首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
秦爱芳  张九龙 《岩土力学》2015,36(6):1521-1528
基于Fredlund非饱和土一维固结理论,研究了有限厚度的表面透水透气、底面不透水不透气的线弹性和黏弹性非饱和土地基在加荷随时间指数性变化时的一维固结特性。分别得到了两类地基在固结过程中同时考虑液相、气相渗透系数非线性变化和仅考虑液相渗透系数变化两种情况下的半解析解答。利用典型算例进行计算,分析了不同情况下两类地基中超孔隙水、气压力消散以及地基固结度随时间的变化规律,并与不考虑渗透系数变化时的半解析解计算结果进行了对比。结果发现:固结过程中渗透系数呈非线性变化;只考虑液相渗透系数变化时,超孔隙气压力的消散变化不大,超孔隙水压力的消散加快;气相渗透系数变化对超孔隙气的消散产生明显影响,对超孔隙水压力消散影响不大。同时考虑液相和气相渗透系数变化时,土体中超孔隙水、气压力的消散均有明显变化,土体固结速度也相应加快;分析结果对非饱和土固结的进一步研究具有重要意义。  相似文献   

2.
This paper presents a semi-analytical solution to one-dimensional consolidation equation of fractional derivative Kelvin-Voigt viscoelastic saturated soils subjected to different time-dependent loadings. The theory of fractional calculus is first introduced to Kelvin-Voigt constitutive model to describe consolidation behavior of viscoelastic saturated soils. By applying Laplace transform upon the one-dimensional consolidation equation of saturated soils, the analytical solutions of effective stress and settlement in the Laplace transform domain are obtained. The present solutions are more general and have good agreements with available solutions from the literature, and are degenerated into ones for one-dimensional consolidation of elastic and viscoelastic saturated soils.  相似文献   

3.
汪磊  李林忠  徐永福  夏小和  孙德安 《岩土力学》2018,39(11):4142-4148
为描述饱和土体的流变特性,引入分数阶导数Kelvin-Voigt黏弹性模型,采用解析方法对半透水边界下的分数阶黏弹性饱和土一维固结特性进行了研究。分别对骤加恒载下饱和土一维固结微分方程和分数阶Kelvin-Voigt黏弹性本构方程进行Laplace变换,并联立求解得到了双边半透水边界条件下分数阶黏弹性饱和土在Laplace变换域内的解析表达式。通过Crump方法实现Laplace数值反演,得到时间域内的半解析解。将所得到的解分别退化为分数阶黏弹性饱和土一维固结半解析解和双边半透水黏弹性饱和土一维固结半解析解,结果与已有文献半解析解相同,验证了提出的双边半透水边界条件下分数阶黏弹性饱和土一维固结解的可靠性。通过算例考察了半透水边界条件和分数阶黏弹性饱和土参数对一维固结特性的影响。研究表明,双边半透水边界下分数阶黏弹性饱和土一维固结发展过程与半透水边界条件、分数阶次和黏滞系数有关,且土体的压缩模量对饱和土一维固结最终沉降量有显著影响。  相似文献   

4.
基于Terzaghi一维固结理论,分析了考虑半透水边界条件的分数阶导数黏弹性饱和土层在随时间变化的任意荷载作用下一维固结问题。首先,应用Laplace变换联立求解饱和土层一维固结微分方程和分数阶Kelvin-Voigt黏弹性本构方程,推导出有效应力和沉降在Laplace变换域内的解析解,采用Crump方法进行Laplace逆变换,得到了时间域内的半解析解。然后将本文得到的半解析解分别退化为半透水边界条件下基于黏弹性假设的一维固结半解析解和双面透水边界条件下基于分数阶黏弹性假设的一维固结半解析解,结果与已有文献的半解析解相同,验证了本研究所提出解的可靠性。最后通过算例分别考察了半透水边界参数、分数阶黏弹性模型参数和荷载参数对饱和土层固结沉降的影响。研究表明,半透水边界条件参数、分数阶次与黏滞系数主要影响饱和土层固结的发展快慢,而饱和土层的最终沉降量主要受到土层压缩模量的影响;另外,饱和土层的固结规律与外荷载变化规律一致。  相似文献   

5.
《工程地质学报》2017,25(3):605-611
在以往对非饱和土砂井地基固结理论研究中,均将涂抹区与非涂抹区土体渗透系数视为相等,这与实际工程并不相符。本文将考虑涂抹区土体渗透系数的变化,分析其对超孔隙气、水压力消散规律的影响。基于Fredlund一维固结理论以及Darcy定律和Fick定律,对有限厚度线弹性非饱和土砂井地基,在大面积均布瞬时荷载作用下,考虑涂抹区土体渗透系数的变化,利用Laplace变换并引入Bessel函数推导出Laplace变换下的解,再通过Crump方法编程实现Laplace逆变换得到超孔隙气压力、超孔隙水压力的半解析解。利用典型算例进行计算,分别得到在不同半径、不同涂抹区半径和不同涂抹程度的情况下,超孔隙气压力、超孔隙水压力随时间的变化规律。得出考虑涂抹作用时,超孔隙气、水压力的消散速度降低;涂抹区半径越大、涂抹程度越高速度越慢,反之消散越快。本研究丰富了非饱和土砂井固结理论,对非饱和土砂井固结特性的研究具有一定的工程参考价值。  相似文献   

