首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Aeolian volcanic arc displays a wide range of magmatic products. Mafic lavas range from hypersthene normative calc-alkaline basalts to silica-undersaturated potassic absarokites, although the former are spatially and temporally dominant, consistent with the subduction-zone tectonic setting. In addition, intermediate and acidic members of the various fractionation series may be recognised. Large variations in trace element and isotope ratios accompany the rapid calc-alkaline to potassic transition, and it is argued that these may be largely explained in terms of subduction-zone mantle enrichment involving components derived from both basaltic ocean crust and subducted sediments. In addition, it seems that the mantle wedge itself was substantially heterogeneous prior to the onset of subduction zone processes. Not only are these subduction components similar to those proposed in a number of island arcs, but they also resemble those recognised in the ultra-potassic lavas of the Roman province, supporting recent subduction-related petrogenetic models of the Roman magmatism. Although subducted sediment plays an important role in the generation of some potassic magmatism, it is not uniquely responsible for K2O-rich lavas, which are also produced without a large sediment contribution.  相似文献   

2.
大别造山带是全球最大的碰撞造山带之一,三叠纪时期,扬子板块深俯冲至地幔的200km处,经历了超高压变质作用。白垩纪早期,该造山带发生了强烈的伸展和垮塌,以及大规模的后造山地幔源岩浆侵入和火山活动。本研究收集了大别造山带及其邻区(29°~34°N、114°~119°E)的震相资料,采用双差层析成像技术,对大别造山带地壳结构进行反演,研究地壳结构与后造山地幔源岩浆侵入和火山活动之间的关系。结果显示,大别造山带中上地壳存在低速结构,该低速结构可能是熔融的幔源侵入物质,由于俯冲板片断裂,或下地壳/岩石圈发生拆沉,导致软流圈物质上涌至地壳底部、侵入地壳中,形成大别造山带地壳中的低速结构;同时,合肥盆地显示为低速区,可能是受浅部沉积层影响。研究中横切大别山的4条剖面显示,该地区下方存在北向倾斜高速结构,该高速结构可能是襄樊-广济断层,或者是扬子板块向华北板块下方俯冲的遗迹。  相似文献   

3.
Pb isotope data are presented for the potassic rocks from Roccamonfina and some other Campanian volcanoes. Pb isotope variations for Roccamonfina fall within the previously found range of values for the Italian potassic volcanism and form similar shallow regression lines in the Pb-Pb diagrams. Their interpretation as two-component mixing lines is well supported by other geochemical evidence. The relation of the mixing processes deduced for Roccamonfina and for the wider regional volcanism is discussed. The enriched and anomalous mantle under Italy is proposed to be a result of various degrees of metasomatism of a range of “Atlantic island” type mantle compositions by an LIL-element-enriched mantle “fluid”. The mantel “fluid” may either derive its isotope and trace element characteristics from an old LIL-element-enriched mantle source or from continental crust which has to some extend retained its geochemical identity in the upper mantle.  相似文献   

