首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of streamflow forecast uncertainty on real-time reservoir operation   总被引:1,自引:0,他引:1  
Various hydrological forecast products have been applied to real-time reservoir operation, including deterministic streamflow forecast (DSF), DSF-based probabilistic streamflow forecast (pseudo-PSF, pPSF), and ensemble or probabilistic streamflow forecast (denoted as real-PSF, rPSF). DSF represents forecast uncertainty in the form of deterministic forecast errors, pPSF a conditional distribution of forecast uncertainty for a given DSF, and rPSF a probabilistic uncertainty distribution. Compared to previous studies that treat the forecast products as ad hoc inputs for reservoir operation models, this paper attempts to model the dynamic evolution of uncertainties involved in the various forecast products and explores their effect on real-time reservoir operation decisions. Through a hypothetical example of a single-objective real-time reservoir operation model, the results illustrate that forecast uncertainty exerts significant effects. Reservoir operation efficiency, as measured by a utility function, decreases as the forecast uncertainty increases but the magnitude depends on the forecast products used. In general, the utility of the reservoir operation with rPSF is nearly as high as the utility obtained with a perfect forecast. Meanwhile, the utilities of DSF and pPSF are similar to each other but not as high as rPSF. Moreover, streamflow variability and reservoir capacity can change the magnitude of the effects of forecast uncertainty, but not the relative merit of DSF, pPSF, and rPSF.  相似文献   

2.
3.
《水文科学杂志》2013,58(6):1006-1020
Abstract

This paper aims to compare the shift in frequency distribution and skill of seasonal climate forecasting of both streamflow and rainfall in eastern Australia based on the Southern Oscillation Index (SOI) Phase system. Recent advances in seasonal forecasting of climate variables have highlighted opportunities for improving decision making in natural resources management. Forecasting of rainfall probabilities for different regions in Australia is available, but the use of similar forecasts for water resource supply has not been developed. The use of streamflow forecasts may provide better information for decision-making in irrigation supply and flow management for improved ecological outcomes. To examine the relative efficacy of seasonal forecasting of streamflow and rainfall, the shift in probability distributions and the forecast skill were evaluated using the Wilcoxon rank-sum test and the linear error in probability space (LEPS) skill score, respectively, at three river gauging stations in the Border Rivers Catchment of the Murray-Darling Basin in eastern Australia. A comparison of rainfall and streamflow distributions confirms higher statistical significance in the shift of streamflow distribution than that in rainfall distribution. Moreover, streamflow distribution showed greater skill of forecasting with 0–3 month lead time, compared to rainfall distribution.  相似文献   

4.
大别山库区降水预报性能评估及应用对策   总被引:1,自引:0,他引:1  
对降水预报进行性能评估及应用对策研究可以更好地发挥降水预报在水库调度中的决策支持作用.基于大别山库区近10 a汛期(2007—2016年5月1日—9月30日)24~168 h共7个预见期降水预报和地面降水观测资料,采用正确率、TS评分、概率统计、ROC曲线以及CTS等方法评估大别山库区降水预报性能,并以响洪甸水库为重点研究区域分析降水预报在水库调度中的应用对策.结果表明:1)大别山库区各量级的降水预报都有正预报技巧;24~72 h预见期降水预报的TS评分较高且空报率、漏报率也较低,具有较高的预报性能;但96 h及以上预见期降水预报性能明显下降,中雨以上量级空报率、漏报率较大,特别是对大暴雨及其以上量级的降水预报性能显著下降.2)大别山库区预报降水量级与实况降水量级基本符合,预报降水量级大于等于实况降水量级的概率超过75%;虽然降水预报量级上呈现出过度预报的现象,但降水过程预报对水库调度仍有较好的应用价值,应用时要考虑到降水预报量级可能存在偏差.3)转折性天气预报96 h及以上预见期CTS评分较低,但72 h以内预见期的性能明显改进,尤其是24 h预见期CTS评分也提高到了38.2%;水库调度可从长预见期的降水预报获取降水过程及其可能发生转折的信息,根据短预见期的降水预报进行调度方案调整.  相似文献   

