首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
地下结构物抗震稳定性的研究具有重要实际意义。基于动态土工离心试验,应用有效应力法分析了不同水平地震作用下土层和地下RC结构物的最大水平位移、不同埋深的土层加速度和超孔隙水压力变化规律,以及结构物的破坏发展特征,并进一步与试验结果进行了相互验证和对比,取得了较好效果,为重要地下结构物的抗震设计提供了依据和参考。  相似文献   

2.
In this paper, different formulations of a macro‐element model for non‐linear dynamic soil‐structure interaction analyses of structures lying on shallow foundations are first reviewed, and secondly, a novel formulation is introduced, which combines some of the characteristics of previous approaches with several additional features. This macro‐element allows one to model soil‐footing geometric (uplift) and material (soil plasticity) non‐linearities that are coupled through a stiffness degradation model. Footing uplift is introduced by a simple non‐linear elastic model based on the concept of effective foundation width, whereas soil plasticity is treated by means of a bounding surface approach in which a vertical load mapping rule is implemented. This mapping is particularly suited for the seismic loading case for which the proposed model has been conceived. The new macro‐element is subsequently validated using cyclic and dynamic large‐scale laboratory tests of shallow foundations on dense sand, namely: the TRISEE cyclic tests, the Public Works Research Institute and CAMUS IV shaking table tests. Based on this comprehensive validation process against a set of independent experimental results, a unique set of macro‐element parameters for shallow foundations on dense sand is proposed, which can be used to perform predictive analyses by means of the present model. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Though rocking shallow foundations could be designed to possess many desirable characteristics such as energy dissipation, isolation, and self-centering, current seismic design codes often avoid nonlinear behavior of soil and energy dissipation beneath foundations. This paper compares the effectiveness of energy dissipation in foundation soil (during rocking) with the effectiveness of structural energy dissipation devices during seismic loading. Numerical simulations were carried out to systematically study the seismic energy dissipation in structural elements and passive controlled energy dissipation devices inserted into the structure. The numerical model was validated using shaking table experimental results on model frame structures with and without energy dissipation devices. The energy dissipation in the structure, drift ratio, and the force and displacement demands on the structure are compared with energy dissipation characteristics of rocking shallow foundations as observed in centrifuge experiments, where shallow foundations were allowed to rock on dry sandy soil stratum during dynamic loading. For the structures with energy dissipating devices, about 70–90% of the seismic input energy is dissipated by energy dissipating devices, while foundation rocking dissipates about 30–90% of the total seismic input energy in foundation soil (depending on the static factor of safety). Results indicate that, if properly designed (with reliable capacity and tolerable settlements), adverse effects of foundation rocking can be minimized, while taking advantage of the favorable features of foundation rocking and hence they can be used as efficient and economical seismic energy dissipation mechanisms in buildings and bridges.  相似文献   

4.
The application of a new liquefaction constitutive model, based on the endochronic theory applied to densification of sandy soil, to a set of centrifuge tests from the University of British Columbia, is presented in this paper. The model employed herein takes into account, in a unified formulation, contractive and dilative behaviours, and considers the soil collapse as well. First of all, the model is calibrated by means of undrained cyclic simple shear stress test data. The constitutive law of the soil is implemented in the bidimensional coupled finite element code CMLIQ (Cyclic Mobility and LIQuefaction), developed by the authors. Three centrifuge tests are analysed, the seismic loading and the geometry being the same for all of them, namely an improved slope with drain devices or denser soil at some locations. Comparisons between the data provided by the numerical model and the experimental measurements are shown, and, as a result, the accuracy of the model is explored and evaluated.  相似文献   

5.
In this study, cyclic hollow cylinder torsional tests were conducted on the reconstituted specimens of Toyoura sand in a practical range of initial density and stress states. The results were employed to evaluate the liquefaction resistance and residual pore water pressure of sand using the strain energy concept. A simple pore water pressure (PWP) model with two calibration parameters was developed for the prediction of residual pore pressure as a function of cumulative strain energy density and the capacity energy of sand. Capacity energy is defined as the cumulative strain energy that is required for liquefaction onset. Based on the results of the tests, an equation is then presented for the estimation of capacity energy in terms of relative density and initial effective confining pressure of sand. This equation is shown to work well as a state boundary curve, which can discriminate between the liquefied and non-liquefied field case histories. Several extra tests were also performed to investigate the effect of initial static shear stress on the proposed PWP model and capacity energy. The results show that initial shear stress has a minor effect on the trend of the proposed PWP model; however, it definitely affects the capacity energy. The final part of the paper aims to confirm reasonable performance of the proposed PWP model by the available observations of seismically induced pore water pressure in shaking table, centrifuge, and real site conditions.  相似文献   

