首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distribution of Zn, Pb, Cu, Cr, Ni and Co in the plant species and soil of the Zn-Pb sulfide deposits of the Besham area in Pakistan has been studied for geochemical prospecting and environmental pollution. Representative samples of several plant species and associated soil were collected and analyzed by the atomic absorption technique. The data suggest that the plants, especially Plectranthus rugosus, Artemisia indica and Verbascum thapsus, in the mineralized area are enriched in Zn, Pb and Cu (Zn>Pb>Cu) and depleted in Cr, Ni and Co. This is correlated with the concentration of these metals in the associated soil. There is no significant correlation of elements among each other in plants and soil; however, strong correlation of Cu, Cr and Ni has been observed between plants and associate soil. Plectranthus rugosus has the greatest capability for accumulating Zn and Pb in its tissues through soil and can be used as a bioindicator for base metal mineral exploration. This plant along with other plant species such as Artemisia indica and Verbascum thapsus having high scavenging ability for Zn and Pb from the soil and could cause serious environmental and health problems in the living organisms of the area.  相似文献   

2.
Concentrations of some heavy metals and trace elements such as Cr, Ga, Ni, Zn, Mo, Cu, Pb, Yb, Y, Nb, Ti, Sr, Ba, Mn, Sc, Co, V, Zr, Fe, Al, W, Se, Bi, Sb, As, Cd in recent mollusk shells and factors affecting their distribution and deposits collected from various depths in the southern and southwestern parts of the Marmara Sea are investigated. The distribution of the elements in the shells is categorized into four groups. Of these, concentrations of 12 elements (As, Bi, Cd, Co, Ga, Mo, Nb, Sb, Se, Sc, W and Yb) are below zero [(0.053-0.79)×10^-6]; concentrations of seven elements (Cr, Ni, Pb, V, Y, Zr and Cu) are (1.0-6.0)×10^-6; concentrations of four elements (Ti, Mn, Ba and Zn) are 10- 20×10^-6; and concentrations of five elements (Si, Al, Fe, Mg and Sr) are (47.44-268.11)×10^-6. The taxonomic characteristics of the 29 elements were studied separately in mollusk shells such as Chamalea gallina (Linn6), Pitar rudis (Poli), Nassarius reticulatus (Linn6), Venerupis senescens (Coocconi), Mytilus galloprovincialis (Lamarck), Mytilaster lineatus (Gemelin in Linne) and Chlamys glabra. It was found that, in mollusk taxonomy, the elements have unique values. In other words, element concentrations in various mollusk shells depend mainly on the taxonomic characteristics of mollusks. In various bionomic environments different element distributions of the same species are attributed to the different geochemical characters of the each environment. Data obtained in this study indicate that the organisms are the most active and deterministic factors of the environment.  相似文献   

3.
The BCR sequential extraction procedure is applied to probe into the speciation distribution of heavy metals (Cd, Cr, Zn, Cu and Pb) in lake sediments of Core XJ2 in Xijiu Lake, Taihu Lake catchment, China. The results showed that the effective species concentration of this five heavy metal elements increased obviously during the past century, the proportions of organic/sulphide fractions of Zn, Cu and Pb decreased while the Fe–Mn oxide fractions increased, and the proportion of Fe–Mn oxide fractions of Cd decreased while the exchangeable and carbonate fractions increased. The concentrations of exchangeable and carbonate fractions of these five elements were increased in the past century, especially the proportions of these fractions of Cd, Zn, Cu and Pb increased prominently. These changes could be attributed to the anthropogenic pollution. Since the changes of the heavy metal concentrations were corresponding to the history of human activities, especially the industry development, within the catchment.  相似文献   