5.
6.
Hydrological and statistical models are playing an increasing role in hydrological forecasting, particularly for river basins with data of different temporal scales. In this study, statistical models, e.g. artificial neural networks, adaptive network-based fuzzy inference system, genetic programming, least squares support vector machine, multiple linear regression, were developed, based on parametric optimization methods such as particle swarm optimization (PSO), genetic algorithm (GA), and data-preprocessing techniques such as wavelet decomposition (WD) for river flow modelling using daily streamflow data from four hydrological stations for a period of 1954–2009. These models were used for 1-, 3- and 5-day streamflow forecasting and the better model was used for uncertainty evaluation using bootstrap resampling method. Meanwhile, a simple conceptual hydrological model GR4J was used to evaluate parametric uncertainty based on generalized likelihood uncertainty estimation method. Results indicated that: (1) GA and PSO did not help improve the forecast performance of the model. However, the hybrid model with WD significantly improved the forecast performance; (2) the hybrid model with WD as a data preprocessing procedure can clarify hydrological effects of water reservoirs and can capture peak high/low flow changes; (3) Forecast accuracy of data-driven models is significantly influenced by the availability of streamflow data. More human interferences from the upper to the lower East River basin can help to introduce greater uncertainty in streamflow forecasts; (4) The structure of GR4J may introduce larger parametric uncertainty at the Longchuan station than at the Boluo station in the East river basin. This study provides a theoretical background for data-driven model-based streamflow forecasting and a comprehensive view about data and parametric uncertainty in data-scarce river basins.  相似文献   

7.
This study proposes a new monthly ensemble streamflow prediction (ESP) forecasting system that can update the ESP in the middle of a month to reflect the meteorological and hydrological variations during that month. The reservoir operating policies derived from a sampling stochastic dynamic programming model using ESP scenarios updated three times a month were applied to the Geum River basin to measure the value of updated ESP for 21 years with 100 initial storage combinations. The results clearly demonstrate that updating the ESP scenario improves the accuracy of the forecasts and consequently their operational benefit. This study also proves that the accuracy of the ESP scenario, particularly when high flows occur, has a considerable effect on the reservoir operations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Short-term water system operation can be realized using Model Predictive Control (MPC). MPC is a method for operational management of complex dynamic systems. Applied to open water systems, MPC provides integrated, optimal, and proactive management, when forecasts are available. Notwithstanding these properties, if forecast uncertainty is not properly taken into account, the system performance can critically deteriorate.Ensemble forecast is a way to represent short-term forecast uncertainty. An ensemble forecast is a set of possible future trajectories of a meteorological or hydrological system. The growing ensemble forecasts’ availability and accuracy raises the question on how to use them for operational management.The theoretical innovation presented here is the use of ensemble forecasts for optimal operation. Specifically, we introduce a tree based approach. We called the new method Tree-Based Model Predictive Control (TB-MPC). In TB-MPC, a tree is used to set up a Multistage Stochastic Programming, which finds a different optimal strategy for each branch and enhances the adaptivity to forecast uncertainty. Adaptivity reduces the sensitivity to wrong forecasts and improves the operational performance.TB-MPC is applied to the operational management of Salto Grande reservoir, located at the border between Argentina and Uruguay, and compared to other methods.  相似文献   

9.
《Journal of Hydrology》2003,270(1-2):135-144
The interannual variability in streamflow presents challenges in managing the associated risks and opportunities of water resources systems. This paper investigates the use of seasonal streamflow forecasts to help manage three water resources systems in south-east Australia. The seasonal streamflow forecasts are derived from the serial correlation in streamflow and the relationship between El Nino/Southern Oscillation (ENSO) and streamflow. This paper investigates the use of ENSO and serial correlation in reservoir inflow to optimise water restriction rules for an urban township and the use of seasonal forecasts of reservoir inflow to help make management decisions in two irrigation systems. The results show a marginal benefit in using seasonal streamflow forecasts in the three management examples. The results suggest that although the ENSO–streamflow teleconnection and the serial correlation in streamflow are statistically significant, the correlations are not sufficiently high to considerably benefit the management of conservative low-risk water resources systems. However, the seasonal forecasts can be used in the system simulations to provide an indication of the likely increases in the available water resources through an irrigation season, to allow irrigators to make more informed risk-based management decisions.  相似文献   