4.
High-resolution P wave tomography shows that the subducting Pacific slab is stagnant in the mantle transition zone and forms a big mantle wedge beneath eastern China. The Mg isotopic investigation of large numbers of mantle-derived volcanic rocks from eastern China has revealed that carbonates carried by the subducted slab have been recycled into the upper mantle and formed carbonated peridotite overlying the mantle transition zone, which becomes the sources of various basalts. These basalts display light Mg isotopic compositions(δ26 Mg = –0.60‰ to –0.30‰) and relatively low87 Sr/86 Sr ratios(0.70314–0.70564) with ages ranging from 106 Ma to Quaternary, suggesting that their mantle source had been hybridized by recycled magnesite with minor dolomite and their initial melting occurred at 300-360 km in depth. Therefore, the carbonate metasomatism of their mantle source should have occurred at the depth larger than 360 km, which means that the subducted slab should be stagnant in the mantle transition zone forming the big mantle wedge before 106 Ma. This timing supports the rollback model of subducting slab to form the big mantle wedge. Based on high P-T experiment results, when carbonated silicate melts produced by partial melting of carbonated peridotite was raising and reached the bottom(180–120 km in depth) of cratonic lithosphere in North China, the carbonated silicate melts should have 25–18 wt% CO2 contents, with lower Si O2 and Al2 O3 contents, and higher Ca O/Al2 O3 values, similar to those of nephelinites and basanites, and have higher εNdvalues(2 to 6). The carbonatited silicate melts migrated upward and metasomatized the overlying lithospheric mantle, resulting in carbonated peridotite in the bottom of continental lithosphere beneath eastern China. As the craton lithospheric geotherm intersects the solidus of carbonated peridotite at 130 km in depth, the carbonated peridotite in the bottom of cratonic lithosphere should be partially melted, thus its physical characters are similar to the asthenosphere and it could be easily replaced by convective mantle. The newly formed carbonated silicate melts will migrate upward and metasomatize the overlying lithospheric mantle. Similarly, such metasomatism and partial melting processes repeat, and as a result the cratonic lithosphere in North China would be thinning and the carbonated silicate partial melts will be transformed to high-Si O2 alkali basalts with lower εNdvalues(to-2). As the lithospheric thinning goes on,initial melting depth of carbonated peridotite must decrease from 130 km to close 70 km, because the craton geotherm changed to approach oceanic lithosphere geotherm along with lithospheric thinning of the North China craton. Consequently, the interaction between carbonated silicate melt and cratonic lithosphere is a possible mechanism for lithosphere thinning of the North China craton during the late Cretaceous and Cenozoic. Based on the age statistics of low δ26 Mg basalts in eastern China, the lithospheric thinning processes caused by carbonated metasomatism and partial melting in eastern China are limited in a timespan from 106 to25 Ma, but increased quickly after 25 Ma. Therefore, there are two peak times for the lithospheric thinning of the North China craton: the first peak in 135-115 Ma simultaneously with the cratonic destruction, and the second peak caused by interaction between carbonated silicate melt and lithosphere mainly after 25 Ma. The later decreased the lithospheric thickness to about70 km in the eastern part of North China craton.  相似文献   

5.
Abstract Extensive subduction-related and intraplate volcanism characterize Cenozoic magmatism in the North Is., New Zealand. Volcanics in the central North Is., predominantly intermediate to felsic, form above the dipping seismic zone and show tectonic/geochemical features common to magmatism in most subduction zones. Basaltic volcanism in Northland, the northern part of the North Is., has chemical characteristics typical of intraplate magmatism and may be caused by the upwelling of asthenospheric materials from deeper parts of the mantle. The rifting just behind the present volcanic front (the Taupo-Rotorua Depression), which follows the trench ward migration of the volcanic front and the gradual steepening of the subducted slab, is also a feature of the North Is. A possible mechanism for the back-arc rifting in the area is injection of asthenospheric materials into the mantle wedge; this asthenospheric flow results from the mantle upwelling beneath Northland and pushes both the rigid fore-arc mantle wedge and the subducted slab trenchwards. This mechanism is also consistent with the stress fields in the North Is.: dilatation in Northland, northwest-southeast tension in the Taupo-Rotorua Depression, and the northeast-southwest compression in the fore-arc region.  相似文献   