6.
One of the most dramatic causes of damage to engineering structures during earthquakes has been the development of soil liquefaction beneath and around the structures. In order to dissipate the excess pore water pressures near structures, gravel drains are usually employed. In this study, the use of recycled concrete crushed stones as gravel drain materials is addressed. In order to investigate the performance of wall-type gravel drains, two series of shaking table tests were performed. The test results showed that gravel drains, when appropriate grain size distribution is considered, effectively dissipate the excess pore water pressure underneath the structure, and consequently reduce the magnitude of uplift. To supplement the laboratory tests, finite element analyses were also performed. For specified structure, ground and earthquake conditions, there is a critical width of gravel drain at which no uplift of structure will occur. The results of the model tests and the finite element analyses were then employed in developing design charts for determining the critical width of gravel drain to prevent buoyant rise of structure when the surrounding soil mass liquefies.  相似文献   

7.
Understanding the soil–structure interaction (SSI) mechanism is crucial in the seismic design of nuclear power plant (NPP) containment systems. Although the numerical analysis method is generally used in seismic design, there is a need for experimental verification for the reliable estimation of SSI behavior. In this study a dynamic centrifuge test was performed to simulate the SSI behavior of a Hualien large-scale seismic test (LSST) during the Chi-Chi earthquake. To simulate the soil profile and dynamic soil properties of the Hualien site, a series of resonant column (RC) tests was performed to determine the model soil preparation conditions, such as the compaction density and the ratio of soil–gravel contents. The variations in the shear wave velocity (VS) profiles of the sand, gravel, and backfill layers in the model were estimated using the RC test results. During the centrifuge test, the VS profiles of the model were evaluated using in-flight bender element tests and compared with the in-situ VS profile at Hualien. The containment building model was modeled using aluminum and the proper scaling laws. A series of dynamic centrifuge tests was performed with a 1/50 scale model using the base motion recorded during the Chi-Chi-earthquake. In the soil layer and foundation level, the centrifuge test results were similar to the LSST data in both the time and frequency domains, but there were differences in the structure owing to the complex structural response as well as the material damping difference between the concrete in the prototype and aluminum in the model. In addition, as the input base motion amplitude was increased to a maximum value of 0.4g (prototype scale), the responses of the soil and containment model were measured. This study shows the potential of utilizing dynamic centrifuge tests as an experimental modeling tool for site specific SSI analyses of soil–foundation–NPP containment system.  相似文献   

8.
In this study, a series of centrifuge tests, modeling reverse fault rupture with 60° dip angle, were conducted in a dry sandy soil with a tunnel embedded in the soil layer. The test results showed that the tunnel and soil responses depended on the tunnel position, soil relative density and tunnel rigidity. Tunnels appeared be able to deviate the fault rupture path, while this deviation may be associated with significant rotation and displacement of the tunnel. However, a deeper tunnel was able to diffuse the shear deformation to a wider zone with an unsmooth surface displacement which may cause severe damage to the surface structures. Finally, the tunnel rotation, the location of the fault outcropping, the vertical displacement of the ground surface, the effect of tunnel rigidity on fault rupture path and surface displacement and the effect of soil relative density on fault–tunnel interaction were reported and discussed in this study.  相似文献   

9.
砂土自由场地震响应的离心机试验研究   总被引:3,自引:1,他引:2  
离心机模型试验是研究岩土地震工程问题的有效手段。本文使用层状剪切箱,通过干落法制备了均匀的砂土模型,进行了离心机振动试验;观测了振动过程中孔隙水压力的发展,土体的加速度响应、侧向变形以及竖向沉降。结果表明,土体的运动和变形与孔隙水压力的发展密切相关,但离心机中的试验现象和现场观测的现象存在显著区别。研究结果增强了对振动过程中土-水之间相互作用机理的理解,同时为自由场地震响应分析方法的验证提供了基础数据。  相似文献   

10.
Soil–foundation–structure interaction (SFSI) and structure–soil–structure interaction (SSSI) influence the seismic response of a structure. Yet, consideration of nonlinear SFSI and SSSI in design practice is lacking. In this paper data from two centrifuge tests are examined. During each test, inelastic models of (1) a low-rise frame with shallowly embedded footings and (2) a mid-rise frame with a large basement are subjected to earthquake motions. In the first test, the structures are separated. In the second test, the structures are placed next to each other. Results show that the presence of the deep basement affects the moment–rotation behavior of the adjacent shallow footings, stiffening the response in the direction of loading towards the basement. This can be attributed to the additional restraint provided by the basement. Although the presence of the basement stiffens the response, it also limits the permanent displacements of the footing, which in turn limits physical damage to the superstructure. These results suggest that in addition to considering nonlinear SFSI effects, SSSI should be considered in the design of closely clustered structures.  相似文献   

