首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Abstract

Shanghai has the largest newly reclaimed area in China’s coastal regions, and dredger fills are universally distributed in reclaimed lands there. Multi-scale geotechnical properties of dredger fills in region-scale (>1?km2), site-scale (1?m2–1?km2), mesoscale (1?cm2–1 m2), and microscale (1?µm2–1?cm2) were studied mainly through cone penetration investigation, borehole investigation, and microscopic inspections. Dredger impact craters, soil structures, and soil textures were investigated qualitatively and quantitatively to identify the dredger fills. Ultimate land subsidence since 1 July 2018 and land subsidence velocity characterized by the land subsidence from 1 July 2018 to 1 January 2019 were evaluated in Shanghai’s typical reclaimed regions. Afterwards, Bayesian network including sixteen variables was proposed for land subsidence risk assessment. Surface subsidence, land subsidence velocity, and comprehensive land subsidence were the most sensitive to data point location and average initial void ratio of underlying strata. These three risk variables were also highly correlated to the thickness of the dredger fill layer and the reclamation time. This finding indicates that variances of the four independent variables (i.e., data point location, average initial void of underlying strata, land reclamation time, and thickness of dredger fill layer) significantly decide variances of the three risk levels.  相似文献   

2.
A very soft ground constructed by dredging and hydraulic fill has characteristics such as high water content, high initial void ratio, and very little effective stress. Estimating, with thorough considerations about consolidation properties and the initial stress associated with each layer's distinctive stress history, is essential in order to predict a reasonable consolidation settlement of soft ground. By investigating a construction project for national industrial complexes at a coastal area in southern Korea that experienced reclamation and ground improvement adapting PVD, various laboratory tests to find consolidation properties were performed with undisturbed samples collected from the entire depth of the marine clay fill layer and original clay layer. Through the investigation, this report suggests relationships of heterogeneity of permeability in both vertical and horizontal directions, void ratio-effective stress, and void ratio-permeability. Considering the fact that the original clay layer was under the process of consolidation by load due to hydraulic fill from the top, estimating the appropriate initial stress of each layer is critical to predict the future process of consolidation settlement determined by time. In order to obtain the initial stresses of two layers with different stress histories related to consolidation, cone penetration and dissipation tests were conducted.  相似文献   

3.
Abstract

One method straightforwardly describing the creep degradation behavior of soft marine clay is proposed and applied to the embankment modeling. Based on the experimental phenomena, the evolution of creep coefficient of soft structured clay is identified comparing with reconstituted clay, and formulated using the creep coefficient of reconstituted clay and a creep-based structure parameter relating to the inter-particle bonding. The contributions of inter-particle bonding and debonding to creep coefficient are thus considered and the creep degradation behavior is then captured straightforwardly. The creep coefficient is extended to 3D and incorporated into a newly developed elasto-viscoplastic model to describe the creep degradation in a direct way. Based on the correlations, the liquid limit is adopted as the viscosity related input parameter. The model is derived using Newton–Raphson algorithm and implemented into a Finite Element code for coupled consolidation analysis. The general applicability on creep degradation of the model is validated by simulating 1D creep, 1D CRS (constant strain rate) and 3D undrained creep tests. Finally, the enhanced model considering creep degradation is applied and validated by simulating one test embankment and one test fill on marine deposited soft sensitive clays.  相似文献   

4.
Considering the characteristics of seabed ground in coastal reclamation area, ultra soft clay improvement method by heavy tamping after rockfilling displacement was proposed combined with a case study. The improvement mechanisms of the method can primarily be attributed to rockfilling displacement (RD), dynamic compaction (DC), dynamic replacement (DR) and dynamic replacement and mixing (DRM). For the case study given in this article, heavy tamping construction program was proposed based on field pilot tests. Furthermore, the effectiveness of the proposed ground improvement method was verified through in situ plate load test, sand fill test and the analyses of observed settlement data. Thus, the method of heavy tamping after rockfilling displacement is applicable for the improvement of seabed ground in coastal reclamation area. It is proposed for similar projects that heavy tamping of fills may be performed by layers and correspondingly tamping energy increased to further enhance the improvement effect of DC, DR and DRM. In addition, delayed improvement effect or time effect of soil mass after heavy tamping is still an issue to be further studied.  相似文献   