6.
A geochemical and isotopic study of lavas from Pichincha, Antisana and Sumaco volcanoes in the Northern Volcanic Zone (NVZ) in Ecuador shows their magma genesis to be strongly influenced by slab melts. Pichincha lavas (in fore arc position) display all the characteristics of adakites (or slab melts) and were found in association with magnesian andesites. In the main arc, adakite-like lavas from Antisana volcano could be produced by the destabilization of pargasite in a garnet-rich mantle. In the back arc, high-niobium basalts found at Sumaco volcano could be produced in a phlogopite-rich mantle. The strikingly homogeneous isotopic signatures of all the lavas suggest that continental crust assimilation is limited and confirm that magmas from the three volcanic centers are closely related. The following magma genesis model is proposed in the NVZ in Ecuador: in fore arc position beneath Pichincha volcano, oceanic crust is able to melt and produces adakites. En route to the surface, part of these magmas metasomatize the mantle wedge inducing the crystallization of pargasite, phlogopite and garnet. In counterpart, they are enriched in magnesium and are placed at the surface as magnesian andesites. Dragged down by convection, the modified mantle undergoes a first partial melting event by the destabilization of pargasite and produces the adakite-like lavas from Antisana volcano. Lastly, dragged down deeper beneath the Sumaco volcano, the mantle melts a second time by the destabilization of phlogopite and produces high-niobium basalts. The obvious variation in spatial distribution (and geochemical characteristics) of the volcanism in the NVZ between Colombia and Ecuador clearly indicates that the subduction of the Carnegie Ridge beneath the Ecuadorian margin strongly influences the subduction-related volcanism. It is proposed that the flattening of the subducted slab induced by the recent subduction (<5 Ma?) of the Carnegie Ridge has permitted the progressive warming of the oceanic crust and its partial melting since ca. 1.5 Ma. Since then, the production of adakites in fore arc position has deeply transformed the magma genesis in the overall arc changing from ‘typical’ calc-alkaline magmatism induced by hydrous fluid metasomatism, to the space- and time-associated lithology adakite/high-Mg andesite/adakite-like andesite/high-Nb basalts characteristic of slab melt metasomatism.  相似文献   

7.
West Yunnan is made of the Yangtze Craton, theSouth China Block, the Indochina Block and severalother micro-terranes formed at different times. It iscross-cut by the NW-SE-trending Ailao Shan-RedRiver (ASRR) fault, which runs over 1000 km fromthe eastern margin of the Qinghai-Tibet Plateau,through Vietnam and to the North Gulf (fig. 1). TheASRR fault is an important geological and topog-raphic boundary in East Asia. The sinistral movementof the Indochina Block along this fault ev…  相似文献   

8.
Volcanism in the Mediterranean fold belts is dominantly related to plate-convergence processes. The occurrence of highly potassic and often leucite-bearing lavas is a typical feature of many Neogene to Quaternary volcanic provinces in the Mediterranean area.The paper describes possible relationships between the Aeolian island arc and the Roman comagmatic region and presents petrological evidence for an ultrapotassic province within the Cypriot-Taurus arc of Turkey. It is thus a contribution to the controversy about tectonic setting and geodynamic significance of the highly potassic volcanism of the Mediterranean suite.  相似文献   

9.
The transport of water in subduction zones   总被引:9,自引:0,他引:9  
The transport of water from subducting crust into the mantle is mainly dictated by the stability of hydrous minerals in subduction zones. The thermal structure of subduction zones is a key to dehydration of the subducting crust at different depths. Oceanic subduction zones show a large variation in the geotherm, but seismicity and arc volcanism are only prominent in cold subduction zones where geothermal gradients are low. In contrast, continental subduction zones have low geothermal gradients, resulting in metamorphism in cold subduction zones and the absence of arc volcanism during subduction. In very cold subduction zone where the geothermal gradient is very low(?5?C/km), lawsonite may carry water into great depths of ?300 km. In the hot subduction zone where the geothermal gradient is high(25?C/km), the subducting crust dehydrates significantly at shallow depths and may partially melt at depths of 80 km to form felsic melts, into which water is highly dissolved. In this case, only a minor amount of water can be transported into great depths. A number of intermediate modes are present between these two end-member dehydration modes, making subduction-zone dehydration various. Low-T/low-P hydrous minerals are not stable in warm subduction zones with increasing subduction depths and thus break down at forearc depths of ?60–80 km to release large amounts of water. In contrast, the low-T/low-P hydrous minerals are replaced by low-T/high-P hydrous minerals in cold subduction zones with increasing subduction depths, allowing the water to be transported to subarc depths of 80–160 km. In either case, dehydration reactions not only trigger seismicity in the subducting crust but also cause hydration of the mantle wedge. Nevertheless, there are still minor amounts of water to be transported by ultrahigh-pressure hydrous minerals and nominally anhydrous minerals into the deeper mantle. The mantle wedge overlying the subducting slab does not partially melt upon water influx for volcanic arc magmatism, but it is hydrated at first with the lowest temperature at the slab-mantle interface, several hundreds of degree lower than the wet solidus of hydrated peridotites. The hydrated peridotites may undergo partial melting upon heating at a later time. Therefore, the water flux from the subducting crust into the overlying mantle wedge does not trigger the volcanic arc magmatism immediately.  相似文献   

