首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment from the Attawapiskat area near James Bay, Northern Ontario was sampled for micromorphological analyses. The sediment is a glacial diamicton (till) of subglacial origin. The till contains entrained and scavenged sediments of proglacial and/or subglacial glaciofluvial/glaciolacustrine origin from a subglacial deforming layer that was emplaced due to both stress reduction and/or porewater dissipation. Evidence of porewater escape, clay translocation and other microstructures all point to emplacement under active subglacial bed deformation. The limited number of edge to edge (ee) grain crushing events, however, point to lower stress levels than might anticipated under a thin fast ice lobe of the James Bay during the Middle Pliocene. Microstructures of Pleistocene tills were quantitatively compared with the Attawapiskat till and the limited number of ee events at Attawapiskat further highlighted that grain to grain contact was curtailed possibly due to high till porosity, high porewater pressures and low strain rates or alternatively due to a high clay matrix component reducing grain crushing contact events. It is suggested that this Middle Pliocene till may be indicative of sediments emplaced under ice lobe surging conditions or fast ice stream subglacial environments. This proposal has significant implications for the glaciodynamics of this part of the Middle Pliocene James Bay lobe. This research highlights a crucial link between subglacial conditions, till microstructural analyses and glaciodynamics.  相似文献   

2.
Regional carbonate dispersal trains cross Melville Peninsula in the northeastern Canadian Arctic. These trains are 50-125 km across and 100-300 km long. The northern dispersal train crosses upland and lowland areas, while the Rae Isthmus train follows the lowlands. The distribution of carbonate in boulder, pebble and matrix till fractions indicates long-distance glacial transport of limestone, a low rate of dilution, and comminution from pebble to silt sizes. Dispersal patterns and geotechnical properties of the till suggest deforming bed and basal gliding mechanisms of ice flow associated with ice-streaming. Regional ice streams may have been 'normative' in carbonate terrain during the main Foxe (Wisconsin) Glaciation. Till plumes within regional dispersal trains, showing little dilution of carbonate down-ice from bedrock sources, are oriented towards lowlands. These features, sharp-edged and 300 mwide, mark zones of augmented flow. They are late-glacial features that formed after calving bays developed in Committee Bay. The dimensions of the dispersal trains, and ice-flow styles and mechanisms, are similar to those of modern Antarctic ice streams. The sharp edges of till plumes may delineate flow boundaries marked by lateral crevasse zones in the late-glacial ice sheet. Secondary streams-within-ice streams have not been reported previously in the literature.  相似文献   

3.
The prominent Ungava Bay landform swarm (UBLS), covering an area of ˜260000 km2 south of Ungava Bay, Canada, is defined by drumlins, crag-and-tails, horned crag-and-tails and flutes indicating convergent ice flow towards Ungava Bay. The UBLS has been difficult to interpret in terms of ice-sheet configuration, dynamics and age. Aerial photograph and satellite image interpretations of the Labrador-Ungava region reveal a previously unrecognized level of complexity within the UBLS consisting of several well-defined segments, most interpreted as representing discrete stream-flow events. Each of the segments is characterized by one or more of the criteria (convergent flow patterns at their heads, attenuated till lineations and abrupt lateral margins) previously suggested as diagnostic for formation by fast-flowing ice (ice streams). The UBLS reflects the most direct and probably fastest contact (in terms of sediment transport) between the Laurentide Ice Sheet interior and the ocean. It is therefore a prime candidate for abrupt changes in glacial-age northwest Atlantic seafloor sedimentation.  相似文献   