10.
Providing reliable and accurate storm surge forecasts is important for a wide range of problems related to coastal environments. In order to adequately support decision-making processes, it also become increasingly important to be able to estimate the uncertainty associated with the storm surge forecast. The procedure commonly adopted to do this uses the results of a hydrodynamic model forced by a set of different meteorological forecasts; however, this approach requires a considerable, if not prohibitive, computational cost for real-time application. In the present paper we present two simplified methods for estimating the uncertainty affecting storm surge prediction with moderate computational effort. In the first approach we use a computationally fast, statistical tidal model instead of a hydrodynamic numerical model to estimate storm surge uncertainty. The second approach is based on the observation that the uncertainty in the sea level forecast mainly stems from the uncertainty affecting the meteorological fields; this has led to the idea to estimate forecast uncertainty via a linear combination of suitable meteorological variances, directly extracted from the meteorological fields. The proposed methods were applied to estimate the uncertainty in the storm surge forecast in the Venice Lagoon. The results clearly show that the uncertainty estimated through a linear combination of suitable meteorological variances nicely matches the one obtained using the deterministic approach and overcomes some intrinsic limitations in the use of a statistical tidal model.  相似文献   

11.
Forecasts of seasonal snowmelt runoff volume provide indispensable information for rational decision making by water project operators, irrigation district managers, and farmers in the western United States. Bayesian statistical models and communication frames have been researched in order to enhance the forecast information disseminated to the users, and to characterize forecast skill from the decision maker's point of view. Four products are presented: (i) a Bayesian Processor of Forecasts, which provides a statistical filter for calibrating the forecasts, and a procedure for estimating the posterior probability distribution of the seasonal runoff; (ii) the Bayesian Correlation Score, a new measure of forecast skill, which is related monotonically to theex ante economic value of forecasts for decision making; (iii) a statistical predictor of monthly cumulative runoffs within the snowmelt season, conditional on the total seasonal runoff forecast; and (iv) a framing of the forecast message that conveys the uncertainty associated with the forecast estimates to the users. All analyses are illustrated with numerical examples of forecasts for six gauging stations from the period 1971–1988.  相似文献   

12.
In this study we discuss probabilistic forecasts of Citarum River streamflow, which supplies 80 % of the water demands in Jakarta, Indonesia, based on general circulation model (GCM) output, for the September–November (SON) season. Retrospective forecasts of precipitation made over the period 1982–2010 with two coupled-ocean atmosphere GCMs, initialized in August, are used in conjunction historical streamflow records, with a cross-validated regression model. Pearson’s product moment correlation skill values of 0.58–0.67 are obtained, with relative operating characteristic scores of 0.67–0.84 and 0.74–0.92 for the lower and upper tercile categories of flows respectively. Both GCMs thus demonstrate promising ability to forecast below/above normal streamflow for the Citarum River flow during the SON season.  相似文献   