10.
Polarization analysis of teleseismic data has been used to determine the XKS(SKS,SKKS,and PKS)fast polarization directions and delay times between fast and slow shear waves for 59 seismic stations of both temporary and permanent broadband seismograph networks deployed in the eastern Himalayan syntaxis(EHS)and surrounding regions.The analysis employed both the grid searching method of the minimum tangential energy and stacking analysis methods to develop an image of upper mantle anisotropy in the EHS and surrounding regions using the newly obtained shear wave splitting parameters and previously published results.The fast polarization directions are oriented along a NE-SW azimuth in the EHS.However,within the surrounding regions,the fast directions show a clockwise rotation pattern around the EHS from NE-SW,to E-W,to NW-SE,and then to N-S.In the EHS and surrounding regions,the fast directions of seismic anisotropy determined using shear wave splitting analysis correlate with surficial geological features including major sutures and faults and with the surface deformation fields derived from global positioning system(GPS)data.The coincidence between structural features in the crust,surface deformation fields and mantle anisotropy suggests that the deformation in the crust and lithospheric mantle is mechanically coupled.In the EHS,the coherence between the fast directions and the NE direction of the subduction of the Indian Plate beneath the Tibetan Plateau suggests that the lithospheric deformation is caused mainly by subduction.In the regions surrounding the EHS,we speculate that a westward retreat of the Burma slab could contribute to the curved anisotropy pattern.The Tibetan Plateau is acted upon by a NE-trending force due to the subduction of the Indian Plate,and also affected by a westward drag force due to the westward retreat produced by the eastward subduction of the Burma slab.The two forces contribute to a curved lithospheric deformation that results in the alignment of the upper mantle peridotite lattice parallel to the deformation direction,and thus generates a curved pattern of fast directions around the EHS.  相似文献   

11.
A new geochemical model is used here for the first time in the interpretation of intra-plate igneous rocks. This model is able to simulate one major and so far unexplained feature of the Italian potassic magmas: the regional isotopic trends along the chain of volcanoes. Starting from the now widely accepted inference that these trends are a result of large-scale mixing between continental-crustal and mantle materials within the lithosphere and prior to magma generation and volcanism, isotopic requirements of a suitable magma source are illustrated. This mixing has been linked with extreme enrichment in potassium and associated elements by the concept of source metasomatism. Here a one-dimensional diffusion-controlled advective flow model to simulate concentration and isotopic changes during metasomatism is described, as are the conditions under which this model can schematically reproduce the required source features.Modelling suggests that progressive regional changes from northwest to southeast in end-member contributions (i.e. the fluid/rock ratio in a metasomatic model) was controlled by progressive variations in either the fluid velocity or the duration of the fluid flow. Both could have acted concomitantly if the fluid was released by a mantle hotspot and infiltrated crustal material—possibly located in the lithospheric mantle—during anti-clockwise rotation of Italy in the Tertiary. It is suggested that previously metasomatised domains in the lithosphere were susceptible to fusion under tensional stress, so that the alkaline volcanism now traces the path of the ancient plate movement over the asthenosphere hotspot.  相似文献   

12.
The detailed lithospheric structure of South China is the basis for the understanding of tectonic processes of eastern China.Specifically,two essential issues in the study of lithospheric structure are the thermal and compositional structures,which are usually derived from either geophysical or geochemical observations.However,inversions from single geophysical or geochemical datasets have certain limitations,making it necessary to develop joint inversions of geophysical,geochemical and petrological datasets.In this paper,through thermodynamic simulation and probabilistic inversion,we inverted multiple datasets including topography,geoid height,surface heat flow and surface wave dispersion curves for the 3D lithospheric thermal and compositional structure of South China.The results reveal a thin(<100 km)and flat LAB beneath the South China Fold System Block and the lower Yangtze Craton.Also,we found that the lithospheric mantle is primarily composed of saturated peridotite,indicating that the ancient refractory lithospheric mantle has been replaced by new materials.The dominant dynamic mechanism for lithospheric thinning in eastern South China may be the flat subduction of ancient Pacific slab,while thermal erosion may have also played a significant role.In contrast,the LAB depth beneath the Sichuan Basin is much thicker(>200 km),suggesting that the thick and cold craton lithospheric roots are retained.There may exist a discontinuous interface beneath the Sichuan Basin,with the saturated lower layer thicker than the refractory upper layer.As a result,the lithospheric mantle of the Sichuan Basin and surrounding regions is mainly composed of saturated and transitional peridotite.  相似文献   

