首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical evaluation of slope topography effects on seismic ground motion   总被引:7,自引:0,他引:7  
This paper presents results of numerical analyses for the seismic response of step-like ground slopes in uniform visco-elastic soil, under vertically propagating SV seismic waves. The aim of the analyses is to explore the effects of slope geometry, predominant excitation frequency and duration, as well as of the dynamic soil properties on seismic ground motion in a parametric manner, and provide qualitative as well as quantitative insight to the phenomenon. Among the main conclusions of this study is that this kind of topography may lead to intense amplification or de-amplification variability at neighboring (within a few tens of meters) points behind the crest of the slope, especially for high frequency excitations. Nevertheless, a general trend of amplification near the crest and de-amplification near the toe of the slope seems to hold for the horizontal motion. As a result of these two findings, it becomes evident that reliable field evidence of slope topography aggravation is extremely difficult to establish. Furthermore, this study highlights the generation of a parasitic vertical component of motion in the vicinity of the slope, due to wave reflections at the slope surface, that under certain preconditions may become as large as the horizontal. Criteria are established for deciding on the importance of topography effects, while approximate relations are provided for the preliminary evaluation of the topographic aggravation of seismic ground motion and the width of the affected zone behind the crest.  相似文献   

2.
An extensive investigation has been made into the interaction between topographic amplification and soil layer amplification of seismic ground motion. This interaction is suggested in the literature as a possible cause for the differences between topographic amplification magnitudes observed in field studies and those obtained from numerical analysis. To investigate this issue a numerical finite element (FE) parametric study was performed for a slope in a homogeneous linear elastic soil layer over rigid bedrock subjected to vertically propagating in-plane shear waves (Sv waves). Analyses were carried out using two types of artificial time history as input excitation, one mimicking the build-up and decay of shaking in the time histories of real earthquake events, and the other to investigate the steady-state response. The study identified topographic effects as seen in previous numerical studies such as modification of the free-field horizontal motion, generation of parasitic vertical motion, zones of alternating amplification and de-amplification on the ground surface, and dependence of topographic amplification on the frequency of the input motion. For the considered cases, topographic amplification and soil layer amplification effects were found to interact, suggesting that in order to accurately predict topographic effects, the two effects should not be always handled separately.  相似文献   

3.
张宁  高玉峰  何稼  徐婕  陈欣  代登辉 《地震学报》2017,39(5):778-797
场地效应通常包含土层放大效应和地形放大效应,为了揭示二者的相对贡献,本文构造了平面SH波作用下部分充填沉积谷的解析模型,借助于区域分解策略,在波函数展开法的框架下,提出了超定方程组解法,得到了部分充填圆弧形沉积谷对平面SH波散射的波函数级数解,而且级数解的收敛测试表明了超定方程组解法的必要性.通过与文献结果进行对比,验证了本文方法的正确性.通过调整解析模型中两个子区域内的材料参数,计算了沉积谷引起的场地放大效应和相应的空河谷引起的地形放大效应.对二维土层与地形效应进行对比分析,结果显示,在沉积谷内二维土层放大效应通常强于地形放大效应,而地形放大效应决定了沉积谷外的地面运动放大形态.针对最大地面运动,进行了沉积谷和相应空河谷的参数分析,进一步描述了二维土层放大效应,研究结果表明二维土层放大效应引起的最大地面运动通常远远大于地形放大效应引起的最大地面运动,并且二维土层效应通常随着土层与基岩的阻抗比的增大而增大,但不是一维土层放大效应与二维地形放大效应的简单线性叠加.   相似文献   