13.
In a water‐stressed region, such as the western United States, it is essential to have long lead times for streamflow forecasts used in reservoir operations and water resources management. Current water supply forecasts provide a 3‐month to 6‐month lead time, depending on the time of year. However, there is a growing demand from stakeholders to have forecasts that run lead times of 1 year or more. In this study, a data‐driven model, the support vector machine (SVM) based on the statistical learning theory, was used to predict annual streamflow volume with a 1‐year lead time. Annual average oceanic–atmospheric indices consisting of the Pacific decadal oscillation, North Atlantic oscillation (NAO), Atlantic multidecadal oscillation, El Niño southern oscillation (ENSO), and a new sea surface temperature (SST) data set for the ‘Hondo’ region for the period of 1906–2006 were used to generate annual streamflow volumes for multiple sites in the Gunnison River Basin and San Juan River Basin, both located in the Upper Colorado River Basin. Based on the performance measures, the model showed very good forecasts, and the forecasts were in good agreement with measured streamflow volumes. Inclusion of SST information from the Hondo region improved the model's forecasting ability; in addition, the combination of NAO and Hondo region SST data resulted in the best streamflow forecasts for a 1‐year lead time. The results of the SVM model were found to be better than the feed‐forward, back propagation artificial neural network and multiple linear regression. The results from this study have the potential of providing useful information for the planning and management of water resources within these basins. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
During typhoons or storms, accurate forecasts of hourly streamflow are necessary for flood warning and mitigation. However, hourly streamflow is difficult to forecast because of the complex physical process and the high variability in time. Furthermore, under the global warming scenario, events with extreme streamflow may occur that leads to more difficulties in forecasting streamflows. Hence, to obtain more accurate hourly streamflow forecasts, an improved streamflow forecasting model is proposed in this paper. The computational kernel of the proposed model is developed on the basis of support vector machine (SVM). Additionally, self‐organizing map (SOM) is used to analyse observed data to extract data with specific properties, which are capable of providing valuable information for streamflow forecasting. After reprocessing, these extracted data and the observed data are used to construct the SVM‐based model. An application is conducted to clearly demonstrate the advantage of the proposed model. The comparison between the proposed model and the conventional SVM model, which is constructed without SOM, is performed. The results indicate that the proposed model is better performed than the conventional SVM model. Moreover, as regards the extreme events, the result shows that the proposed model reduces the forecasting error, especially the error of peak streamflow. It is confirmed that because of the use of data extracted by SOM, the improved forecasting performance is obtained. The proposed model, which can produce accurate forecasts, is expected to be useful to support flood warning systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The Panama Canal relies on rain-fed streamflow into Gatun Lake, the canal’s primary storage facility, for operations—principally ship passage and hydropower generation. Precipitation in much of Panama has a strong negative relationship with eastern tropical Pacific sea surface temperature (SST) and this relationship is reflected in Gatun Lake inflows. For example, the correlation coefficient between wet season (July–December) inflow and NINO3 SST is −0.53 over the period 1914–1997. Operational capabilities to predict tropical Pacific SSTs have been demonstrated by several forecast systems during the past decade, and (as we show) such SST forecasts can be used to reduce the uncertainty of estimates of future inflows (compared with climatological expectations). Because substantial reductions in lake inflow negatively impact canal operations, we wondered whether these forecasts of future inflows, coupled with a method for translating that information into effective operational policy, might result in more efficient canal management. A combined simulation/optimization/assessment “virtual” canal system was implemented and exercised using operational El Niño forecasts over the period 1981–1998. The results show the following main points:
(i)
At current demand levels, the canal system is relatively robust (insensitive to flow forecasts) unless flows are substantially reduced (i.e., during El Niño episodes) or forecasts are extremely accurate.  相似文献   

16.
In this study, the climate teleconnections with meteorological droughts are analysed and used to develop ensemble drought prediction models using a support vector machine (SVM)–copula approach over Western Rajasthan (India). The meteorological droughts are identified using the Standardized Precipitation Index (SPI). In the analysis of large‐scale climate forcing represented by climate indices such as El Niño Southern Oscillation, Indian Ocean Dipole Mode and Atlantic Multidecadal Oscillation on regional droughts, it is found that regional droughts exhibits interannual as well as interdecadal variability. On the basis of potential teleconnections between regional droughts and climate indices, SPI‐based drought forecasting models are developed with up to 3 months' lead time. As traditional statistical forecast models are unable to capture nonlinearity and nonstationarity associated with drought forecasts, a machine learning technique, namely, support vector regression (SVR), is adopted to forecast the drought index, and the copula method is used to model the joint distribution of observed and predicted drought index. The copula‐based conditional distribution of an observed drought index conditioned on predicted drought index is utilized to simulate ensembles of drought forecasts. Two variants of drought forecast models are developed, namely a single model for all the periods in a year and separate models for each of the four seasons in a year. The performance of developed models is validated for predicting drought time series for 10 years' data. Improvement in ensemble prediction of drought indices is observed for combined seasonal model over the single model without seasonal partitions. The results show that the proposed SVM–copula approach improves the drought prediction capability and provides estimation of uncertainty associated with drought predictions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Several statistical postprocessing methods are applied to results from a numerical weather prediction (NWP) model to test the potential for increasing the accuracy of its local precipitation forecasts. Categorical (Yes/No) forecasts for 12hr precipitation sums equalling or exceeding 0.1, 2.0 and 5.0 mm are selected for improvement. The two 12hr periods 0600-1800 UTC and 1800-0600 UTC are treated separately based on NWP model initial times 0000 UTC and 1200 UTC, respectively. Input data are taken from three successive summer seasons, April-September, 1994-96. The forecasts are prepared and verified for five synoptic stations, four located in the western Czech Republic, and one in Germany near the Czech-German border. Two approaches to statistical postprocessing are tested. The first uses Model Output Statistics (MOS) and the second modifies the MOS approach by applying a successive learning technique (SLT). For each approach several statistical models for the relationship between NWP model predictors and predictand were studied. An independent data set is used for forecast verification with the skill measured by a True Skill Score. The results of the statistical postprocessing are compared with the direct model precipitation forecasts from gridpoints nearest the stations, and they show that both postprocessing approaches provide substantially better forecasts than the direct NWP model output. The relative improvement increases with increasing precipitation amount and there is no significant difference in performance between the two 12hr periods. The skill of the SLT does not depend significantly on the size of the initial learning sample, but its results are nevertheless comparable with the results obtained from the MOS approach, which requires larger developmental samples.  相似文献   