5.
围海造陆工程泄水口悬浮物扩散规律分析   总被引:1,自引:1,他引:0  
掌握围海造陆工程泄水口悬浮物扩散规律,对保护海洋水环境质量具有重要意义。选取围海造陆工程泄水口为研究对象,基于泥沙对流扩散方程,推求出泄水口悬浮物扩散平面二维分析解表达式。开展现场观测,确定泄水口源强取值,并对泄水口悬浮物扩散进行理论计算和分析。研究结果显示,围海造陆工程施工后期,泄水口悬浮物流失非常严重。泄水口附近水域出现的最大悬浮物浓度主要由源强的大小来决定,悬浮物扩散范围主要由流速的大小来控制。  相似文献   

6.
With the rapid urbanization in Shanghai, China, suitable fill materials have been reported to be in great shortage in recent years. A prospective solution to these issues is to convert the huge amount of existing dredged marine soils to construction materials via solidification. However, there have been no studies on the shear behavior of solidified dredged materials from Shanghai region so far, while it has been reported by various researchers that the available data obtained from certain types of clay cannot be confidently and readily applied to other types of soils. To address this challenging issue, in this article, samples of Shanghai marine dredged soils were retrieved from the world’s largest reclamation project in Shanghai Lin-gang New City. A series of laboratory tests have been conducted to investigate the shear behavior of Shanghai dredged marine soils solidified using a new composite curing agent made of cement and lignin. The test results and the effect of this cement–lignin agent on the shear behavior of Shanghai marine soils, including the stress–strain behavior, shear strength properties, and failure characteristics are presented and discussed, which can provide valuable reference for the use of dredged soils as construction materials in the Shanghai region.  相似文献   

7.
Abstract

In the coastal area, nearshore and offshore structures have been or will be built in marine soft clay deposits that have experienced long-term cyclic loads. Therefore, the mechanical behavior of marine clay after long-term cyclic loading needs to be investigated. In this research, a series of monotonic and cyclic triaxial tests were carried out to investigate the postcyclic mechanical behavior of the marine soft clay. The postcyclic water pore pressure, shear strength and secant stiffness are discussed by comparing the results with the standard monotonic test (without cyclic loading). It is very interesting that the postcyclic behavior of marine soft clay specimen is similar to the behavior of overconsolidated specimen, that is, the specimen shows apparent overconsolidation behavior after long-term cyclic loading. Then relationship between the overconsolidation ratio and the apparent overconsolidation ratio is established on the basis of the theory of equivalent overconsolidation. Finally, a validation formula is proposed which can predict the postcyclic undrained shear strength of marine soft clay.  相似文献   

8.
海洋沉积物工程定名对于开展海洋工程建设具有重要作用,然而海底粉土和黏性土的定名受人为因素影响容易产生误差。使用人工神经网络的方法对黄河口埕岛海域284组细粒土数据进行了训练和学习,得到了只利用沉积物粒径质量分数进行定名的方法。结果表明,使用人工神经网络的方法能够有效地对沉积物进行工程定名。当网络含有5个输入层节点、9个隐藏层节点、3个输出层节点、训练函数为Scaled conjugate gradient时定名准确率最高,检验准确率高达97.7%。训练数据的数量是造成神经网络预测存在误差的重要因素,随着数据量的增加,网络的可靠性和通用程度将越来越高。  相似文献   

9.
One of the major drawbacks of the conventional method of land reclamation, which involves mixing cement with the dredged soils at the disposal site, is the high cost associated with its manufacturing and transportation. In this study, a new solidified dredged fill (SDF) technique and a new additive are proposed and their practical applications are discussed. Unlike the conventional approach, the dredged marine soils were mixed with the solidifiers using a newly designed mixing technique prior to its transport to site, which would significantly reduce the cost of site machinery and effectively reclaim land with adequate engineering properties necessary for the construction of infrastructure. To evaluate the performance of the reclaimed land using the proposed technique, a series of laboratory and field tests (namely, static and dynamic cone penetration tests, and plate load tests) were conducted on grounds filled with and without solidified dredged marine soils, respectively. The results showed that the engineering behavior of the reclaimed land with dredged marine soils using SDF technique had significantly improved. The SDF technique combined with the newly designed mixing system improved the performance of ground and has thus proved to be both cost-effective and safe.  相似文献   

10.
Cement-stabilized clay is widely used in soft clay improvement for deep excavation, underground construction, and land reclamation. This paper presents a study on the evaluation of elastic modulus for cement-stabilized marine clay. First, two types of cement-stabilized soils were studied through isotropic compression tests and cylinder split tensile tests. Specimens with different mix ratios and curing periods were used. Stress–strain behavior under isotropic compression was discussed, followed by an introduction and estimation of the stress-free bulk modulus. Empirical correlations between elastic moduli and functions for estimating elastic moduli were then proposed. Further estimation of elastic modulus was conducted with another data set. The results showed that the proposed function for estimating elastic modulus is effective for cement-improved marine clay. Finally, the proposed method and empirical functions were validated with other types of cement-stabilized clay.  相似文献   