4.
We study site effects using 520 weak motion earthquake records from a vertical array in Aegion, Greece. The array is inside a basin, has four stations in soil, and one in bedrock (178 m depth). The site is marked by high seismicity and complex surface geology. We first use the records to establish the downhole accelerometer orientations and their evolution with time. Then we estimate site effects using empirical spectral ratios with and without a reference site (standard and horizontal-to-vertical spectral ratio). We find significant site amplification which cannot be accounted for by 1D model predictions, along with a significant difference in the amplification level between the two horizontal components. These are indications of 2D effects, namely surface waves generated at the basin edge. The difference in amplification between the horizontal components is maximised when these are rotated with respect to the orientation of the basin edge. The strongest amplification takes place in the direction parallel to the basin edge (SH, or out-of-plane motion), and is up to 2 times higher than in the perpendicular direction (SV, or in-plane motion). This directional effect on the amplification is corroborated by numerical 2D modelling using incident SH and SV waves, with the former possibly generating strong Love waves. In the records, the directionality is clear for windows containing the largest amplitudes of the records (S waves and strong surface waves), while it tends to vanish for coda-wave windows. This directionality is also observed when using response spectral ratios rather than Fourier ratios. We compute soil-to-rock amplification factors for peak ground acceleration (PGA) and find it is significantly higher than what is predicted by current design codes. We attribute this difference to the basin edge amplification, linear soil behaviour, and to the inability of simple scalar values like PGA to describe complex amplification effects. Finally, we analyse the earthquake records at a surface station near the slope crest and do not observe significant topographic amplification.  相似文献   

5.
现有大量观测记录表明:斜坡地形对地震波的传播有着非常强烈的影响。为服务于工程抗震设计,基于显式有限元方法,定量分析SH波垂直入射下二维斜坡地形的地震动响应与斜坡角度、土层厚度以及介质阻抗比的关系,总结了位于一维土层基本频率附近斜坡上台面各区域放大因子的变化规律。研究表明:(1)斜坡面对SH波的反射使二维斜坡地形的放大倍数较一维土层存在显著放大,且该现象在缓坡中更加明显。(2)当土层厚度为斜坡高度的1/4,介质阻抗比为0.368,坡度为30°时,放大因子在距坡顶1.67倍斜坡高度处取到最大值1.930。(3)斜坡覆盖土层薄时,放大因子受斜坡角度的影响大,斜坡覆盖土层厚时,阻抗比成为影响放大因子的主要因素。(4)分别考虑土层厚度、斜坡角度、介质阻抗比以及观测点位置对二维斜坡地形地表地震动响应的影响,取1倍斜坡高度作为区域间隔,统计每个区域内各参数对应的放大因子最大值,对比现有规范给出工程抗震设计参考值及放大因子大于1的基频比范围。  相似文献   

6.
邓鹏 《地震学报》2020,42(3):349-361
本文采用隐式动力有限单元法研究了不同的边坡角度和边坡高度对地形放大效应的影响,并以位移峰值放大系数为衡量地震动放大效应的标准,计算了不同边坡角度和边坡高度条件下的地震响应,在此基础上对模型关键监测点的输出波形以及位移峰值放大系数的变化趋势进行了分析,获得了不同监测点处的地震动时程曲线,揭示了坡角和坡高对单体边坡地震动放大效应的定量作用规律。数值结果表明,相同高度处坡面监测点的水平向位移峰值放大系数大于坡内监测点的,地形放大效应在水平方向具有趋表效应。由于坡面存在入射波和反射波的叠加,因此竖直向位移峰值放大系数的最大值出现在坡体内部。   相似文献   

7.
局部山体地形对强地面运动的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王铭锋  郑傲  章文波 《地球物理学报》2017,60(12):4655-4670
基于曲线网格有限差分方法研究了地震波在不同坡度的山体地形及水平地表模型中的传播,得到了各模型速度波形及地表峰值速度特征,从地形自身特征及震源特征两方面出发讨论了地形效应:一是相同的震源模型下地形坡度、形状对地震动的影响;二是同一山体模型下地震动对不同震源机制的点源以及相对复杂的有限断层的响应.主要结论如下:(1)一般情况下,地形放大效应在坡度较大的地方比较明显,并随着坡度的增加而增大,但在某些特定情况下,放大效应与坡度并不满足正相关,且这种情况的发生与震源性质无关,可能仅受地形形态自身的影响;(2)对于不同的震源机制,地面运动各分量受地形影响程度不同,总体上水平分量受地形影响程度更大;(3)震源机制和震源激发的波的频率会影响放大效应最大值出现的位置,放大效应最大值不一定出现在山顶处,有可能会出现在起伏地形的震源对侧,出现位置可能与波的相互作用有关;(4)有限断层模型下,地面运动特征相对更为复杂,地形效应不仅受断层模型几何特征的影响,同时断层破裂过程对其也有着重要的影响.  相似文献   