4.
为了解包头市典型工业企业对其所在地土壤中重金属含量的影响及污染现状,利用相关性系数对其表层土壤中7种重金属(Cu、Zn、Pb、Cr、Cd、Mn、Ni)来源进行研究,并采用内梅罗综合污染指数法和潜在生态危害指数对其污染状况进行评价。结果表明,7种重金属含量平均值均高于内蒙古土壤背景值,其中Cd、Mn、Ni超标率已达100%,而Cu、Pb、Zn的超标率分别为97%、93%和93%,只有Cr超标率较低(53%),污染程度依次为CdPbCuNiZnMnCr,其中Pb和Cd为重度污染,Cu、Zn、Ni为中度污染,Cr、Mn为轻度污染;Cu、Zn、Cr、Mn、Ni可能同时来自工业生产和交通运输两个源,而Pb和Cd除上述来源外,燃煤烟气的排放有较大贡献。潜在生态危害依次为CdPbCuNiCrZnMn,其中Cd的潜在生态风险最大,应予以高度重视,其他金属的风险均为轻微。  相似文献   

5.
The purpose of this study was to determine if metal concentrations are enriched in two size sediment fractions of streams that receive landfill effluent and, if so, whether there is a greater extent of metal enrichment in one of the fractions. Sediment samples were collected from three streams adjacent to a sanitary landfill. Sediments representing control for the study were also collected from a stream not influenced by the landfill. All samples were sieved and the <0.0625-mm and <0.25-mm to >0.149-mm size fractions from each sample were used in this study. The concentrations of acid-extractable Cu, Zn, Pb, and Cr for all samples were determined by atomic absorption techniques. Mean concentrations, coefficient of variation values, at test, and the variation of metal concentrations along the stream were used to analyze the data. Results indicated that Cu, Zn, Pb, and Cr concentrations were enriched in both size sediment fractions from the stream whose channel originated at the base of the landfill. Copper, Zn, and Pb concentrations were enriched in the <0.0625-mm size sediments of the stream whose channel did not intersect the landfill. Copper, Zn, Pb, and Cr concentrations appear enriched in both size sediment fractions of the third stream, which formed from the confluence of the other two streams. The extent of metal enrichment was greater in the <0.0625-mm size sediments. A decreasing trend of metal concentrations in a downstream direction was not present in the enriched sediments. This was true for each metal in both size sediment fractions.  相似文献   

6.
Total concentrations of 13 elements (K, Ca, Ti, Cr, Mn, Fe, Cu, Zn, Rb, Sr, Y, Zr, Pb) in the size-fractionated Sava River sediments upstream and downstream of the Krsko nuclear power plant together with metal speciation within bulk sediment have been investigated. Trace metals generally increase with decreasing particle size, however, because of entrapment of organic matter in the 0.63–1 mm fraction, concentrations in the coarser sediment fraction are higher than expected. Exchangeable Pb, Zn, Cu, Mn, Cr and Fe are generally found to represent a negligible fraction of the total metal concentration of the bulk sediment. Seasonal variations of the Pb, Zn and Cu concentrations in the <0.5 mm fraction reflect decreased values during the spring period. Heavy metal concentrations in the 2003 waste water discharges from the Krsko nuclear power plant released into the Sava River were much lower than their maximum allowed values. Combined rubidium and organic matter normalization of the Zn, Pb and Cu concentrations, which was applied on the minus 0.063 mm fraction, indicated three potential sources of contaminants.  相似文献   

7.
Geochemical works were conducted on anthropogenically effective lithologic unit exposing along the Susanoglu coast in Mersin, Turkey. For this purpose, beach sand sediments from 33 stations were collected and heavy metal and oxide concentrations were analyzed. To determine the source of heavy metals (natural and anthropogenic), simple and multivariate statistical analyses were applied. According to factor analysis, three factors were determined. The first factor consists of SiO2, Al2O3, Na2O, K2O, TiO2, Cr, Ni, Cu and Mo and total variance is explained with 27.502% and expressed as “natural process factor”. These elements (Cr, Ni, Cu, Mo) are closely associated with geogenic materials and came from same sources of ultrabasic rocks (ophiolite). The second factor consists of CaO, MgO, TiO2, MnO, Ni, Pb, Zn and W and total variance is explained with 21.505% and expressed as “anthropogenic factor”. These elements (Pb, Zn, Cd, V, W) are anthropogenic and are mainly due to the effluent or industrial input/activities and came from different sources of pollution in the study area. The third factor consists of Pb, Cd and Sb and total variance is explained with 9.748% and expressed as “intermediate factor”. The factor analysis and the cluster analysis are in support of each other. Cr, Ni, Co, Cd, Hg and Mo concentrations are greater than Turkish acceptable values and they show toxic effect. Al, Cu, Pb, Cd and Mo concentrations in beach sand deposits in the Susanoglu coast are found as 1.44, 1.26, 1.21, 1.02 and 1.04 mg/kg and higher than those in Kızkalesi beach sands. However, all other heavy metal contents are determined in low concentrations.  相似文献   