11.
微型土压力传感器标定方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
离心模型试验常用微型土压力传感器测量地基或土与结构接触边界上的土压力。传感器使用之前应进行标定。传统的液标或气标方法不能准确反映传感器埋置过程对土体的扰动或传感器周围人为土拱边界条件形成,导致测试结果不甚理想。故针对试验条件,设计制作一套标定微型土压力传感器的方法和装置,以水、粉质黏土和福建标准砂为标定介质,考虑有无刚性靠背两种工作状态对多个传感器进行室内标定,得到标定系数。结果表明:水标未出现卸载滞后,砂标和土标均出现卸载滞后,且表现为非线性;引入滞后比R评价微型土压力传感器的滞后性,认为标定介质和传感器类型是影响滞后比的两个主要因素;传感器自身材料特性和几何特性、地基土的制备和传感器放置、加载预压和加卸载循环等对土体密实度、土体强度等的改变、工作介质和状态等对标定结果有影响。建议尽量模拟试验工作介质和工作状态,逐个标定传感器,以得到更准确的土压力测量值。  相似文献   

12.
对地下结构抗震Pushover分析方法进行了改进,采用自由场局部变形峰值作为目标位移,局部变形峰值时刻对应的土层水平加速度作为等效惯性加速度输入。给出了局部变形峰值和等效惯性加速度确定方式,详细介绍了基于自由场局部变形的地下结构抗震Pushover分析方法实施步骤、使用方法和功能特点。该方法更有针对性地考虑了强地震作用下不同埋深地下结构与土体的非线性特征以及两者之间的相互作用,通过分析变形和受力情况可以得到完整的能力曲线,更好地评估地下结构抗震性能。使用本文方法对3种埋深的地下结构进行计算,并与动力非线性分析结果进行对比研究。结果表明:本方法在计算稳定性和模拟精度方面优于基于自由场整体变形的Pushover方法;对于不同的输入地震波,能力曲线的吻合程度更高;在强震和罕遇地震情况下,对于深埋地下结构,计算结果略大于动力非线性结果,对实际工程而言更加安全。  相似文献   

13.
This paper presents an experimental study on the lateral resistance of a pile subjected to liquefaction-induced lateral flow. To observe the soil surrounding the pile during liquefaction, it was modeled as a buried cylinder that corresponded to a sectional model of the prototype pile at a certain depth in the subsoil. In order to create a realistic stress condition in the model ground, the model was prepared in a sealed container and the overburden pressure was applied to the ground surface by a rubber pressure bag. The model pile was actuated back and forth through rods attached on each side by an electro-hydraulic actuator.This paper focuses on observing the deformation of the liquefied soil surrounding the pile when a large relative displacement between the pile and the soil is induced. The loading rate effect on the lateral resistance of the pile in the liquefied sand and the influence of the relative density are also investigated.Test results show that a larger resistance is mobilized as the loading rate becomes higher. When the loading rate is higher, the cylinder displacement required for the lateral resistance becomes smaller. It has been also observed that as the relative density of the soil increases, dilatancy of the soil in front of the pile also increases.  相似文献   

14.
Prediction of displacement demand to assess seismic performance of structures is a necessary step where nonlinear static procedures are followed. While such predictions have been well established in literature for fixed-base structures, fewer bodies of researches have been carried out on the effect of rocking and uplifting of shallow foundations supported by soil, on such prediction. This paper aimed to investigate the effect of soil structure interaction on displacement amplification factor C1 using the beam on nonlinear Winkler foundation concept. A practical range of natural period, force reduction factors, and wide range of anticipated behavior from rocking, uplifting and hinging are considered and using thousands nonlinear time history analysis, displacement amplification factors are evaluated. The results indicate that the suggested equations in current rehabilitation documents underestimate displacement demands in the presence of foundation rocking and uplift. Finally, using regression analyses, new equations are proposed to estimate mean values of C1.  相似文献   

15.
The present study aims to obtain p-y curves(Winkler spring properties for lateral pile-soil interaction) for liquefied soil from 12 comprehensive centrifuge test cases where pile groups were embedded in liquefiable soil. The p-y curve for fully liquefied soil is back-calculated from the dynamic centrifuge test data using a numerical procedure from the recorded soil response and strain records from the instrumented pile. The p-y curves were obtained for two ground conditions:(a) lateral spreading of liquefied soil, and(b) liquefied soil in level ground. These ground conditions are simulated in the model by having collapsing and non-collapsing intermittent boundaries, which are modelled as quay walls. The p-y curves back-calculated from the centrifuge tests are compared with representative reduced API p-y curves for liquefied soils(known as p-multiplier). The response of p-y curves at full liquefaction is presented and critical observations of lateral pile-soil interaction are discussed. Based on the results of these model tests, guidance for the construction of p-y curves for use in engineering practice is also provided.  相似文献   