8.
During the 1999 Athens Earthquake the town of Adàmes, located on the eastern cliff of the Kifissos river canyon, experienced unexpectedly heavy damage. Despite the significant amplification potential of the slope geometry, topography effects cannot alone explain the uneven damage distribution within a 300 m zone behind the crest, characterized by a rather uniform structural quality. This paper illustrates the important role of soil stratigraphy, material heterogeneity, and soil–structure interaction on the characteristics of ground surface motion. For this purpose, we first perform elastic two-dimensional wave propagation analyses utilizing available geotechnical and seismological data, and validate our results by comparison with aftershock recordings. We then conduct non-linear time-domain simulations that include spatial variability of soil properties and soil–structure interaction effects, to reveal their additive contribution in the topographic motion aggravation.  相似文献   

9.
Vertical seismometer arrays represent a unique interaction between observed and predicted ground motions, and they are especially helpful for validating and comparing site response models. In this study, we perform comprehensive linear, equivalent-linear, and nonlinear site response analyses of 191 ground motions recorded at six validation sites in the Kiban–Kyoshin network (KiK-net) of vertical seismometer arrays in Japan. These sites, which span a range of geologic conditions, are selected because they meet the basic assumptions of one-dimensional (1D) wave propagation, and are therefore ideal for validating and calibrating 1D nonlinear soil models. We employ the equivalent-linear site response program SHAKE, the nonlinear site response program DEEPSOIL, and a nonlinear site response overlay model within the general finite element program Abaqus/Explicit. Using the results from this broad range of ground motions, we quantify the uncertainties of the alternative site response models, measure the strain levels at which the models break down, and provide general recommendations for performing site response analyses. Specifically, we find that at peak shear strains from 0.01% to 0.1%, linear site response models fail to accurately predict short-period ground motions; equivalent-linear and nonlinear models offer a significant improvement at strains beyond this level, with nonlinear models exhibiting a slight improvement over equivalent-linear models at strains greater than approximately 0.05%.  相似文献   

10.
Topography can have significant effects on seismic ground response during an earthquake because topographic irregularities cause considerable differences between the seismic waves emitted by the source and the waves reaching the ground surface. When a seismic motion happens in a topographically irregular area, seismic waves are trapped and reflected between the topographic features. Therefore, the interaction between topographies can amplify seismic ground response. In order to reveal how interaction between topographies influences seismic response, several numerical finite element studies have been performed by using the ABAQUS program. The results show that topographic features a greater distance between the seismic source and the site would cause greater seismic motion amplification and is perceptible for the hills far away from the source and the ridges. Also, site acceleration response is impacted by surrounding topography further than site velocity and displacement response.  相似文献   

11.
Seismic site amplification studies are generally used to assess the effects of local geology and soil conditions on ground motion characteristics. Although extensive reviews on site amplification phenomena associated with stratigraphic effects can be found in the specialized literature, it should be pointed out that most of the practical applications have been limited to the study of vertically propagating shear horizontal (SH) waves, i.e., to the 1-D soil amplification problem. Furthermore, little attention, if any, has been devoted to the study of the effects of non-vertically incident SH waves on surface accelerograms and on the earthquake response of structures. In the present work, the study is extended to an investigation of 2-D site amplification of non-vertically propagating seismic shear waves in multilayered viscoelastic soil deposits. Sensitivity analyses of the effects of non-vertical incidence on site amplification functions are performed based on site geotechnical data collected from post-seismic investigations of the 1980 El-Asnam earthquake. Analytical results are discussed in terms of seismic site transfer functions, spectral ratios, surface acceleration time histories, and structural response spectra for different values of wave incidence angle. Both bedrock and rock outcropping cases are examined.  相似文献   