13.
Discrimination functions based on major element distribution (Pearce, 1976) can be used to define the different basalt types of the Tyrrhenian and Perityrrhenian areas in an attempt to clarify their geodynamic significance.The future Tyrrhenian and Perityrrhenian areas have been affected since Oligocene by either compressional (subduction related) or transitional processes which produced well-defined orogenic and anorogenic magmas. A local development of «transitional» magma types, characteristic of «anomalous» volcanic arcs, also occurred with geochemical features that are intermediate between within-plate and orogenic magmas.The eruption of orogenic rock suites (calcalkaline, shoshonitic and leucite-bearing rocks) took place along the Apennine border on the east and southeast of the Tyrrhenian basin from Upper Miocene to Quaternary (Aeolian and neighbouring seamounts; Campania; Latium; Capraia Island). Absence of spatial zonation and interlayering of products with a various potassic character are the peculiar features of these rocks that appear to be originated from a heterogeneous and variously metasomatized mantle source by the influx of fluids (H2O andLile enrichment) from the subduction zone affecting the Apennine-Maghrebides collisional front during Tertiary times.In the central Tyrrhenian area oceanic tholeiitic magmatism and creation of a new oceanic crust occurred from Upper Miocene. This activity was probably accomplished by Lower Pliocene when a within-plate volcanism produced the seamounts of the Batial Plain (Magnaghi, Vavilov, base of the Marsili Smts.).Etna and Ustica volcanisms occurring along the Perityrrhenian border on the south and west the Aeolian volcanism respectively, show geochemical characteristics that are transitional between anorogenic and orogenic magmas which could indicate some influence of fluids subduction-related to their mantle sources.The complex magmatic situation of the Tyrrhenian and Perityrrhenian areas may be caused by magma-producing events either from unmodified (anorogenic) or variously modified mantle sources (transitional to orogenic) depending on their proximity to and influenced by the Cainozoic subduction zone which developed along the Apennines-Maghrebides collisional front.  相似文献   

14.
Variations in the isotopic composition of rocks derived from the upper mantle can be used to infer the chemical history and structure of the Earth's interior. The most prominent material in the upper mantle is the source of mid-ocean ridge basalts (MORB). The MORB source is characterized by a general depletion in incompatible elements caused by the extraction of the continental crust from the mantle. At least three other isotopically distinct components are recognized in the suboceanic mantle. All three could be generated by the recycling of near surface materials (oceanic crust, pelagic sediments, continental lithospheric mantle) into the mantle by subduction. Therefore, the isotope data do not require a compositionally layered mantle, but neither do they deny the existence of such layering. Correlations between the volumetric output of plume volcanism with the reversal frequency of the Earth's magnetic field, and between the geographic distribution of isotopic variability in oceanic volcanism with seismic tomography suggest input of deep mantle material to surface volcanism in the form of deep mantle plumes. Volcanism on the continents shows a much wider range in isotopic composition than does oceanic volcanism. The extreme isotopic compositions observed for some continental magmas and mantle xenoliths indicate long-term (up to 3.3 Gyr) preservation of compositionally distinct material in thick (>200 km) sections of continental lithospheric mantle.  相似文献   