8.
高速公路两侧土壤的磁化率从路中央向两侧具有逐渐降低的特征,相对应的样品中的重金属Cu、Pb、Zn、N i、Cr、Fe等元素的含量也具有从路中心向两侧逐渐降低的现象。相关分析表明,土壤磁化率与土壤中的Cu、Pb、Zn、N i、Cr、Fe的相关性显著,因而可以利用磁化率异常来指示高速公路两侧土壤的重金属污染状况。元素的赋存形态分析表明铁锰氧化物态与残渣态是Cu、Pb、Zn、N i、Cr、Fe的主要赋存形式;各元素的形态分析结果与土壤磁化率的相关统计分析表明,高速公路两侧土壤的磁化率与可交换态中的Cu、Pb、Zn、铁锰氧化物态中的Fe、Pb、Zn、有机还原态中的Cu、Cr、Fe、Zn和残渣态中的Cu、Pb、Zn、Cr、Co、N i具有明显的相关性。  相似文献   

9.
Concentrations of the elements N, P, K, Ca, Mg, S, Fe, Mn, Cu, Zn, Ni, Cr, Co, Mo, Cd and Pb were measured in serpentine and granite soils and in the fern Pteridium aquilinum sampled from the Ślęża Massif in Lower Silesia, Poland. The serpentine soils were typical for serpentine soils in general with deficiency of K and Ca and excess of Mg, Ni and Cr. The principal component analysis (PCA) ordination based on the matrix of concentrations of elements in plants growing on serpentine and granite soils enabled the identification of the parent material from which ferns in this study were collected. This method indicated that the ferns from granite soils were distinguished by higher concentrations of Mo and Pb, while those from serpentine soils were distinguished by higher concentrations of Mg, Ni, Cr and Co. These differences in bioaccumulation reflect the higher concentrations of total and plant-available forms of Mg, Ni, Cr, Co in serpentinite and the higher concentrations of total Mo and total and plant-available Pb in granites as reported in literature. The different parent material types in the Ślęża Massif on which the investigated soils were developed influence the concentration and type of elements accumulated in P. aquilinum.  相似文献   

10.
Samples were collected at 71 sites in the Yellow River Delta Natural Reserve in December 2010 to represent soil conditions before and after the Yellow River (YR) diversion. The As, Cd, Cu, Pb, Zn, and Ni concentrations were measured to determine metal contamination levels. Results suggest that Cd concentrations were significantly higher after the YR diversion than before. The As, Cd, Cr, Cu, Ni, Pb, and Zn soil contamination indices did not exceed contamination levels, although the heavy metal content increased after the YR diversion. The mean concentrations of these heavy metals were lower than the Class I criteria. Correlation analysis shows significant correlations between As and Cr, Cu, Ni, Pb, and Zn concentrations both before and after the YR diversion. However, no significant correlations were observed between heavy metal concentration and pH before the diversion, and no heavy metal concentration was correlated with salinity. The principal component analysis indicates that these trace elements, including As, were closely correlated with each other and therefore likely originated from shared pollution sources before the diversion. These results are useful for assessing the heavy metal contamination and proposing feasible suggestions to improve soil quality.  相似文献   