12.
刘甲美  高孟潭  陈鲲 《地震学报》2015,37(5):865-874
地形对地震动的影响比较复杂, 考虑地形放大效应的地震滑坡稳定性分析需要选择合适的地震动参数. 本文使用自贡地形影响台阵记录到的2008年汶川MS8.0地震主震加速度记录, 分析了地震动峰值加速度、 阿里亚斯烈度以及90%能量持时随地形高度的变化, 探讨了地形效应作用下峰值加速度和阿里亚斯烈度与地震动作用下斜坡稳定性的相关性. 结果表明: ① 地形场地对峰值加速度和阿里亚斯烈度均有显著的放大效应. 地形放大效应较为复杂, 其整体上随台站高度的增加而增大, 水平向的放大效应大于竖直向. 水平向峰值加速度的放大系数为1.1—1.8, 阿里亚斯烈度的放大系数为1.2—3.3; 竖直向相应放大系数分别为1.1—1.3和1.2—1.7. ② 地形对地震动持时也有一定的放大效应, 但不同高度、 不同分量的放大效应没有显著差异, 其放大系数均约为1.3. ③ 阿里亚斯烈度和峰值加速度均能很好地表征地形对地震动的影响, 与地震动对斜坡稳定性的影响具有很强的相关性. 与峰值加速度相比, 阿里亚斯烈度综合了地震动的多方面特征, 可以更好地表征地形对地震动的影响, 与地震动作用下斜坡稳定性的相关性更强.   相似文献   

13.
Preloading is a temporary loading, usually an embankment, applied to improve subsurface soils by densification. This paper studies the effect of preloading on the amplification characteristics of soft sites with an elaborate parametric analysis. The soil type, the depth of the bedrock, the water table depth, the level of preloading, the applied earthquake, the shear wave velocity of the bedrock and the shear modulus and damping versus shear strain relations were varied in a systematic manner. The analysis was performed by the commonly used one-dimensional equivalent-linear dynamic method. The shear wave velocity versus depth and the effect of preloading on shear velocity are computed with well-established soil mechanics equations. The results illustrated that the seismic response at the top of the profile generally decreases as a result of preloading. A more detailed analysis of results shows that the effect of preloading on the seismic response depends on the soil type and the depth of the bedrock. Based on these results, a method is proposed by which a practicing engineer involved with improvement of soft ground can simulate the effect of preloading on the seismic motion.  相似文献   

14.
渤海海域软土层土对场地设计地震动参数取值具有显著影响.选取渤海中部钻孔剖面作为计算场地模型基础,分别构建软土和硬土场地模型,并通过改变软土层厚度,构造新的场地模型.采用等效线性化方法(EL法)和非线性计算方法(NL法)分别对场地模型进行地震反应分析,分析了海底软土层土对地震动参数的影响.研究结果表明:海底软土层土对地震...  相似文献   

15.
徐州市埋藏基岩斜坡对地震动的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
本文在分析了徐州地区地震地质背景的基础上,用经作者扩展的SAP 5程序,重点分析了地震小区划中提出的埋藏基岩斜坡地形对地震地面运动的影响问题。初步认识到:这种复杂地形可产生不可忽视的竖向运动;水平向运动分布依其与基岩山丘的距离而不同;地震反应谱形状呈有规律的变化;输入多方向震波的影响比输入单方向震波时的影响要大  相似文献   

16.
黄土斜坡动力响应特征分析   总被引:2,自引:1,他引:1       下载免费PDF全文
夏坤  董林  李璐 《地震工程学报》2019,41(3):694-701
斜坡动力响应特征与斜坡形态密切相关,若入射地震波主频接近斜坡卓越频率就会放大斜坡动力响应,甚至造成斜坡失稳。汶川地震对远离震中的黄土地区造成了较为严重的破坏,局部场地震害和地震动放大效应显著。选取汶川地震典型黄土斜坡场地,利用地形台阵流动观测和数值模拟计算相结合的方法,系统开展强震动作用下黄土斜坡场地动力响应特征研究。结果表明:坡顶卓越频率最小,其PGA放大系数甚至达到坡底的1.98,这种现象可能与斜坡高差和入射波波长之比密切相关,比值0.2时坡顶放大效应达到最大。随斜坡坡度增加,放大效应增强,坡顶反应谱卓越周期放大系数可达5,说明斜坡地形对强震地面运动有显著影响。数值计算结果与实际强震观测基本吻合,其结果对黄土地区建设工程抗震设防具有重要的科学与实际意义。  相似文献   