18.
Managing environmental and social systems in the face of uncertainty requires the best possible forecasts of future conditions. We use space–time variability in historical data and projections of future population density to improve forecasting of residential water demand in the City of Phoenix, Arizona. Our future water estimates are derived using the first and second order statistical moments between a dependent variable, water use, and an independent variable, population density. The independent variable is projected at future points, and remains uncertain. We use adjusted statistical moments that cover projection errors in the independent variable, and propose a methodology to generate information-rich future estimates. These updated estimates are processed in Bayesian Maximum Entropy (BME), which produces maps of estimated water use to the year 2030. Integrating the uncertain estimates into the space–time forecasting process improves forecasting accuracy up to 43.9% over other space–time mapping methods that do not assimilate the uncertain estimates. Further validation studies reveal that BME is more accurate than co-kriging that integrates the error-free independent variable, but shows similar accuracy to kriging with measurement error that processes the uncertain estimates. Our proposed forecasting method benefits from the uncertain estimates of the future, provides up-to-date forecasts of water use, and can be adapted to other socio-economic and environmental applications.  相似文献   

19.
Weather radar has a potential to provide accurate short‐term (0–3 h) forecasts of rainfall (i.e. radar nowcasts), which are of great importance in warnings and risk management for hydro‐meteorological events. However, radar nowcasts are affected by large uncertainties, which are not only linked to limitations in the forecast method but also because of errors in the radar rainfall measurement. The probabilistic quantitative precipitation nowcasting approach attempts to quantify these uncertainties by delivering the forecasts in a probabilistic form. This study implements two forms of probabilistic quantitative precipitation nowcasting for a hilly area in the south of Manchester, namely, the theoretically based scheme [ensemble rainfall forecasts (ERF)‐TN] and the empirically based scheme (ERF‐EM), and explores which one exhibits higher predictive skill. The ERF‐TN scheme generates ensemble forecasts of rainfall in which each ensemble member is determined by the stochastic realisation of a theoretical noise component. The so‐called ERF‐EM scheme proposed and applied for the first time in this study, aims to use an empirically based error model to measure and quantify the combined effect of all the error sources in the radar rainfall forecasts. The essence of the error model is formulated into an empirical relation between the radar rainfall forecasts and the corresponding ‘ground truth’ represented by the rainfall field from rain gauges measurements. The ensemble members generated by the two schemes have been compared with the rain gauge rainfall. The hit rate and the false alarm rate statistics have been computed and combined into relative operating characteristic curves. The comparison of the performance scores for the two schemes shows that the ERF‐EM achieves better performance than the ERF‐TN at 1‐h lead time. The predictive skills of both schemes are almost identical when the lead time increases to 2 h. In addition, the relation between uncertainty in the radar rainfall forecasts and lead time is also investigated by computing the dispersion of the generated ensemble members. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
《水文科学杂志》2012,57(15):1932-1942
ABSTRACT

The UK Hydrological Outlook (UKHO) is a seasonal forecast of future river flows and groundwater levels. The UKHO contains both presentations of outputs from models simulating future conditions and a high-level summary. The summary is produced by an expert panel of forecasters that considers the model outputs together with other recent hydrological and meteorological information. Whilst the skill and uncertainty of the individual models have been explored and published, this study sets out to establish the performance of the high-level summary, and presents such an assessment of the river flow forecasts at the 1-month timescale. Both qualitative and quantitative assessments are presented and compared with two naïve forecasting methods. The UKHO summary is found to have a similar Gerrity skill score to a “same as last month” forecast, an outcome that generates suggestions for improvements in how the different model outputs should be considered and presented in the high-level summary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号