4.
Provenance studies of anomalously high-flux layers of ice-rafted detritus (IRD) in North Atlantic sediments of the last glacial cycle show evidence for massive iceberg discharges coming from the Hudson Strait region of the Laurentide Ice Sheet (LIS). Although these so-called Heinrich events (H events) are commonly thought to be associated with abrupt drawdown of the LIS interior, uncertainties remain regarding the sector(s) of this multi-domed ice sheet that conveyed ice through Hudson Strait. In Northern Québec and Labrador (NQL), large-scale patterns of glacial lineations indicate massive ice flows towards Ungava Bay and Hudson Strait that could reflect the participation of the Labrador–Québec ice dome in H events. Here we evaluate this hypothesis by constraining the source of NQL glacial deposits, which provide an estimate of the provenance characteristics of IRD originating from this sector. Specifically, we use 40Ar/39Ar ages of detrital hornblende grains in 25 till samples distributed along a latitudinal transect (lat. 58°) extending east and west of Ungava Bay. The data show that tills located west and southwest of the Ungava Bay region are largely dominated by hornblende grains with Archean ages (>2.6 Ga), while tills located east of Ungava Bay are characterized by grains with early Paleoproterozoic ages (2.0–1.8 Ga), although most samples contain a few Archean-age grains. IRD derived from the NQL region should thus be characterized by a large proportion of Archean-age detrital grains, which contrasts significantly with the predominant Paleoproterozoic 40Ar/39Ar ages (1.8–1.6 Ga) typically reported for the dominant age population of hornblende grains in H layers. Comparisons with IRD through the last glacial cycle from a western North Atlantic core off Newfoundland do not show evidence for any prominent ice-rafted event with the provenance characteristics of NQL glacial deposits, thereby suggesting that significant ice-calving event(s) from the Labrador–Québec sector may have been limited throughout that interval. Although these results tend to point towards a relative stability of this ice dome during H events, our study also indicates that further provenance work is required on IRD proximal to the Hudson Strait mouth in order to constrain with a greater confidence the sector(s) of the LIS that fed ice into Hudson Strait during H events. Alternatively, these results and other paleogeographic considerations tend to support models suggesting that part of the Ungava Bay glacial lineations could be associated with a Late-Glacial ice flow across Hudson Strait.  相似文献   

5.
The distribution of basal drag zones (sticky spots) underneath palaeo‐ice streams or lobes is largely unknown. We investigated the centre of the large (300 km long and up to 400 km wide) deglacial Hayes Lobe in NE Manitoba, Canada, by focusing on surficial till and its composition to get insights into dispersal patterns and their potential relationships to areas of basal drag. Subglacial bed roughness is a good criterion to identify areas of basal drag, but till composition may provide important insights across smoother beds. The onset zone of the Hayes Lobe overlies Palaeozoic Carbonate Platform rocks, whereas the majority of the lobe overlies the low‐lying Canadian Shield. We show that, within a 3500‐km2 central area of this lobe, calcareous detritus within the till has been transported over 100 km within subglacial environments of reduced ice‐bed coupling and fast ice flow. Six per cent of samples (n = 782), however, outline 0.2 to 4 km wide spots with a dominantly local composition. The glacial history and composition indicate that the till within these spots contains high inheritance from a pre‐Late Wisconsinan ice‐flow phase, which we suggest was protected beneath sticky spots (low erosion, high strength) during transport of substantial calcareous detritus to the area. Furthermore, our findings show that local till spots are present within streamlined landforms, as well as till blankets or veneers over bedrock. This diverse geomorphology indicates that the process of drumlinization within the deglacial Hayes Lobe does not appear to have been responsible for significant sediment transport or deposition across the study area. The overall record thus indicates potentially complex spatiotemporal shifts between calcareous till deposition, sticky conditions, erosion and drumlinization – which supports the subglacial bed mosaic model.  相似文献   