17.
局部地形对出平面运动谱特性的影响分析   总被引:3,自引:0,他引:3  
荣棉水  李小军 《中国地震》2007,23(2):147-156
本文利用显式有限元有限差分方法进行了脉冲和实际地震动输入下的粘弹性场地地形影响的分析计算,研究了坡地地形在高宽比不同、体波入射角度不同时出平面运动谱特性的差异。结果显示:地形的特征尺寸和入射角度不仅对地震动的峰值有影响,而且对地震动的谱特性有较大的影响,其中入射角度的影响尤为显著。另外,研究还表明,基于脉冲输入研究粘弹性地形谱特性的影响仍不失为一种有效的方法。  相似文献   

18.
Site effects characterize the filtering mechanisms within the soil sedimentary layers overlying bedrock. In regions of high seismicity such as California where strong motion records are relatively abundant, site coefficients can be developed by regression of recorded ground shaking parameters. In regions of low‐to‐moderate seismicity or of high seismicity but with a paucity of recorded strong motion data, such empirical models cannot be obtained in the same way. This study describes the theoretical development of a simple, rational manual procedure to calculate site coefficients, based on a single period approximation (SPA), and to construct displacement response spectra (RSD) for soil sites. The proposed simplified model, which takes into account the non‐linear behaviour of soil that is dependent on the level of shaking, impedance contrast at the soil–bedrock interface and the plasticity of soil material, has been verified by comparison with results obtained from non‐linear shear wave analyses and data recorded during the 1994 Northridge earthquake. The proposed model is believed to be a convenient tool for calculating non‐linear site responses and constructing site‐specific response spectra, which has the potential of being incorporated into code provisions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
At present, methods based on allowable displacements are frequently used in the seismic design of earth retaining structures. However, these procedures ignore both the foundation soil deformability and the seismic amplification of the soil placed behind the retaining wall. Thus, they are not able to predict neither a rotational failure mechanism nor seismic induced lateral displacements with an acceptable degree of accuracy for the most general case. In this paper, a series of 2D finite-element analyses were carried out to study the seismic behavior of gravity retaining walls on normally consolidated granular soils. Chilean strong-motion records were applied at the bedrock level. An advanced non-linear constitutive model was used to represent both the backfill and foundation soil behavior. This elastoplastic model takes into account both the stress dependency of soil stiffness and coupling between shear and volumetric strains. In unloading–reloading cycles, the non-linear shear-modulus reduction with shear strain amplitude is considered. Interface elements were used to model soil–structure interaction. Routine-design charts were derived from the numerical analyses to predict the lateral movements at the base and top of gravity retaining walls located at sites with similar seismic characteristics to the Chilean subduction zone. Thus, wall seismic rotation can also be obtained. The developed charts consider wall dimensions, granular soil properties, bedrock depth, and seismic input motion characteristics. As shown, the proposed charts match well with available experimental data.  相似文献   

20.
运用有限差分软件FLAC3D,建立了某一黄土边坡三维模型,首先对其在地震作用下的动力响应规律进行了总结,然后探讨了地震动参数对黄土边坡动力响应的影响。结果表明:黄土边坡对地震波存在垂直放大和临空面放大作用;当输入地震波振幅或频率增加时,坡面监测点加速度放大系数随坡高增加呈"增加→衰减→增加"的三段形态;速度放大系数随坡高的增大而增大,并在坡顶达到最大值;位移放大系数随振幅和频率的增加而增加;地震持时对加速度、速度峰值的影响不大,但坡体位移随持时的增加而显著增加。强震作用下的最大剪应变增量区域的位置和形状表明,黄土边坡的破坏模式仍是沿着某一弧形潜在滑动面失稳破坏。研究结果有助于进一步揭示黄土边坡在地震作用下的失稳机制,为黄土地区边坡抗震设计与防灾减灾提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号