16.
Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase(solid and fl uid) fully coupled distinct element code. This code incorporates a particle-fl uid coupling model by means of a "fi xed coarse-grid" fl uid scheme in PFC3D(Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power.  相似文献   

17.
A novel experimental method was designed to study the micro-behavior of saturated sand around a buried structure in centrifuge shaking table tests under strong simulated earthquake loading, in addition to the traditional macro-measurements. One free field test was first carried out as a reference, followed by one test with a deep buried structure and one with a shallowly buried structure. During the tests with the buried structure, high quality pictures of moving sand around the structure were recorded by a newly developed image acquisition system. By analyzing the interesting pictures at reasonable intervals using an image analysis software, the evolutions of microstructural features were obtained such as the orientations of the long axes of particles, the orientations of contact normals between particles and the average contact number of the interesting group of particles. The results showed that the evolutions of the micro-features were consistent with those of the macro-measurements such as excess pore pressures and accelerations, which help illuminate the mechanism of sand liquefaction.  相似文献   

18.
The seismic performance of underground reservoir structures depends on the properties of the structure, soil, and ground motion as well as the kinematic constraints imposed on the structure. A series of four centrifuge experiments were performed to evaluate the influence of site response, structural stiffness, base fixity, and excitation frequency on the performance of relatively stiff reservoir structures buried in dry, medium-dense sand. The magnitude of seismic thrust increased and the distribution of seismic earth pressures changed from approximately triangular to parabolic with increasing structural stiffness. Heavier and stiffer structures also experienced increased rocking and reduced flexural deflection. Fixing the base of the structure amplified the magnitude of acceleration, seismic earth pressure, and bending strain compared to tests where the structure was free to translate laterally, settle, or rotate atop a soil layer. The frequency content of transient tilt, acceleration, dynamic thrust, and bending strain measured on the structure was strongly influenced by that of the base motion and site response, but was unaffected by the fundamental frequency of the buried structure (fstructure). None of the available simplified procedures could capture the distribution and magnitude of seismic earth pressures experienced by this class of underground structures. The insight from this experimental study is aimed to help validate analytical and numerical methods used in the seismic design of reservoir structures.  相似文献   

19.
Seismic ground faulting is a severe hazard for continuous buried pipelines. Over the years, researchers have attempted to understand pipe behavior, most frequently via numerical modeling and simulation. However, there has been little, if any, physical modeling and tests to verify the numerical modeling approaches and assumptions. This paper presents results of five pairs of centrifuge tests designed to investigate the influence of various factors on the behavior of buried high-density polyethylene (HDPE) pipelines subjected to strike-slip faulting. Parameters considered are the soil moisture content, fault offset rate, relative burial depth (H/D), and pipe diameter. The centrifuge test results show that pipe behavior, specifically pipe strain, is nominally not affected by the soil moisture content and fault offset rate when the pipe is subjected to strike-slip faulting. On the other hand, the burial depth ratio (H/D) and pipe diameter influence peak pipe strain, and in some cases, the ground soil failure pattern.  相似文献   

20.
This paper describes a laboratory model test carried out on high-density polyethylene (HDPE), small diameter pipes buried in trenches, which subjected to repeated loadings to simulate the vehicle loads. Deformation of the pipe was recorded at eight points on the circumference of the tested pipes to measure the radial deformations and detect cross-sectional pipe profiles. Also settlement of the soil surface during the test up to 1000 cycles of loadings was recorded, until its value become stable or the excessive settlement was happened. The parameters varied in the testing program include height of buried depth, relative density of the sand and intensity of stress on the soil surface. The influence of various repeated loads (with magnitude of 250, 400 and 550 kPa) at relative densities of 42%, 57% and 72% in different embedded depth of 1.5–3 times of pipe diameter were investigated. Based on the results, in medium and dense sand relative density, the pipe embedded in depth of 3.0D and 2.0D, respectively, mostly remained undamaged (the maximum value of VDS is less than 5%) and increased the safety of buried pipes under different magnitude of repeated loads. The records of the pipe deformation and settlement of the soil surface due to the repeated loads have been compared in different conditions. These values increase rapidly during the initial loading cycles by a rate decreasing significantly as the number of cycles increase. The influence of the first cycle was also found to be one of the main behavioral characteristics of buried pipes under repeated loads. The ratio of deformation of pipe at first cycle to last cycle changes from 0.60 to 0.85 in different of tests. Finally for the obtained results, a non-linear power model has been developed to estimate the vertical diametral strain of buried pipe and settlement of the soil surface based on the model test data. It should be noted that only one type of pipe and one type of sand are used in laboratory tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号