6.
Evidence for former fast glacier flow (ice streaming) in the southwest Laurentide Ice Sheet is identified on the basis of regional glacial geomorphology and sedimentology, highlighting the depositional processes associated with the margin of a terrestrial terminating ice stream. Preliminary mapping from a digital elevation model of Alberta identifies corridors of smoothed topography and corridor‐parallel streamlined landforms (megaflutes to mega‐lineations) that display high levels of spatial coherency. Ridges that lie transverse to the dominant streamlining patterns are interpreted as: (a) series of minor recessional push moraines; (b) thrust block moraines or composite ridges/hill–hole pairs constructed during readvances/surges; and (c) overridden moraines (cupola hills), apparently of thrust origin. Together these landforms demarcate the beds and margins of former fast ice flow trunks or ice streams that terminated as lobate forms. Localised cross‐cutting and/or misalignment of flow sets indicates temporal separation and the overprinting of ice streams/lobes. The fast‐flow tracks are separated by areas of interlobate or inter‐stream terrain in which moraines have been constructed at the margins of neighbouring (competing) ice streams/outlet glaciers; this inter‐stream terrain was covered by more sluggish, non‐streaming ice during full glacial conditions. Thin tills at the centres of the fast‐flow corridors, in many places unconformably overlying stratified sediments, suggest that widespread till deformation may have been subordinate to basal sliding in driving fast ice flow but the general thickening of tills towards the lobate terminal margins of ice streams/outlet glaciers is consistent with subglacial deformation theory. In this area of relatively low relief we speculate that fast glacier flow or streaming was highly dynamic and transitory, sometimes with fast‐flowing trunks topographically fixed in their onset zones and with the terminus migrating laterally. The occurrence of minor push moraines and flutings and associated landforms, because of their similarity to modern active temperate glacial landsystems, are interpreted as indicative of ice lobe marginal oscillations, possibly in response to seasonal climatic forcing, in locations where meltwater was more effectively drained from the glacier bed. Further north, the occurrence of surging glacier landsystems suggests that persistent fast glacier flow gave way to more transitory surging, possibly in response to the decreasing size of ice reservoir areas in dispersal centres and also locally facilitated by ice‐bed decoupling and drawdown initiated by the development of ice‐dammed lakes. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The net effect of ice‐flow shifts resulting in the dilution or reworking of clasts on a single preserved till sheet is often unknown yet has major implications for palaeoglaciology and mineral exploration. Herein, we analyse variations in till clast lithologies from a single till sheet, within palimpsest‐type Glacial Terrain Zones in NE Manitoba, Canada, to better understand sediment–landform relationships in this area of high landform inheritance. This near‐ice‐divide area is known to consist of a highly fragmented subglacial landscape, resulting from spatio‐temporal variations in intensity of reworking and inheritance throughout multiple glacial events (subglacial bed mosaic). We show that a seemingly homogenous ‘Keewatin’ till sheet is composed of local (>15 km) and continental‐scale (~100‐km‐long carbonate train and 350–600 km long Dubawnt red erratic train) fan, irregular (amoeboid) or lobate palimpsest dispersal patterns. Local dispersal is more complex than the preserved local landform flowset(s) record, but appears consistent with the overall glacial history reconstructed from regional flowset and striation analyses. The resultant surface till is a spatial mosaic interpreted to reflect variable intensities in modification (overprinting) and preservation (inheritance) of a predominately pre‐existing till sheet. A multi‐faceted approach integrating till composition, regional landforms, ice‐flow indicators, and stratigraphic knowledge is used to map relative spatio‐temporal erosion/reworking intensity.  相似文献   

8.
《Quaternary Science Reviews》1999,18(8-9):993-1019
Outcrops bearing stained, striated facets indicative of north–northeastward moving ice, truncated by unstained, striated facets indicative of various younger flows occur in the Caniapiscau area of north–central Quebec. This is the first report of differential staining of striated facets in the region. We propose that the staining occurred in an ice-free interval of probable interglacial age. This early ice flow probably occurred during ice retreat toward the Quebec highlands. Ice flow and glacial transport data from the southern Hudson Bay and James Bay basins indicate that the next major regional ice flow was toward the northwest and resulted from the expansion of an Early Wisconsinan glacier in the Quebec highlands. The northern part of this flow was diverted northwestward through Hudson Bay, and the southern part southwestward across James Bay, following a progressive counterclockwise rotation of flow. A zone of intersection (ZI) of two major glacier bedform systems, often referred to as the horseshoe-shaped Labrador Ice Divide, represents the head of a large northward convergent ice-flow system that extended to Ungava Bay and beyond. The Ungava flow propagated southward and captured the head of the opposing flow from an outflow centre located east of Caniaspiscau reservoir. We propose that this capture event correlates with the Gold Cove Advance in Ungava Bay and on Baffin Island at about 9900 14C yr BP. It is the largest advance of Quebec-Labrador ice yet proposed for the region. This correlation is based on the relative ice-flow chronology, accommodation of glacial lakes Naskaupi and McLean in the deglaciation sequence, the constraints placed on Last Glacial Maximum (LGM) ice configuration by the postglacial uplift pattern and events in the deep-sea record. Therefore, the Ungava ice-flow pattern is not a relict pre-Wisconsinan glacial landscape as recently proposed.  相似文献   