15.
The water contents of minerals and whole-rock in mantle-derived xenoliths from eastern China exhibit large variations and are generally lower than those from other on- and off-craton lithotectonic units. Nevertheless, the water contents of mineral and whole-rock in Junan peridotite xenoliths, which sourced from the juvenile lithospheric mantle, are generally higher than those elsewhere in eastern China. This suggests that the initial water content of juvenile lithospheric mantle is not low. There is no obvious correlation between the water contents and Mg# values of minerals in the mantle xenoliths and no occurrence of diffusion profile in pyroxene, suggesting no relationship between the low water content of mantle xenolith and the diffusion loss of water during xenolith ascent with host basaltic magmas. If the subcontinental lithospheric mantle (SCLM) base is heated by the asthenospheric mantle, the diffusion loss of water is expected to occur. On the other hand, extraction of basaltic melts from the SCLM is a more efficient mechanism to reduce the water content of xenoliths. The primary melts of Mesozoic and Cenozoic basalts in eastern China have water contents, as calculated from the water contents of phenocrysts, higher than those of normal mid-ocean ridge basalts (MORB). The Mesozoic basalts exhibit similar water contents to those of island arc basalts, whereas the Cenozoic basalts exhibit comparable water contents to oceanic island basalts and backarc basin basalts with some of them resembling island arc basalts. These observations suggest the water enrichment in the mantle source of continental basalts due to metasomatism by aqueous fluids and hydrous melts derived from dehydration and melting of deeply subducted crust. Mantle-derived megacrysts, minerals in xenoliths and phenocrysts in basalts from eastern China also exhibit largely variable hydrogen isotope compositions, indicating a large isotopic heterogeneity for the Cenozoic SCLM in eastern China. The water content that is higher than that of depleted MORB mantle and the hydrogen isotope composition that is deviated from that of depleted MORB mantle suggest that the Cenozoic continental lithospheric mantle suffered the metasomatism by hydrous melts derived from partial melting of the subducted Pacific slab below eastern China continent. The metasomatism would lead to the increase of water content in the SCLM base and then to the decrease of its viscosity. As a consequence, the SCLM base would be weakened and thus susceptible to tectonic erosion and delamination. As such, the crust-mantle interaction in oceanic subduction channel is the major cause for thinning of the craton lithosphere in North China.  相似文献   

16.
基于P波三重震相的华南地区上地幔速度结构研究   总被引:2,自引:1,他引:1       下载免费PDF全文
华南块体是研究太平洋板块俯冲和岩石圈减薄机制等问题的最佳场所之一.本文基于中国地震观测台网和大型流动台阵记录到的震中距10°~30°之间的两个中深源地震P波记录,利用三重震相波形拟合技术,获得了中扬子克拉通和华夏地块上地幔高精度P波速度结构.研究结果表明:(1)中扬子克拉通过渡带底部存在高速异常,系太平洋俯冲板块的滞留体.俯冲的板块并没有进入下地幔,660-km间断面下沉约11 km,与后尖晶石相变的克拉伯龙斜率为负有关.而华夏地块过渡带底部并无明显高速异常,接近全球平均模型;(2)整个华南块体,410-km间断面上方普遍存在低速层,主要与上地幔部分熔融有关,与IASP91相比P波速度减小了1.38%~2.29%;(3)在研究区域内,中扬子克拉通和华夏地块都存在岩石圈减薄(80 km),推测可能与太平洋板块俯冲和快速回撤导致的岩石圈拆沉有关.且华夏地块减薄程度较明显,下伏软流圈速度较低,说明其上地幔强度较弱、温度较高.另外,中扬子克拉通过渡带中存在一个较宽的速度梯度带,可能与520-km间断面有关,其具体成因有待进一步研究.  相似文献   

17.
Based on the polarization analysis of teleseismic SKS waveform data recorded at 49 seismic stations in Capital Area Seismograph Network,the SKS fast-wave direction and the delay time between the fast and slow shear waves at each station were determined by using the grid searching method of minimum transverse energy and the stacking analysis method,and then we acquired the image of upper mantle anisotropy in Capital area.In the study area,the fast-wave polarization direction is basically WNW-ESE,and the delay time falls into the interval from 0.56 s to 1.56 s.The results imply that the upper mantle anisotropy in Capital area is mainly caused by the subduc-tion of the Pacific plate to Eurasian plate.The subduction has resulted in the asthenospheric material deformation in Capital area,and made the alignment of upper mantle peridotite lattice parallel to the deformation direction.And the collision between the Indian and Eurasian plates made the crust of western China thickening and uplifting and material eastwards extruding,and then caused the upper mantle flow eastwards,and made the upper mantle de-formation direction parallel to the fast-wave direction.The deformation model of the crust and upper mantle is possibly vertically coherent deformation by comparing the fast-wave polarization direction with the direction of lithospheric extension and the GPS velocity direction.  相似文献   