6.
非饱和土层一维固结特性分析   总被引:1,自引:0,他引:1  
秦爱芳  羌锐  谈永卫  孙德安 《岩土力学》2010,31(6):1891-1896
在Fredlund非饱和土的一维固结理论的基础上进行假设,由得出的液相及气相的控制方程、Darcy定律及Fick定律,采用Laplace 变换、逆变换等数学方法得到了大面积均布瞬时加载下表面为透水透气面、底面为不透水和不透气面的非饱和土层一维固结时间域内的超孔隙水压力、超孔隙气压力及土层沉降的解析解;应用典型算例,分析了不同气、水渗透系数比情况下土体超孔隙水压力、超孔隙气压力消散及土层沉降随时间的变化规律以及不同时间超孔隙水压力、超孔隙气压力消散随深度的变化规律。将得出的结果退化成相应的饱和土的解与太沙基饱和土固结理论结果比较,验证了其正确性。  相似文献   

7.
This paper presents semi-analytical solutions to Fredlund and Hasan’s one-dimensional consolidation for unsaturated soils under symmetric semi-permeable drainage boundary conditions. Two variables are introduced to transform two coupled governing equations of pore-air and pore-water pressures into an equivalent set of partial differential equations, which are easily solved by the Laplace transform. Then, the pore-air and pore-water pressures, and soil settlement are obtained in the Laplace domain. Crump’s method is adopted to perform the inverse Laplace transform in order to obtain semi-analytical solutions in time domain. It is shown that the present solution is more applicable to various types of drainage boundary conditions, and in a good agreement with existing solutions from the literature. Furthermore, several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with traditional drainage boundary (single or double), and single-sided and double-sided semi-permeable drainage boundaries. Finally, it illustrates the changes in pore-air and pore-water pressures and soil settlement with time at different values of symmetric semi-permeable drainage boundary conditions parameters. In addition, parametric studies are conducted by the variations of pore-air and pore-water pressures at different ratios of air-water permeability coefficient and the depth.  相似文献   

8.
Based on Fredlund’s one-dimensional consolidation equation for unsaturated soil, Darcy’s law and Fick’s law, a semi-analytical solution was presented to the free drainage well with a finite thickness under application of uniform vertical loading and the boundary of the top and bottom surfaces impermeable to water and air. According to the polar governing equations of water and air phases and the boundary and initial conditions, the excess pore-air and pore-water pressures and the soil layer settlement in the Laplace transformed domain are obtained by performing the Laplace transform and utilizing the Bessel functions. Crump’s method is used to perform the inversion of Laplace transform in order to obtain numerical solutions in the real time domain. Finally, a typical example is given to illustrate the changes in the excess pore-air and pore-water pressures and soil layer settlement with time factor at different ratios of air–water permeability coefficient and/or different distances from the well.  相似文献   

9.
张添  汪磊  沈思东 《工程地质学报》2022,30(4):1010-1018
基于Dakshanamurthy和Fredlund提出的二维非饱和土固结理论,利用Fourier正弦级数展开、Laplace变换,分别给出了分段循环荷载作用下二维非饱和土固结问题的超孔隙气压力、超孔隙水压力和沉降的半解析解,并应用退化法验证了本文所得半解析解的正确性。然后,结合3种具体的荷载形式,分析了分段循环荷载作用下气相与液相渗透系数之比(ka/kw)、水平方向与竖直方向渗透系数之比(kx/kz)和荷载特征参数(a)对二维非饱和土固结特性的影响。结果表明:ka/kw和kx/kz的增大均会加速固结沉降进程;荷载特征参数越大,沉降发展越早,沉降值越小;二维非饱和土固结特性受分段循环荷载作用影响明显。因此,在实际施工过程中改变施工速度和设置径向排水装置可有效控制二维条件下非饱和土体的固结过程,该研究成果可为非饱和土地基的设计和施工提供重要理论依据。  相似文献   