9.
Ross, M., Lajeunesse, P. & Kosar, K. G. A. 2010: The subglacial record of northern Hudson Bay: insights into the Hudson Strait Ice Stream catchment. Boreas, 10.1111/j.1502‐3885.2010.00176.x. ISSN 0300‐9483. In this paper, we present new insights into the glacial dynamics and potential configuration of the Hudson Strait Ice Stream catchment in the northern Hudson Bay–western Hudson Strait region. Our reconstruction is based on new field observations and till compositional data from Southampton Island, remote sensing imagery and multibeam bathymetric data from the Hudson Bay sea floor, as well as on a re‐examination of previously published data from this vast region. Our findings suggest that, during the late Quaternary, the HSIS catchment consisted of a number of ice‐stream tributaries feeding a curvilinear trunk that potentially extended into western Hudson Bay. In contrast to previous interpretations, the occurrence of fluted bedrock hills, over‐deepened basins, Dubawnt erratics and carbonaceous till on the islands at the head of Hudson Strait is taken to imply that cold‐based conditions did not prevail on these islands. The upland area of Southampton Island and the surrounding channels played an important role in controlling the location of the main tributaries, with the higher central terrain forming a large inter‐ice‐stream zone lacking carbonate detritus. Coats Island contains abundant evidence of vigorous ice flow, such as mega‐scale glacial lineations (MSGLs). MSGLs also occur on the sea floor southwest of Coats Island but the sea‐floor imprint is highly discontinuous. Observations on the western Hudson Bay mainland show evidence of southeastward fast ice flow that is spatially consistent with the Dubawnt dispersal train. Despite the geomorphological discontinuities, this may indicate that the HSIS onset zone extended far inside the Laurentide Ice Sheet and across contrasting geological domains.  相似文献   

10.
In 1982 and 1983 a surficial geology and overburden geochemistry survey was carried out on the Sisson Brook Mining Licence in York County, about 55 km northwest of Fredericton, New Brunswick, Canada.On the Sisson Brook Mining Licence three zones of W-Mo-Cu mineralization have been outlined; Zones I and II contain mainly wolframite with chalcopyrite and pyrrhotite, whereas Zone III has mainly scheelite and molybdenite.The glacial history of the area was studied during 1982 and 1983 to provide a framework for interpreting the geochemical results. Ice movement varied from 160° ± 10° towards the south during the Main Bantalor phase (maximum ≈ 13,500 y.B.P.) to 130° ± 10° toward the southeast during the Late Bantalor phase. Rapid changes in dominant pebble lithologies occur immediately upon crossing bedrock contacts. This suggests a very short distance of transport on the property. The glacier, butted against the Nashwaak Ridge, quickly sheared bedrock debris up into the body of the ice by compressive flow. Upon melting, some of this debris was deposited a short distance from source. Some debris appears to have been sheared up higher into the ice sheet, transported over the Nashwaak Ridge, and deposited approximately 8 km down-ice with no interconnecting dispersal train.In 1982, a geochemical orientation survey was carried out to determine which element(s) and sample medium could best and most economically be used in the search for W-Mo-Cu mineralization. Within the property area, both whole till <2000 μm (−10 mesh) samples and heavy mineral concentrates clearly defined the zones of mineralization (W, Mo, Cu) and associated geochemical dispersal trains (W, Mo, Cu, As, F). In later work, samples were not analyzed for As and F because this provided no additional information. The geochemical contrast between values in whole till samples derived from subcropping mineralization and those derived from barren bedrock is adequate to outline mineralization. Geochemical analysis of the whole till was used in later work because the sample preparation costs are considerably lower than those for heavy-mineral concentrates. Soils were not used because trace element patterns were diffuse, with the highest values occurring at variable distances down-ice from mineralization.In 1983, the objective was to better define glacial dispersal from the known mineralization and to explore for additional mineralization. Data from this program indicates a W dispersal train in whole till samples 300–400 m long. Tungsten values up to 1400 ppm and Mo values up to 260 ppm in whole till occur immediately down-ice from the main subcropping W-Mo mineralization. The element associations (i.e. W-Mo-Cu and W-Mo) in the till reflect the elemental composition of the source mineralization (i.e. Zones I and II and Zone III).Backhoe trenching is a useful and cost-effective technique to expose Quaternary sediments. Examination of the overburden sections provides an understanding of the glacial history which aids in tracing geochemical dispersal trains up-ice to bedrock source.  相似文献   