18.
The North China Craton (NCC) has been thinned from >200 km to <100 km in its eastern part. The ancient subcontinental lithospheric mantle (SCLM) has been replaced by the juvenile SCLM in the Meoszoic. During this period, the NCC was destructed as indicated by extensive magmatism in the Early Cretaceous. While there is a consensus on the thinning and destruction of cratonic lithosphere in North China, it has been hotly debated about the mechanism of cartonic destruction. This study attempts to provide a resolution to current debates in the view of Mesozoic mafic magmatism in North China. We made a compilation of geochemical data available for Mesozoic mafic igneous rocks in the NCC. The results indicate that these mafic igneous rocks can be categorized into two series, manifesting a dramatic change in the nature of mantle sources at ~121 Ma. Mafic igneous rocks emplaced at this age start to show both oceanic island basalts (OIB)-like trace element distribution patterns and depleted to weakly enriched Sr-Nd isotope compositions. In contrast, mafic igneous rocks emplaced before and after this age exhibit both island arc basalts (IAB)-like trace element distribution patterns and enriched Sr-Nd isotope compositions. This difference indicates a geochemical mutation in the SCLM of North China at ~121 Ma. Although mafic magmatism also took place in the Late Triassic, it was related to exhumation of the deeply subducted South China continental crust because the subduction of Paleo-Pacific slab was not operated at that time. Paleo-Pacific slab started to subduct beneath the eastern margin of Eruasian continent since the Jurrasic. The subducting slab and its overlying SCLM wedge were coupled in the Jurassic, and slab dehydration resulted in hydration and weakening of the cratonic mantle. The mantle sources of ancient IAB-like mafic igneous rocks are a kind of ultramafic metasomatites that were generated by reaction of the cratonic mantle wedge peridotite not only with aqueous solutions derived from dehydration of the subducting Paleo-Pacific oceanic crust in the Jurassic but also with hydrous melts derived from partial melting of the subducting South China continental crust in the Triassic. On the other hand, the mantle sources of juvenile OIB-like mafic igneous rocks are also a kind of ultramafic metasomatites that were generated by reaction of the asthenospheric mantle underneath the North China lithosphere with hydrous felsic melts derived from partial melting of the subducting Paleo-Pacific oceanic crust. The subducting Paleo-Pacific slab became rollback at ~144 Ma. Afterwards the SCLM base was heated by laterally filled asthenospheric mantle, leading to thinning of the hydrated and weakened cratonic mantle. There was extensive bimodal magmatism at 130 to 120 Ma, marking intensive destruction of the cratonic lithosphere. Not only the ultramafic metasomatites in the lower part of the cratonic mantle wedge underwent partial melting to produce mafic igneous rocks showing negative εNd(t) values, depletion in Nb and Ta but enrichment in Pb, but also the lower continent crust overlying the cratonic mantle wedge was heated for extensive felsic magmatism. At the same time, the rollback slab surface was heated by the laterally filled asthenospheric mantle, resulting in partial melting of the previously dehydrated rocks beyond rutile stability on the slab surface. This produce still hydrous felsic melts, which metasomatized the overlying asthenospheric mantle peridotite to generate the ultramafic metasomatites that show positive εNd(t) values, no depletion or even enrichment in Nb and Ta but depletion in Pb. Partial melting of such metasomatites started at ~121 Ma, giving rise to the mafic igneous rocks with juvenile OIB-like geochemical signatures. In this context, the age of ~121 Ma may terminate replacement of the ancient SCLM by the juvenile SCLM in North China. Paleo-Pacific slab was not subducted to the mantle transition zone in the Mesozoic as revealed by modern seismic tomography, and it was subducted at a low angle since the Jurassic, like the subduction of Nazca Plate beneath American continent. This flat subduction would not only chemically metasomatize the cratonic mantle but also physically erode the cratonic mantle. Therefore, the interaction between Paleo-Pacific slab and the cratonic mantle is the first-order geodynamic mechanism for the thinning and destruction of cratonic lithosphere in North China.  相似文献   