10.
Existing solutions for analyzing one-dimensional (1-D) consolidation of unsaturated soil are only derived to cater to two extreme drainage conditions (fully drained and undrained). This study presents a new explicit solution for 1-D consolidation of unsaturated soil with semi-permeable drainage boundary. Based on the assumptions of two independent stress variables and the governing equations proposed by Fredlund, the eigenfunction expansion method is adopted to develop an explicit analytical solution to calculate excess pore-water and pore-air pressures in an unsaturated soil when it is subjected to external loads. The developed general solutions are expressed in terms of depth, z, and time, t. For the semi-permeable drainage boundary, eigenvalues and eigenfunctions in the space domain are developed. The technique of Laplace transform is used to solve the coupled ordinary differential equations in the time domain. The newly derived explicit solution is verified with the existing semi-analytical method in the literature, and an excellent agreement is obtained. Compared with the semi-analytical solution, the newly derived analytical solution is more straightforward and explicit so that this solution is relatively easier to be implemented into a computer program to carry out a preliminary assessment of 1-D consolidation of unsaturated soil.  相似文献   

11.
The governing equations for the coupled processes of consolidation and creep of two-layered soft soils are established. The Nishihara rheological model is adopted to simulate the elasto-viscoplastic characteristics of soft soils, disregarding the effects of the soil self-gravity. A semi-analytical theory combined with numerical and analytical methods is introduced to solve the governing equations of the one-dimensional rheological model. The computational procedure and the approximate solutions for two-layered soft soils subjected to surface loading are obtained for two drainage conditions. The solutions and the computational procedure are used to study the effects of the two layers and constitutive parameters on rheological consolidation behavior of soft soils. It can be concluded that two layers affect the rate of excess pore water pressure dissipation and settlement development. The parametric studies show that when the parameters of the upper layer remain constant, increases in the permeability and elastic modulus in the lower layer accelerate the dissipation of the excess pore water pressure, and meanwhile increases in the viscosity coefficient and viscoplastic limit slows down the dissipation of the excess water pressure.  相似文献   

12.
This paper develops a semi-analytical solution for the transient response of an unsaturated single-layer poroviscoelastic medium with two immiscible fluids by using the Laplace transformation and the state-space method. Using the elastic–viscoelastic correspondence principle, we first introduce the Kelvin–Voigt model into Zienkiewicz’s unsaturated poroelastic model. The vibrational response for unsaturated porous material can be obtained by combining these two models and assuming that the wetting and non-wetting fluids are compressible, the solid skeleton and solid particles are viscoelastic, and the inertial and mechanical couplings are taken into account. The Laplace transformation and state-space method are used to solve the basic equations with the associated initial and boundary conditions, and the analytical solution in the Laplace domain is developed. To evaluate the responses in the time domain, Durbin’s numerical inverse Laplace transform method is used to obtain the semi-analytical solution. There are three compressional waves in porous media with two immiscible fluids. Moreover, to observe the three compressional waves clearly, we assume the two immiscible fluids are water and oil. Finally, several examples are provided to show the validity of the semi-analytical solution and to assess the influences of the viscosity coefficients and dynamic permeability coefficients on the behavior of the three compressional waves.  相似文献   

13.
A coupled elastic–plastic finite element analysis based on simplified consolidation theory for unsaturated soils is used to investigate the coupling processes of water infiltration and deformation. By introducing a reduced suction and an elastic–plastic constitutive equation for the soil skeleton, the simplified consolidation theory for unsaturated soils is incorporated into an in-house finite element code. Using the proposed numerical method, the generation of pore water pressure and development of deformation can be simulated under evaporation or rainfall infiltration conditions. Through a parametric study and comparison with the test results, the proposed method is found to describe well the characteristics during water evaporation/infiltration into unsaturated soils. Finally, an unsaturated soil slope with water infiltration is analyzed in detail to investigate the development of the displacement and generation of pore water pressure.  相似文献   

14.
李纪伟  汪华斌  张玲 《岩土力学》2014,35(6):1795-1800
由于非饱和土的渗透系数是基质吸力的函数,使得控制方程带有强非线性的特征,进而使得控制方程的解析求解变得十分困难。同伦分析法对级数基函数和辅助线性算子的选择具有更大的自由性、灵活性,且收敛性的控制和调节更加容易实现,求解强非线性微分方程时在选择线性算子以及辅助参数上具有明显的优势。因此,针对非饱和土固结方程的非线性特征,对于处于地表浅层的非饱和土层,假设孔隙气压力为大气压力,在Richard经验公式与非饱和土一维固结理论的基础上,推导了非饱和一维固结无量纲控制方程;应用同伦分析法,通过选取适当的初始猜测解与辅助参数,将该非线性方程转换为线性的微分方程组并求解得到固结问题的级数解。此外,以压实高岭土为研究对象,在收集相关试验参数基础之上,将由同伦分析法求得的固结问题的近似解析解与有限差分法数值结果相对比,分析结果验证了解析解的正确性。  相似文献   