11.
Static stability mainly against sliding of a typical, relatively large skirted gravity structure was investigated using three-dimensional finite element modeling. The numerical model was validated against centrifuge test results. A specific set of dimensions was chosen to model a typical skirted gravity structure in a centrifuge with two types of foundation soils: uniform saturated sand and a clay zone sandwiched between two sand layers. Soil shear strength parameters used in the finite element models were estimated from in-flight cone penetration resistance measurements obtained in the centrifuge. Numerical parametric studies were conducted using the validated finite element model. The parameters included were the depth and strength of the clay zone and the inclination of external load. It is shown that a relatively simple three-dimensional finite element model was effective in providing information that would be needed to design such a critical and expensive offshore structure. Basic Mohr-Coulomb strength parameters and moduli based on cone penetration resistance measurements and published empirical correlations were appropriate in modeling the soils in the finite element simulations.  相似文献   

12.
Abstract

An elastoplastic, dynamic, finite-difference method was applied to study the effects of nonlinear seismic soil–pile interaction on the liquefaction potential of marine sand with piles. The developed model was well validated using the centrifuge test. The results showed that acceleration, bending moment, and excess pore water pressure complied well with centrifuge test results. The effect of different affecting parameters on liquefaction potential was investigated using parametric study. Using a sensitivity analysis, the pile embedment parameter was shown to be the most influential parameter. Finally, applying the evolutionary polynomial regression technique, a new model for predicting the liquefaction potential was presented.  相似文献   

13.
根据在日照近岸海域施工的地质钻孔和浅地层剖面测量资料,对比南黄海已有钻孔成果,系统地开展日照近岸海域晚更新世以来地层结构特征识别和沉积环境演化重建。结果表明:日照近岸海域沉积地层中见含有有孔虫化石的第二海相层,形成年代介于34.3~41.4 cal.ka B.P.,对应MIS3的暖湿阶段,该层位可能与古三角洲有关。沉积层从上往下分别为:滨海相细砂混杂泥质沉积层(命名为DU1沉积单元);河流-河口相粉砂质黏土夹粗砂、粉砂层(DU2沉积单元);浅海相粉砂质黏土夹粗砂层(DU3沉积单元);河流-湖泊相粗砂夹黏土层(DU4沉积单元)。晚更新世以来日照东部南黄海海域主要经历了2~3次显著的海侵和海退,各区域因条件不同表现有所差异:日照近岸浅水区主要表现为两次海侵和海退,东部深水区主要表现为三次海侵和海退,由于地势高低和侵蚀破坏等原因,总体表现为从离岸深水区域向近岸浅水区域海相地层厚度逐渐减少的趋势,部分地层出现尖灭消失。  相似文献   

14.
Abstract

Cement soil mixing piles are an effective treatment method for marine soft clay. To investigate the static and dynamic characteristics of the composite soil with cemented soil core, a series of experiments are carried out by using the cyclic simple shear test. The result shows that, the static shear strain showed strain hardening, cemented soil core can improve static shear strength of composite soil, vertical stress can enlarge reinforcement of cemented soil core. The tendency of strain development of composite soil with different area replacement ratios under cyclic loading is the same as that of pure clay, existing critical cyclic stress ratios corresponding to different area replacement ratios. In addition, improving area replacement ratio can increase cyclic strength. At same time, adding of cemented soil core does not change shape of hysteresis curve compared with it for clay either. Moreover, cemented soil core can also obstruct stiffness softening. Through regression analysis of the experimental data, relationship between cyclic number and soil softening index is proved to be linear. The results can give a reference for the dynamic characters of the marine soft clay foundation with cement soil mixing piles.  相似文献   

15.
A one-dimensional consolidation-creep model test on the creep deformation of soft muddy clay in the littoral area of Tianjin is performed. A nonlinear rheologic model is established and the model coefficients are determined, in consideration of the characteristics of soft muddy clay. Furthermore, a settlement equation is deduced from the theologic model and verified by the field settlement measurements of Beitang Reservoir dam in Tianjin littoral area. Finally, the settlement e- quation is applied in calculating the settlement of "FAIRWAY-" suction dredger, which sunk in the external channel of Tianjin Port, induced by the soft clay consolidation of seabed. These results provide useful information for the decision of salvage plan.  相似文献   