11.
 Abundant cinnabar (HgS) mineralization is associated with the Pinchi Fault in central British Columbia. Two formerly producing mercury mines have been developed on this fault: Pinchi and Bralorne Takla. The mercury content of till (a sediment type directly deposited by glaciers) in the area of this fault is primarily controlled by the occurrence of cinnabar mineralization in bedrock and the direction of ice flow. Cinnabar-bearing bedrock was eroded by glaciers, transported in the direction of ice flow, and deposited "down-ice" from its source. An example of such a dispersal train is documented for the Pinchi Mine area where mercury ore was transported over a distance of 12 km, as measured in the clay-sized fraction (< 0.002 mm) of till, and could have been transported over 24 km according to heavy mineral concentrates (specific gravity >3.3) of this same sediment. Antimony, chromium, and nickel dispersal trains were also detected in the region. These data indicate that natural glacial processes can result in the "mobilization" of metals in the surficial environment, a factor which has to be considered at mine sites in glaciated terrain, where mine reclamation and remediation measures are now required. Received: 31 October 1996 · Accepted: 27 May 1997  相似文献   

12.
Till lithology and glacial transport in Kuhmo, eastern Finland   总被引:1,自引:0,他引:1  
Till lithology and transport distance were studied along five transects running in the direction of ice flow and intersecting the N-S-oriented Kuhmo Greenstone Belt, which is some 5 km in width. A total of 531 stone counts were performed on three fractions (> 20 cm, 6–20 cm and 2–6 cm) in 162 pits dug with a mechanical excavator. An experimental model is developed for predicting the transport distances of clasts in basal tills. It shows the traditional method of expressing transport in terms of half-distance (i.e. the distance at which the proportion of a given rock type in the till has been halved from what it was at the distal contact of a given rock type in the bedrock) to be dependent upon the width of the source unit in the bedrock, varying in the present case from 0 km to 16 km as the width of the source belt increases from 0 km to infinity. The Kuhmo Greenstone Belt being 5 km broad, the mean half-distance for the transport of stones and boulders in the till is 2 km, the boulders having been moved somewhat shorter distances and the pebbles longer distances. It is recommended that transport distances for till material should be expressed in terms of the renewal distance (i.e. the distance over which the proportion of a new rock type increases from 0% to 50%). In the Kuhmo area this distance is 16 km.  相似文献   

13.
Known changes in ice-flow direction during a 100-year interval have been used to evaluate how well ice-flow indicators record complex deglaciation events. At Burroughs Glacier, nunataks emerging from a thinning Neoglacial ice mass and differential ice-surface lowering caused by calving ice margins have produced major changes in ice-flow direction sincc 1892. Cross-cutting striae with angles of divergence of up to 105' reflect the past range of flow directions in the area. Striae from the oldest flow events are deepest, and striae from some late-stage flow events are missing. This may be caused by overprinting during late-stage reversals in the direction of ice movement. The orientation of flutes and surficial bullet boulders reflects the final ice-flow direction, but boulder orientations are less clustered than flute orientations. Surficial till pebble fabrics are weakly to moderately developed, but till fabrics vary with depth and record ice-flow direction changes with time.  相似文献   