11.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

12.
作物对土壤中重金属的吸收受作物种类、采集部位及土壤理化性质等多方面因素的影响。近年来,金衢盆地土壤酸化面积逐年增大,酸化程度逐渐加深,其对土壤-作物系统中重金属元素的活动影响尚不明确。本文基于金衢盆地典型地区264组根系土壤-稻米样品分析数据,开展土壤、作物的重金属含量特征及其影响因素的研究,重点讨论了土壤pH对作物吸收重金属的影响。结果表明:①264件土壤中多数重金属元素的变异系数大于0.5,As、Cd、Cr、Cu、Ni和Zn元素之间呈显著正相关(P<0.01)。土壤Cd超标样品23件,超标率为8.7%;As、Cr、Cu、Hg、Ni、Pb和Zn超标样品均未超过2件。②稻米中Cu、Zn与Cd含量呈显著正相关,Cd的富集系数(BCF)高于植物营养元素Cu、Zn。③稻米中Zn和Cu在P<0.1水平上与pH值呈显著正相关。Cd、Cr、Hg的BCF与pH值之间存在一定的负相关性。研究认为,适当调低土壤的酸碱度会削减土壤中Cd、Hg等重金属元素的活性,从而减少农作物对重金属的吸收转运。研究结果可为当地粮食安全生产决策提供科学数据,为土地管护提供参考依据。  相似文献   

13.
Algal species which are ubiquitous along the coastlines of many countries reflect the environmental conditions of the coastal seawater and may serve as useful biomonitors of anthropogenic pollution. Heavy metal concentrations of ten elements (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) of potential environmental concern were determined in seawater, sediments and twelve species of benthic marine macroalgae from four locations (Glenelg, Port Adelaide, Port Broughton and Port Pirie) along the South Australian coastline. The four sites chosen represented varying degrees of metal contamination, where the capacity for benthic macroalgae to accumulate heavy metals from the environment was evaluated. Spatial differences in heavy metal concentration in both seawaters and sediments were observed at all sites with the highest concentrations of heavy metals including Cd (125 μg g?1), Pb (2,425 μg g?1) and Zn (7,974 μg g?1) found in the finer sediment fractions (<250 μm) of Port Pirie. While all algal species studied (Acrosorium polyneurum, Anotrichium tenue, Cystophora Cephalornithos Cystophora monillifera, Cystophora monilliformis, Dictyopteris australis, Gelidium micropterum, Gracilaria, Hormophysa Cuneiformis, Sargassum cinctum, Scaberia agardhii and Ulva lactuca) accumulated metals to varying degrees, Blindigia marginata was a good biomonitor species for a number of metals including Cd, Co, Cr, Fe, Pb and Zn, exhibiting both relatively high total metal concentrations and significant concentration factors.  相似文献   

14.
To assess the pollution of heavy metal in dust fall, nine dust fall samples were collected during the heating period and non-heating period from Jinan, a city in northeastern China. The samples were analyzed for Cu, Pb, Zn and Cr and the contamination level of heavy metals was assessed on the basis of the geo-accumulation index (I geo). The results indicated that all of the four investigated metals accumulated significantly in the dust fall of Jinan, and the metal concentrations were much higher than background values. During the heating period, the mean values for Cu, Pb, Zn and Cr in the dust fall were 354.9, 688.5, 2,585.5 and 478.6 mg kg−1. During the non-heating period, the mean values for Cu, Pb, Zn and Cr in the dust fall were 228.2, 518.2, 1,933.9 and 96.3 mg kg−1, respectively. The I geo values calculated based on background values revealed that the contamination level of heavy metal in the dust fall ranges from moderately contaminated to heavily contaminated, and it mainly originates from traffic and industry. In this work, the dust fall residue compared to the standard reference was also chosen as the background value to calculate the I geo value. This method is useful for situations in which the background value is difficult to obtain.  相似文献   

15.
Agricultural soils of the Riotinto mining area (Iberian Pyrite Belt) have been studied to assess the degree of pollution by trace elements as a consequence of the extraction and treatment of sulphides. Fifteen soil samples were collected and analysed by ICP-OES and INAA for 51 elements. Chemical analyses showed an As–Cu–Pb–Zn association related with the mineralisation of the Iberian Pyrite Belt. Concentrations were 19–994 mg kg−1 for As, 41–4,890 mg kg−1 for Pb, 95–897 mg kg−1 for Zn and of 27–1,160 mg kg−1 for Cu. Most of the samples displayed concentrations of these elements higher than the 90th percentile of the corresponding geological dominium, which suggests an anthropogenic input besides the bedrock influence. Samples collected from sediments were more contaminated than leptosols because they were polluted by leachates or by mining spills coming from the waste rock piles. The weathering of the bedrock is responsible for high concentrations in Co, Cr and Ni, but an anthropogenic input, such as wind-blown dust, seems to be indicative of the high content of As, Cu, Pb and Zn in leptosols. The metal partitioning patterns show that most trace elements are associated with Fe amorphous oxy-hydroxides, or take part of the residual fraction. According to the results obtained, the following mobility sequence is proposed for major and minor elements: Mn, Pb, Cd, > Zn, Cu > Ni > As > Fe > Cr. The high mobility of Pb, Cu and Zn involve an environmental risk in this area, even in soils where the concentrations are not so high.  相似文献   

