribution. This is also corroborated with the index of symmetry, which is a measure of the difference between the angle of two slopes of the hyperbolic distribution as represented by the coarser and finer fractions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
It is common to use idealised materials to study the dynamics of granular transport in fluid flows, but the impact of this choice upon sediment behaviour has not been extensively explored. To tackle this research gap, two experiments were undertaken to explore the influence of a finer grain input to a channelized coarser granular flow driven by a shallow fluid flow. The first set of runs was undertaken using spherical glass beads, and the second set with natural fluvial sediment. The transport system approximates a narrow slice through the bedload at the bottom of a river. In the runs with natural grains, the infiltration of fine sediment into the bed was similar to the spherical glass beads, but with reduced infiltration capacity. We ascribe this behaviour to irregular and variable pore shapes and sizes in the natural material. The behaviour of the bedload in the natural material runs matched that of the bead runs only when the feed contained a high content of fines. When the feed contained a low content of fines the transport of natural grains was more complex, including the emergence of migrating collections of grains. However, the overall changes in bed and water slope due to the finer grain input were comparable in both sets of experiments. We conclude that artificial, idealised materials qualitatively represent sedimentary phenomena, but that quantitative differences in the outcomes must be expected. © 2020 John Wiley & Sons, Ltd.  相似文献   

12.
We present transient streaming potential data collected during falling‐head permeameter tests performed on samples of two sands with different physical and chemical properties. The objective of the work is to estimate hydraulic conductivity (K) and the electrokinetic coupling coefficient (Cl) of the sand samples. A semi‐empirical model based on the falling‐head permeameter flow model and electrokinetic coupling is used to analyze the streaming potential data and to estimate K and Cl. The values of K estimated from head data are used to validate the streaming potential method. Estimates of K from streaming potential data closely match those obtained from the associated head data, with less than 10% deviation. The electrokinetic coupling coefficient was estimated from streaming potential vs. (1) time and (2) head data for both sands. The results indicate that, within limits of experimental error, the values of Cl estimated by the two methods are essentially the same. The results of this work demonstrate that a temporal record of the streaming potential response in falling‐head permeameter tests can be used to estimate both K and Cl. They further indicate the potential for using transient streaming potential data as a proxy for hydraulic head in hydrogeology applications.  相似文献   

13.
Sedimentological, compositional and geochemical determinations were carried out on 54 desert and coastal dune sand samples to study the provenance of desert and coastal dunes of the Altar Desert, Sonora, Mexico. Grain size distributions of the desert dune sands are influenced by the Colorado River Delta sediment supply and wind selectiveness. The desert dune sands are derived mainly from the quartz‐rich Colorado River Delta sediments and sedimentary lithics. The dune height does not exert a control over the grain size distributions of the desert dune sands. The quartz enrichment of the desert dune sands may be due to wind sorting, which concentrates more quartz grains, and to the aeolian activity, which has depleted the feldspar grains through subaerial collisions. The desert dune sands suffer from little chemical weathering and they are chemically homogeneous, with chemical alteration indices similar to those found in other deserts of the world. The desert sands have been more influenced by sedimentary and granitic sources. This is supported by the fact that Ba and Sr concentration values of the desert sands are within the range of the Ba and Sr concentration values of the Colorado River quartz‐rich sediments. The Sr values are also linked to the presence of Ca‐bearing minerals. The Zr values are linked to the sedimentary sources and heavy mineral content in the desert dunes. The Golfo de Santa Clara and Puerto Peñasco coastal dune sands are influenced by long shore drift, tidal and aeolian processes. Coarse grains are found on the flanks whereas fine grains are on the crest of the dunes. High tidal regimens, long shore drift and supply from Colorado Delta River sediments produce quartz‐rich sands on the beach that are subsequently transported into the coastal dunes. Outcrops of Quaternary sedimentary rocks and granitic sources increase the sedimentary and plutonic lithic content of the coastal dune sands. The chemical index of alteration (CIA) values for the desert and coastal dune sands indicate that both dune types are chemically homogeneous. The trace element values for the coastal dune sands are similar to those found for the desert dune sands. However, an increase in Sr content in the coastal dune sands may be due to more CaCO3 of biogenic origin as compared to the desert dune sands. Correlations between the studied parameters show that the dune sands are controlled by sedimentary sources (e.g. Colorado River Delta sediments), since heavy minerals are present in low percentages in the dune sands, probably due to little heavy mineral content from the source sediment; grain sizes in the dune sands are coarser than those in which heavy minerals are found and/or the wind speed might not exert a potential entrainment effect on the heavy mineral fractions to be transported into the dune. A cluster analysis shows that the El Pinacate group is significantly different from the rest of the dune sands in terms of the grain‐size parameters due to longer transport of the sands and the long distance from the source sediment, whereas the Puerto Peñasco coastal dune sands are different from the rest of the groups in terms of their geochemistry, probably caused by their high CaCO3 content and slight decrease in the CIA value. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
This paper reports on the erosion, transport, and deposition processes associated with an overbank deposit formed by the flooding of the Abu River on July 28, 2013, in Yamaguchi City, Japan. At the study site, river flows overtopped the levee revetment upstream of a meander bend cutting it off and flowing back into the main channel downstream. In this sequential process, it deposited large amounts of sediments, ranging from mud to cobbles, on the floodplain. The surface of paddy fields adjacent to a railway line, located at the center of the affected floodplain, was severely eroded by the flood flows. Overbank deposits composed of both upstream finer sediments and eroded coarser terrestrial sediments are laid down in the affected area. Large amounts of pebbles and cobbles originating from the eroded terrestrial area formed a gravelly pile on top of the sand and gravel sediments derived from the river. This finding indicates that sands and gravels were deposited prior to the formation of the gravelly pile, probably before and during peak flood flows. An inverse grading structure is evident in the lower to middle part of these comparatively thick deposits, most likely due to differences in transport pattern between entrained terrestrial gravels and upstream finer sediments.  相似文献   