15.
周亚东  邓安  鹿群 《岩土力学》2018,39(5):1675-1682
基于分段线性差分法,建立了一种非饱和土一维大变形固结模型。该模型可考虑土性参数非线性变化,可计算与分析大变形问题,并编制了Fortran计算程序。在现有解答和试验数据的基础上,对该模型进行了验证,瞬时加载情况下模型数值解与现有解答基本吻合,考虑加载过程下的数值解与试验数据吻合。进行了大变形算例分析,对比了加荷压密与消散固结阶段土层变形,探讨了孔隙气、水渗透系数比对土层沉降量、饱和度和不同应变情况下固结度的影响规律,分析了非饱和土大、小变形固结理论计算孔隙水(气)压和沉降量的差异。  相似文献   

16.
This paper presents a simple analytical solution to Fredlund and Hasan's one‐dimensional (1‐D) consolidation theory for unsaturated soils. The coefficients of permeability and volume change for unsaturated soils are assumed to remain constant throughout the consolidation process. The mathematical expression of the present solution is much simpler compared with the previous available solutions in the literature. Two new variables are introduced to transform the two coupled governing equations of pore‐water and pore‐air pressures into an equivalent set of partial differential equations, which are easily solved with standard mathematical formulas. It is shown that the present analytical solution can be degenerated into that of Terzaghi consolidation for fully saturated condition. The analytical solutions to 1‐D consolidation of an unsaturated soil subjected to instantaneous loading, ramp loading, and exponential loading, for different drainage conditions and initial pore pressure conditions, are summarized in tables for ease of use by practical engineers. In the case studies, the analytical results show good agreement with the available analytical solution in the literature. The consolidation behaviors of unsaturated soils are investigated. The average degree of consolidation at different loading patterns and drainage conditions is presented. The pore‐water pressure isochrones for two different drainage conditions and three initial pore pressure distributions are presented and discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
非饱和土二维固结简化计算的研究   总被引:3,自引:0,他引:3  
曹雪山  殷宗泽 《岩土力学》2009,30(9):2575-2580
针对较高饱和度的非饱和土二维固结问题展开研究。对于较高饱和度的非饱和土,如饱和度 时,将孔隙中气、水近似地看作可压缩的气、水混合流体后,非饱和土近似为土骨架和混合流体的二相土。考虑混合流体的压缩性,建立混合流体的连续方程。联立平衡方程和混合流体的连续方程,求出应力-应变和混合流体压力;再建立水连续方程求解水压力,继而求出气压力、吸力等。算例表明:加载和消散过程中,混合流体与水压力变化基本一致,气压的作用并不大;地基变形过程与高速公路填筑过程中地基变形发生规律一致。说明该简化方法是合理的,并促进了非饱和土固结变形计算走向实用化。  相似文献   

18.
以往的非饱和土竖井地基研究中未同时考虑竖井的井阻和涂抹作用,大部分按理想竖井进行研究,然而井阻和涂抹作用是影响非饱和土竖井地基固结的重要因素.针对这种情况,本文基于Fredlund非饱和土一维固结理论及等应变假设,引入变量将超孔隙压力耦合控制方程组转化为等价的线性偏微分方程组,考虑涂抹和井阻条件,并采用分离变量法和待定...  相似文献   

19.
This paper presents semi‐analytical solutions to Fredlund and Hasan's one‐dimensional consolidation of unsaturated soils with semi‐permeable drainage boundary under time‐dependent loadings. Two variables are introduced to transform two coupled governing equations of pore‐water and pore‐air pressures into an equivalent set of partial differential equations, which are easily solved by the Laplace transform. The pore‐water pressure, pore‐air pressure and settlement are obtained in the Laplace domain. Crump's method is adopted to perform the inverse Laplace transform in order to obtain semi‐analytical solutions in time domain. It is shown that the present solutions are more general and have a good agreement with the existing solutions from literatures. Furthermore, the current solutions can also be degenerated into conventional solutions to one‐dimensional consolidation of unsaturated soils with homogeneous boundaries. Finally, several numerical examples are provided to illustrate consolidation behavior of unsaturated soils under four types of time‐dependent loadings, including instantaneous loading, ramp loading, exponential loading and sinusoidal loading. Parametric studies are illustrated by variations of pore‐air pressure, pore‐water pressure and settlement at different values of the ratio of air–water permeability coefficient, depth and loading parameters. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
In present study, the non-linear variations of soil compressibility, hydraulic and electro-osmosis conductivities were analyzed through laboratory experiments, and incorporated in a one-dimensional model. The analytical solutions for excess pore water pressure and degree of consolidation were derived, and numerical simulations were performed to verify its effectiveness. The results indicated that both the non-linear variations of hydraulic and electro-osmosis conductivities showed remarkable impacts on the excess pore water pressure and degree of consolidation, especially for soils with relative high compressibility. A further comparison with previous analytical solutions indicated that more accurate predictions could be obtained with the proposed analytical solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号