16.
鲁照玲  胡红云  姚洪 《岩矿测试》2012,31(2):241-246
分别采用HNO3-HF、HNO3-HF-HCl和HNO3-HF-H2O2三种消解体系,通过微波和PTFE密封罐电热板对土壤标准物质进行前处理,采用电感耦合等离子体质谱(ICP-MS)对样品中的重金属元素Cr、Ni、Cu、Zn、As、Cd和Pb进行定量分析。探讨了前处理试剂(主要为HNO3、HCl和HF)以及土壤基体效应对Cr、Ni、Cu、Zn、As、Cd和Pb定量分析的影响。研究结果表明,前处理试剂对Cr、Ni、Cu、Zn、As、Cd和Pb的定量分析具有不同程度的影响;对于土壤基体,在三种消解体系下均可观察到基体抑制效应;采用PTFE密封罐电热板消解方法前处理,待测元素及相同元素不同同位素的方法空白和检出限均较低,效果整体优于微波消解法。特别是HNO3-HF-HCl消解体系,通过选用52Cr、60Ni、65Cu、66Zn、75As和206Pb等同位素,重金属元素Cr、Ni、Cu、Zn、As、Cd和Pb的测定值均能保证在标准值的允许误差范围内,可以满足大批量土壤样品中重金属元素同时定量分析的需要,为高效准确地开展土壤的风险评估以及为土壤的修复治理提供科学依据。  相似文献   

17.
甘肃嘉峪关市表层土壤重金属空间分布与评价   总被引:1,自引:0,他引:1  
为研究嘉峪关市重金属分布对环境的影响,分析了嘉峪关市表层土壤重金属分布和含量变化,并评价其富集程度,判断其来源和影响因素。采用电感耦合等离子体质谱仪(ICP-MS)测量嘉峪关市134个表层土壤样品中六种重金属元素(Cr、Cd、Cu、Pb、Ni、Zn)的含量,其平均含量分别为281.6 mg/kg、0.35 mg/kg、60.68 mg/kg、51.39 mg/kg、108.65 mg/kg、161.0 mg/kg。在土壤重金属含量空间分布的基础上,用内梅罗指数法和地累积指数法对研究区土壤重金属富集程度进行了评价,六种元素地累积指数排序依次为: Cr > Cd > Pb > Cu > Zn > Ni,各功能区重金属元素整体富集程度依次为工业区 > 戈壁 > 生活区 > 农业区。戈壁采样点重金属元素含量(除Ni外)高于农业区,除工业因素外,地表植被的缺失加剧了戈壁地区重金属元素的富集。结合主成分分析,重金属元素空间展布,及内梅罗指数评价和地累积指数评价,分析了各元素可能的来源,认为Cr、Zn主要来自以钢铁生产加工为主的工业源,Cd、Cu、Pb来自于交通源,Ni可能与钢铁生产或当地背景值有关。通过分析嘉峪关市土壤重金属分布情况,以期为改善当地土壤质量提供科学依据,为我国西北地区土壤重金属的研究提供参考。  相似文献   