14.
Unexpectedly high pollen concentrations characterize the basal, silty part of the postglacial sediments accumulated in two lakes from the Cratère du Nouveau-Quebéc area, Ungava. These lacustrine silts and their pollen content result from early postglacial washing of a pollen bearing till. The till must therefore ahve incorporated pollen that relates to events prior to the last glacial event. The matrix of the till deposits surrounding the lakes shows outstandingly high pollen concentrations. It is hypothesized that because of the proximity of the ice divide during the last (and earlier) ice advance(s) in Ungava, the previously depoisited till and the pollen that haad accumulated in its matrix during the interglacial interval(s) were preserved in relict till plains or recycled into the till of teh last glaciation. The crater's age has been established at 1.4 Ma and holds a minimum thickness of 95 m of sediments. It is very likely filled with successive tills or related glacigenic deposits perhaps representing the whole length of time since the crater was formed. Alike the most recent till, these deposits should pollen. there is thus the prospect ofr a 1.4 Ma old pollen record for Ungava.  相似文献   

15.
A field of uraniferous boulders was discovered in a drift-covered valley west of Dismal Lakes. Glacial geological information was combined with boulder location and trace element till geochemical data to model the dispersal of the boulders; and to predict their likely bedrock source. Uraniferous bedrock was eroded by the last, westward flowing glacial ice to cover the area. The debris was englacially transported and subsequently deposited during subglacial melt-out of ice block(s) stagnating below active ice. The distribution of the boulders forms acrude, westward-opening fan centred on the easternmost boulder and oriented with the last ice-flow direction. The largest uranium values from surface till samples (-2 μm fraction) occur 6.2 km east of the main boulder concentration or 1.5 km east of the first boulder occurrence. The likely bedrock source is 6.0 to 6.6 km east of the main boulder concentration.  相似文献   

16.
Pleistocene ice sheets can be reconstructed through three separate approaches: (1) Evidence based on glacial geological studies, such as erratic trains, till composition, crossing striations and exposures of multiple tills/nonglacial sediments. (2) Reconstructions based on glaciological theory and observations. These can be either two- or three-dimensional models; they can be constrained by ‘known’ ice margins at specific times; or they can be ‘open-ended’ with the history of growth and retreat controlled by parameters resting entirely within the model. (3) Glacial isostatic rebound after deglaciation provides a measure of the distribution of mass (ice) across a region. A ‘best fit’ ice sheet model can be developed that closely approximates a series of relative sea level curves within an area of a former ice sheet; in addition, the model should also provide a reasonable sea level fit to relative sea level curves at sites well removed from glaciation.This paper reviews some of the results of a variety of ice sheet reconstructions and concentrates on the various attempts to reconstruct the ice sheets of the last (Wisconsin, Weischelian, Würm, Devensian) glaciation. Evidence from glacial geology suggests flow patterns at variance with simple, single-domed ice sheets over North America and Europe. In addition, reconstruction of ice sheets from glacial isostatic sea level data suggests that the ice sheets were significantly thinner than estimates based on 18 ka equilibrium ice sheets (cf. Denton and Hughes, 1981). The review indicates it is important to differentiate between ice divides, which control the directions of glacial flow, and areas of maximum ice thickness, which control the glacial isostatic rebound of the crust upon deglaciation. Recent studies from the Laurentide Ice Sheet region indicate that the center of mass was not over Hudson Bay; that a major ice divide lay east of Hudson Bay so that flow across the Hudson Bay and James Bay lowlands was from the northeast; that Hudson Bay was probably open to marine invasions two or three times during the Wisconsin Glaciation; and that the Laurentide Ice Sheet was thinner than an equilibrium reconstruction would suggest.  相似文献   