15.
Spatio-temporal cross-shore profiles and textural characteristics are the key parameters for understanding dynamics of the inter-tidal sedimentary environment.This study describes short-term dynamics of the inter-tidal sedimentary environment at beaches along the micro-tidal coast.Further a correlation is estimated in cross-shore morphodynamics and textural characteristics of surface sediments.The sedimentary environment is examined for a complete annual cycle using monthly collected cross-shore profiles and sediment samples.The Devbag beach(northern side) and Ravindranath Tagore beach(southern side) at the Kali river mouth,Karwar,west coast of India are characterized from extremely gentle to average slope,and broadly composed of unimodal sands.The sedimentary environment is significantly composed of textures having fine to medium sand,well to moderately sorted,fine to coarse skewed,and platykurtic to leptokurtic in nature.During the annual cycle a reversal pattern is observed between the two adjacent beaches,where a slower rate of sediment accretion is observed at Devbag beach while Ravindranath Tagore beach exhibited erosion.The beach dynamics along with the propagation of south-west(SW) and south-west-west(SWW) waves towards the coast significantly exhibit a dominance of northward sediment transport with the existence of a northerly alongshore current.In addition,the study reveals that an eroded beach may not be significantly identified composed of coarse grains.The poor correlation in morpho-sedimentary characteristics reveals the prediction of grain characteristics based on beach profile and vice-versa is unrealistic.  相似文献   

16.
A procedure has been developed for calculating permeability (k) from the Kozeny‐Carman equation, a procedure that links ideas from percolation theory with the ideas of Koltermann and Gorelick (1995) and Esselburn et al. (2011) . The approach focuses on the proportion of coarser pores that are occupied by finer sediments relative to a percolation threshold proportion (ωc). If the proportion occupied is below ωc, then the unoccupied coarser pores percolate. Otherwise they do not percolate. Following the ideas of Koltermann and Gorelick (1995) , the effective grain‐size term in the Kozeny‐Carman equation is calculated using the geometric mean if the unoccupied coarse pores percolate, and using the harmonic mean if otherwise. Following ideas of Esselburn et al. (2011) , this approach is implemented by evaluating the potential for grains in each size category to occupy pores among sediment of each larger‐size category. Application of these ideas to physical sediment models for sands and gravels, which have known k, indicates that a threshold does indeed exist. Results also suggest that the Kozeny‐Carman equation is robust and gives representative values for k, even though ωc is not precisely known.  相似文献   

17.
With the advancement in oil exploration,producible oil and gas are being found in low resistivity reservoirs,which may otherwise be erroneously thought as water zones from their resistivity.However,the evaluation of low resistivity reservoirs remains difficult from log interpretation.Since low resistivity in hydrocarbon bearing sands can be caused by dispersed clay,laminated shale,conductive matrix grains,microscopic capillary pores and high saline water,a new resistivity model is required for more accurate hydrocarbon saturation prediction for low resistivity formations.Herein,a generalized effective medium resistivity model has been proposed for low resistivity reservoirs,based on experimental measurements on artificial low resistivity shaly sand samples,symmetrical anisotropic effective medium theory for resistivity interpretations,and geneses and conductance mechanisms of low resistivity reservoirs.By analyzing effects of some factors on the proposed model,we show theoretically the model can describe conductance mechanisms of low resistivity reservoirs with five geneses.Also,shale distribution largely affects water saturation predicted by the model.Resistivity index decreases as fraction and conductivity of laminated shale,or fraction of dispersed clay,or conductivity of rock matrix grains increases.Resistivity index decreases as matrix percolation exponent,or percolation rate of capillary bound water increases,and as percolation exponent of capillary bound water,or matrix percolation rate,or free water percolation rate decreases.Rock sample data from low resistivity reservoirs with different geneses and interpretation results for log data show that the proposed model can be applied in low resistivity reservoirs containing high salinity water,dispersed clay,microscopic capillary pores,laminated shale and conductive matrix grains,and thus is considered as a generalized resistivity model for low resistivity reservoir evaluation.  相似文献   