19.
The North China Craton (NCC) witnessed Mesozoic vigorous tectono-thermal activities and transition in the nature of deep lithosphere. These processes took place in three periods: (1) Late Paleozoic to Early Jurassic (~170 Ma); (2) Middle Jurassic to Early Cretaceous (160–140 Ma); (3) Early Cretaceous to Cenozoic (140 Ma to present). The last two stages saw the lithospheric mantle replacement and coupled basin-mountain response within the North China Craton due to subduction and retreating of the Paleo-Pacific plate, and is the emphasis in this paper. In the first period, the subduction and closure of the Paleo- Asian Ocean triggered the back-arc extension, syn-collisional compression and then post-collisional extension accompanied by ubiquitous magmatism along the northern margin of the NCC. Similar processes happened in the southern margin of the craton as the subduction of the Paleo-Tethys ocean and collision with the South China Block. These processes had caused the chemical modification and mechanical destruction of the cratonic margins. The margins could serve as conduits for the asthenosphere upwelling and had the priority for magmatism and deformation. The second period saw the closure of the Mongol-Okhotsk ocean and the shear deformation and magmatism induced by the drifting of the Paleo-Pacific slab. The former led to two pulse of N-S trending compression (Episodes A and B of the Yanshan Movement) and thus the pre-existing continental marginal basins were disintegrated into sporadically basin and range province by the Mesozoic magmatic plutons and NE-SW trending faults. With the anticlockwise rotation of the Paleo-Pacific moving direction, the subduction-related magmatism migrated into the inner part of the craton and the Tanlu fault became normal fault from a sinistral one. The NCC thus turned into a back-arc extension setting at the end of this period. In the third period, the refractory subcontinental lithospheric mantle (SCLM) was firstly remarkably eroded and thinned by the subduction-induced asthenospheric upwelling, especially those beneath the weak zones (i.e., cratonic margins and the lithospheric Tanlu fault zone). Then a slightly lithospheric thickening occurred when the upwelled asthenosphere got cool and transformed to be lithospheric mantle accreted (~125 Ma) beneath the thinned SCLM. Besides, the magmatism continuously moved southeastward and the extensional deformations preferentially developed in weak zones, which include the Early Cenozoic normal fault transformed from the Jurassic thrust in the Trans-North Orogenic Belt, the crustal detachment and the subsidence of Bohai basin caused by the continuous normal strike slip of the Tanlu fault, the Cenozoic graben basins originated from the fault depression in the Trans-North Orogenic Belt, the Bohai Basin and the Sulu Orogenic belt. With small block size, inner lithospheric weak zones and the surrounding subductions/collisions, the Mesozoic NCC was characterized by (1) lithospheric thinning and crustal detachment triggered by the subduction-induced asthenospheric upwelling. Local crustal contraction and orogenesis appeared in the Trans-North Orogenic Belt coupled with the crustal detachment; (2) then upwelled asthenosphere got cool to be newly-accreted lithospheric mantle and crustal grabens and basin subsidence happened, as a result of the subduction zone retreating. Therefore, the subduction and retreating of the western Pacific plate is the outside dynamics which resulted in mantle replacement and coupled basin-mountain respond within the North China Craton. We consider that the Mesozoic decratonization of the North China Craton, or the Yanshan Movement, is a comprehensive consequence of complex geological processes proceeding surrounding and within craton, involving both the deep lithospheric mantle and shallow continental crust.  相似文献   

20.
田有  刘财  冯晅 《地球物理学报》2011,54(2):407-414
中国东北地区处于古亚洲洋和滨太平洋构造域叠合部位,地质构造极其复杂.利用东北及华北地区部分台网所接收的近震及远震走时资料获得东北地区地壳与上地幔三维P波速度结构,成像分辨率在80 km左右.成像结果表明东北地区地壳与上地幔具有较强的横向不均匀性.P波速度异常走向大体呈北东向,与该区地表构造走向一致.5 km深度的速度异...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号