17.
Lusardi, B. A., Jennings, C. E. & Harris, K. L. 2011: Provenance of Des Moines lobe till records ice‐stream catchment evolution during Laurentide deglaciation. Boreas, 10.1111/j.1502‐3885.2011.00208.x. ISSN 0300‐9483. Mapping and analysis of deposits of the Des Moines lobe of the Laurentide Ice Sheet, active after the Last Glacial Maximum (LGM), reveal several texturally and lithologically distinct tills within what had been considered to be a homogeneous deposit. Although the differences between tills are subtle, minor distinctions are predictable and mappable, and till sheets within the area covered by the lobe can be correlated for hundreds of kilometres parallel to ice flow. Lateral till‐sheet contacts are abrupt or overlap in a narrow zone, coincident with a geomorphic discontinuity interpreted to be a shear margin. Till sheets 10 to 20 m thick show mixing in their lower 2 to 3 m. We suggest that: (i) lithologically distinct till sheets correspond to unique ice‐stream source areas; (ii) the sequence of tills deposited by the Des Moines lobe was the result of the evolution and varying dominance of nearby and competing ice streams and their tributaries; and (iii) in at least one instance, more than one ice stream simultaneously contributed to the lobe. Therefore the complex sequence of tills of subtly different provenances, and the unconformities between them record the evolution of an ice‐catchment area during Laurentide Ice Sheet drawdown. Till provenance data suggest that, after till is created in the ice‐stream source area, the subglacial conditions required for transporting till decline and incorporation of new material is limited.  相似文献   

18.
A model for sedimentation by surging glaciers is developed from analysis of the debris load, sedimentary processes, and proglacial stratigraphy observed at the Icelandic surging glacier, Eyjabakkajökull. Three aspects of the behavior of surging glaciers explain the distinctive landformsediment associations which they may produce: (a) sudden loading of proglacial sediments during rapid glacier advances results in the buildup of excess pore pressures, failure, and glacitectonic deformation of the overridden sediments; (b) reactivation of stagnant marginal ice by the downglacier propagation of surges is associated with large longitudinal compressive stresses. These induce intense folding and thrusting during which basal debris-rich ice is elevated into an englacial position in a narrow marginal zone. As the terminal area of the glacier stagnates between surges, debris from this ice is released supraglacially and deposited by meltout and sediment flows; (c) local variations in overburden pressure beneath stagnant, crevassed ice cause subglacial lodgement tills, which are sheared during surges, to flow into open crevasses and form “crevasse-fill” ridges.  相似文献   

19.
Dispersal patterns of indicator rocks in central Gaspésie reveal that glacial debris is entrained in a basal debris-rich zone of shearing where clast diffusion takes place. The Grand-Volume Till forms a thin till sheet over the high plateaus of Gaspésie Peninsula and resulted from a succession of two Wisconsinan ice flows of distinct orientations (SSE and NE). The lithological composition of this till determined by pebble counts and the three-dimensional dispersal patterns of indicator rocks in it suggest that debris transport occurred principally by simple shear deformation of glacial debris. In addition, the intermixing of clasts at the intersection of two lithologically distinct dispersal trains of SSE and NE orientations, respectively, suggests that extensive mixing takes place during shearing. Physical interactions among the clasts lead to both upward and downward movements which cause the clasts to diffuse across the zone of shearing. This process of shear-diffusion results in continuous incorporation and mixing of the newly encountered rock types during glacial transport.  相似文献   

20.
Ice streams are major dynamic elements of modern ice sheets, and are believed to have significantly influenced the behaviour of past ice sheets. Funen Island exhibits a number of geomorphological and geological features indicative of a Late Weichselian ice stream, a land-based, terminal branch of the major Baltic Ice Stream that drained the Scandinavian Ice Sheet along the Baltic Sea depression. The ice stream in the study area operated during the Young Baltic Advance. Its track on Funen is characterized by a prominent drumlin field with long, attenuated drumlins consisting of till. The field has an arcuate shape indicating ice-flow deflection around the island's interior. Beneath the drumlin-forming till is a major erosional surface with a boulder pavement, the stones of which have heavily faceted and striated upper surfaces. Ploughing marks are found around the boulders. Exact correspondence of striations, till fabric and drumlin orientation indicates a remarkably consistent flow direction during ice streaming. We infer that fast ice flow was facilitated by basal water pressure elevated to the vicinity of the flotation point. The ice movement was by basal sliding and bed deformation under water pressure at the flotation level or slightly below it, respectively. Subglacial channels and eskers post-dating the drumlins mark a drainage phase that terminated the ice-stream activity close to the deglaciation. Identification of other ice streams in the Peribaltic area is essential for better understanding the dynamics of the land-based part of the Scandinavian Ice Sheet during the last glaciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号