18.
Grain size parameters, trace metals (Co, Cu, Ni, Pb, Cr, Zn, Ba, Zr and Sr) and total organic matter (TOM) of 38 surficial sediments and a sediment core of west-four Pearl River Estuary region were analyzed. The spacial distribution and the transportation procession of the chemical element in surficial sediments were studied mainly. Multivariate statistics are used to analyses the interrelationship of metal elements, TOM and the grain size parameters. The results demonstrated that terrigenous sediment taken by the rivers are main sources of the trace metal elements and TOM, and the lithology of parent material is a dominating factor controlling the trace metal composition in the surficial sediment. In addition, the hydrodynamic condition and landform are the dominating factors controlling the large-scale distribution, while the anthropogenic input in the coastal area alters the regional distribution of heavy metal elements Co, Cu, Ni, Pb, Cr and Zn. The enrichment factor (EF) analysis was used for the differentiation of the metal source between anthropogenic and naturally occurring, and for the assessment of the anthropogenic influence, the deeper layer content of heavy metals were calculated as the background values and Zr was chosen as the reference element for Co, Cu, Ni, Pb, Cr and Zn. The result indicate prevalent enrichment of Co, Cu, Ni, Pb and Cr, and the contamination of Pb is most obvious, further more, the peculiar high EF value sites of Zn and Pb probably suggest point source input.  相似文献   

19.
The concentrations of heavy metals (Cr, Co, Ni, Cu, Zn, Pb, Cd, As, Hg, and Fe) in sediments of the Yangtze River, China, were investigated to evaluate levels of contamination and their potential sources. The lowest heavy metal concentrations were found in the source regions of the river basin. Relatively high concentrations of metals, except Cr, were found in the Sichuan Basin, and the highest concentrations were in the Xiangjiang and Shun’anhe rivers. All concentrations, except Ni, were higher than global averages. Principal component analysis and hierarchical cluster analysis showed that Zn, Pb, As, Hg, and Cd were derived mainly from the exploitation of various multi-metal minerals, industrial wastewater, and domestic sewage. Cu, Co, and Fe were derived mainly from natural weathering (erosion). Cr and Ni were derived mainly from agricultural activities, municipal and industrial wastewater. Sediment pollution was assessed using the geoaccumulation index (I geo) and enrichment factor (EF). Among the ten heavy metals assessed, Cd and Pb had the highest I geo values, followed by Cu, As, Zn, and Hg. The I geo values of Fe, Cr, Co, and Ni were <0 in all sediments. EF provided similar information to I geo: no enrichment was found for Cr, Co, and Ni. Cu, Zn, As, and Hg were relatively enriched at some sites while Cd and Pb showed significant enrichment.  相似文献   

20.
Heavy metals in soils are of great environmental concern, in order to evaluate heavy metal contents and their relationships in the surface soil of industrial area of Baoji city, and also to investigate their influence on the soils. Soil samples were collected from 50 sites, and the concentration of Pb, Zn, Cu, Cr, Ni heavy metals and the contents of characteristics in soil from industrial area of Baoji city were determined with X-ray fluorescence method. The concentrations of Pb, Zn, Cu, Cr and Ni in the investigated soils reached the amount of 2,682.00–76,979.42, 169.30–8,288.58, 62.24–242.36, 91.96–110.54 and 36.14–179.28 mg kg−1, respectively. The major element Pb contents of the topsoils were determined. to highlight the influence of ‘anthropic’ features on the heavy metal concentrations and their distributions. To compare, all values of elements were much higher than those of unpolluted soils in the middle of Shaanxi province that average 16.0–26.5, 67.1–120.0, 17.8–57.0, 46.9–65.6 and 24.7–34.6 mg kg−1 for Pb, Zn, Cu, Cr and Ni, respectively. An ensemble of basic and relativity analysis was performed to reduce the precipitate of Pb in soil was extremely high and greatly relativity with other elements. Meanwhile, Pb, Zn, Cu, Cr, Ni heavy metals were typical elements of anthropic activities sources, so it was easy to infer to the tracers of anthropic pollutions from the factorial analysis, which was coming from the storage battery manufactory pollutions. The pollutant distributions were constructed for the urban area which identified storage battery manufactory soot precipitate as the main source of diffuse pollution and also showed the contribution of the topsoils of industrial area of Baoji city as the source point of pollution. Consequently, the impact of heavy metals on soil was proposed and discussed. These results highlight the need for instituting a systematic and continuous monitoring of heavy metals and other forms of pollutants in Baoji city to ensure that pollution does not become a serious problem in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号