16.
Abstract

Vacuum preloading with plastic vertical drains has been applied widely to accelerating consolidation of dredger fills. As a result of nonlinear variations in permeability and compression during the process of dredger fill consolidation, an axisymmetric consolidation method for dredger fill treatment using PVD with vacuum is proposed with varied Ru. The effects of Cc/Ck and the loading ratio on the proposed method are discussed. It is found that the difference between the traditional method and proposed method is obvious in the case of large loading ratio (such as dredger fill treated with vacuum preloading). The degree of consolidation in the early phase of consolidation obtained using the proposed method was less than that obtained using the traditional method and the degree of consolidation in the later phase of consolidation obtained using the modified expression was larger than that obtained using the traditional method, as Cc/Ck?<?1. However, opposite trends were observed when Cc/Ck?>?1, the proposed method was closer to the actual situation. The applicability of the proposed method was verified by laboratory and field tests. For the consolidation of dredger fill with high water content, we recommend the adoption of the proposed method for calculating the degree of consolidation.  相似文献   

17.
李飞  金茹  王在峰 《海洋通报》2019,38(4):429-437
填海造地是沿海地区最为重要的海域使用活动,全面准确掌握沿海地区填海造地活动特征对于海域空间资源综合管理具有重要意义。本文从填海造地海域使用过程出发,将填海造地活动划分为在填区、成陆区、建设区,并采用遥感和GIS技术,判别提取2008-2015年期间沿海地区填海造地影像,并结合海岸地貌特征和开发利用类型对其空间分异特征进行综合分析。结果表明:2008-2015年期间累计填海造地201 738.56 hm2,填海在填区、填海成陆区、填海建设区面积分别为44 607.00 hm2、100 949.65 hm2、56 181.91 hm2;总体空间分布上填海造地在部分地区呈集聚分布态势,与海岸地貌类型紧密关联,低潮出露潮滩海岸填海造地有109 614.38 hm2,河口海湾区域填海造地可达132 767.41 hm2;港口+工业、城镇+旅游两种组合类型是沿海地区典型的填海造地区域开发利用类型。  相似文献   

18.
胡聪  尤再进  毛海英 《海洋科学》2016,40(8):150-156
为了拓展发展空间,围填海已经成为沿海国家海洋开发活动的重大举措,围填海带来巨大的社会和经济效益的同时,对海洋资源会产生许多不利影响,要确定围填海对海洋资源影响程度,急需采用适宜的评价指标体系。分析了受围填海开发活动影响的海洋资源及其影响程度评价指标和权重的确定方法,构建了用于评价围填海开发活动对海洋资源产生影响程度的层次结构指标体系。利用德尔菲法通过三轮专家咨询给出了影响评价指标的权重。研究结果表明:围填海开发活动影响的海洋资源可划分为港航资源、旅游资源、渔业资源、空间资源和其他资源5个方面,在20个评价指标中,浅海滩涂损失率、自然岸线损失比例和珍稀物种资源损失价值的权重较大,陆域空间利用率、人工岸线增加比例、游客增长率、旅游开发投资和海域使用金的权重较小。  相似文献   

19.
The use of the piezocone penetration test (CPTU) in a geotechnical site investigation offers direct field measurement on stratigraphy and soil behavior. Compared with some traditional investigation methods, such as drilling, sampling and field inspecting method or laboratory test procedures, CPTU can greatly accelerate the field work and hereby reduce corresponding operation cost. The undrained shear strength is a key parameter in estimation of the stability of natural slopes and deformation of embankments in soft clays. This paper provides the measurements of in situ CPTU, field vane testing and laboratory undrained triaxial testing of Lianyungang marine clay in Jiangsu province of China. Based on the literature review of previous interpretation methods, this paper presents a comparison of field vane testing measurements to CPTU interpretation results. The undrained shear strength values from both the field vane tests and cone penetration resistances are lowest at the mid-depths of the marine clay layers, and the excess pore water pressures are highest at the mid-depths of the marine clay layers, indicating that the marine clay layer is underconsolidated.  相似文献   

20.
Large scale reclamation works in coastal areas of the Nakdong River plain are at various stages of progress, since early 1990's on in-situ soft marine clay deposits. These deposits are of the order of 30 to 40 m thick. A realistic rapid characterization of soft ground would ensure success of any reclamation work in this area. In order to cope with the work carried out with different agencies, it is desirable to evolve a systematic methodology. In this study, engineering properties of clays at three coastal areas, Gadukdo, Noksan and Shinho, have been generated. The analysis of data has been done within the framework of classical developments in soil mechanics. Analysis has also been made by making use of the recent developments in dealing with soft clays. The dominant factors, namely, stress, time, and environment influencing the response of clay to loading are identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号