18.
Sand dunes as potential sources of dust in northern China   总被引:1,自引:0,他引:1  
While saltation bombardment of sand grains on a fine substrate can produce considerable dust, the well-sorted nature of sand dunes tends to preclude them from consideration as major dust sources. Recent research, however, has revealed that sand dunes can, in some cases, be large sources of dust. We used the PI-SWERL(Portable In-Situ Wind Erosion Laboratory) to measure in the field the potential of sand dunes and other desert landforms to emit particulate matter 10 μm(PM-10) dust in the Tengger, Ulan Buh, and Mu Us deserts of northern China. Combined with high resolution particle size measurements of the dune sand, an assessment of sand dunes as a dust source can be made. Large active transverse dunes tend to contain little to no stored PM-10, yet they produce a low dust flux. Coppice dunes stabilized by vegetation contain appreciable PM-10 and have very high dust emission potential. There is a positive correlation between the amount of PM-10 stored in a dune and its potential dust flux. Saltation liberates loose fines stored in dunes, making them very efficient dust emitters compared to landforms such as dry lake beds and washes where dust particles are unavailable for aeolian transport due to protective crusts or sediment cohesion. In cases where large dunes do not store PM-10 yet emit dust when active, two hypotheses can be considered:(1) iron-oxide grain coatings are removed during saltation, creating dust, and(2) sand grains collide during saltation, abrading grains to create dust. Observations reveal that iron oxide coatings are present on some dune sands. PI-SWERL data suggests that low dust fluxes from dunes containing no stored dust may represent an estimate for the amount of PM-10 dust produced by removal of iron oxide coatings. These results are similar to results from dunes in the United States. In addition, PI-SWERL results suggest that dust-bearing coppice dunes, which cover vast areas of China's sandy deserts, may become major sources of dust in the future if overgrazing, depletion of groundwater, or drought destabilizes the vegetation that now partially covers these dunes.  相似文献   

19.
Elastic properties of an unconsolidated sand are largely dependent on the elastic properties of its constituent grain and the micro-structure that defines how the grains are arranged within themselves. Coordination number, that is the average number of contacts a grain has with its neighbours, and contact surface area are the two parameters closely related to the microstructure. Moreover, grain shapes and sorting also have substantial influence on these parameters. To calculate these parameters and find any potential relationships with the shape factors, we acquire high-resolution micro computed tomography images of four mechanically compacted unconsolidated dry sand samples that are of different shape factors and sorting indices. After a comprehensive voxel-based data processing, we calculate shape factors such as sphericity and roundness of each grain in all samples. Using own algorithm, we then calculate the coordination number and contact surface area. Results show that samples of well-sorted and higher spherical and rounded grains have higher coordination number and contact surface area than the samples of poorly sorted and lower spherical and rounded grains. Among the poorly sorted samples, coordination number is largely dependent on the fraction of larger grain sizes present in the sample. Inside any given sample, grains of lower sphericity tend to have higher coordination numbers. Moreover, more spherical and rounded grains have greater contact surface area with their neighbours.  相似文献   

20.
Dunn AM  Silliman SE 《Ground water》2003,41(6):729-734
A laboratory tank was used to study entrapment of water in coarse sand lenses above the water table and of air in coarse sand lenses below the water table. Monitoring of these experiments involved a combination of visual inspection, measurement of moisture content, and measurement of air/water pressure. The medium consisted of coarse sand lenses with various degrees of vertical connectivity embedded within a fine sand matrix. Experiments were performed under conditions of both drainage (from a fully saturated medium) and imbibition. Observations during drainage included: (1) water was trapped in the coarse sand zones above the water table at heights significantly greater than anticipated from consideration of capillary rise in the coarse sand; (2) rapid drainage of these same coarse zones occurred when air penetrated into these zones through the surrounding fine sands; and (3) prior to the time of penetration of the coarse sand by air, water pressure in the coarse zone dropped significantly below atmospheric pressure. Observations during imbibition included: (1) entrapment of air within coarse sands below the water table, (2) the pore fluids in these zones varied spatially from predominantly air to predominantly water, and (3) pressure in the trapped air phase was significantly greater than pressure in the water phase in the surrounding fine sand. Overall, these results demonstrated significant sensitivity to the geometry of the coarse sand inclusions, particularly the vertical connectivity of the coarse sand lens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号