首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 161 毫秒
1.
Global climate change at the end of Pleistocene led to extinction in the huge territories of Northern Eurasia of the typical representatives of the Mammoth fauna: mammoth, woolly rhinoceros, wild horse, bison, musk-ox, and cave lion. Undoubtedly the Mammoth fauna underwent pressure from Upper Paleolithic humans, whose hunting activity could also have played a role in decreasing the number of mammoths and other representatives of megafauna. Formerly it was supposed that the megafauna of the “Mammoth complex” had become extinct by the beginning of the Holocene. Nevertheless the latest data indicate that extinction of the Mammoth fauna was significantly delayed in the north of Eastern Siberia. In the 1990s some radiocarbon dates established that mammoths existed in the Holocene on Wrangel Island—from 7700 until 3700 yBP. Radiocarbon data show that wild horses inhabited the north of Eastern Siberia 4600–2000 yBP. Muskoxen lived here about 3000 yBP. Some bison remains from Eastern Siberia belong to the Holocene. The following circumstances could promote the survival of representatives of Mammoth fauna. Cool and dry climate in this region promotes the maintenance of steppe associations—the habitats of those mammals. Late Paleolithic and Mesolithic settlements are not found in the Arctic zone of Eastern Siberia from Taimyr Peninsula to the lower Yana River; they are very rare in basins of the Indigirka and Kolyma Rivers. The small number of Stone Age hunting tribes in the northern part of Eastern Siberia was probably another factor that contributed to the survival of some Mammoth fauna representatives.  相似文献   

2.
We present and discuss a full list of radiocarbon dates for woolly mammoth and other species of the Mammoth fauna available from Wrangel Island, northeast Siberia, Russia. Most of the radiocarbon dates are published here for the first time. Of the124 radiocarbon dates on mammoth bone, 106 fall between 3700 and 9000 yr ago. We believe these dates bracket the period of mammoth isolation on Wrangel Island and their ultimate extinction, which we attribute to natural causes. The absence of dates between 9–12 ka probably indicates a period when mammoths were absent from Wrangel Island. Long bone dimensions of Holocene mammoths from Wrangel Island indicate that these animals were comparable in size to those on the mainland; although they were not large animals, neither can they be classified as dwarfs. Occurrence of mammoth Holocene refugia on the mainland is suggested. Based on other species of the Mammoth fauna that have also been radiocarbon on Wrangel Island, including horse, bison, musk ox and woolly rhinoceros, it appears that the mammoth was the only species of that fauna that inhabited Wrangel Island in the mid-Holocene.  相似文献   

3.
The causes of large animal extinctions at the end of the Pleistocene remain a hotly debated topic focused primarily on the effects of human over hunting and climate change. Here we examine multiple, large radiocarbon data sets for humans and extinct proboscideans and explore how variation in their temporal and geographic distributions were related prior to proboscidean extinction. These data include 4532 archaeological determinations from Europe and Siberia and 1177 mammoth and mastodont determinations from Europe, Siberia, and North America. All span the period from 45,000 to 12,000 calendar years BP. We show that while the geographic ranges of dated human occupations and proboscidean remains overlap across the terminal Pleistocene of the Old World, the two groups remain largely segregated and increases in the frequency of human occupations do not coincide with declines in proboscidean remains. Prior to the Last Glacial Maximum (LGM; ca 21,000 years BP), archaeological 14C determinations increase slightly in frequency worldwide while the frequency of dated proboscidean remains varies depending on taxon and location. After the LGM, both sympatric and allopatric groups of humans and proboscideans increase sharply as climatic conditions ameliorate. Post-LGM radiocarbon frequencies among proboscideans peak at different times, also depending upon taxon and location. Woolly mammoths in Beringia reach a maximum and then decline beginning between 16,000 and 15,500 years BP, woolly mammoths in Europe and Siberia ca 14,500 and 13,500 BP, and Columbian mammoth and American mastodont only after 13,000 BP. Declines among woolly mammoths appear to coincide with the restructuring of biotic communities following the Pleistocene–Holocene transition.  相似文献   

4.
5.
A set of radiocarbon dates on woolly mammoth were obtained from several regions of Arctic Siberia: the New Siberian Islands (n = 68), north of the Yana-Indigirka Lowland (n = 43), and the Taimyr Peninsula (n = 18). Based on these and earlier published dates (n = 201) from the East Arctic, a comparative analysis of the time-related density distribution of 14C dates was conducted. It was shown that the frequencies of 14C dates under certain conditions reflect temporal fluctuations in mammoth numbers. At the end of the Pleistocene the number of mammoths in the East Arctic changed in a cyclic manner in keeping with a general “Milankovitch-like” trend. The fluctuations in numbers at the end of the Pleistocene occurred synchronously with paleoenvironmental changes controlled by global climatic change. There were three minima of relative mammoth numbers during the last 50 000 years: 22 000, 14 500–19 000, and 9500 radiocarbon years ago, or around 26 000, 16–20 000, and 10 500 calendar years respectively. The last mammoths lived on the New Siberian Islands, which were connected to the continent at that time, 9470 ± 40 radiocarbon years ago (10 700 ± 70 calendar years BP). This new youngest date approximates the extinction time of mammoths in the last continental refugium of the Holarctic. The adverse combination of environmental parameters was apparently a major factor in the critical reduction in mammoth numbers. The dispersal of humans into the Arctic areas of Siberia no later than 28 000 radiocarbon years ago did not overtly influence animal numbers. Humans were not responsible for the destruction of a sustainable mammoth population. The expanding human population could have become fatal to mammoths during strong the minima of their numbers, one of which occurred at the very beginning of the Holocene.  相似文献   

6.
The adoption of cereal cultivation is a key benchmark in the transition from Mesolithic hunter–gatherer foraging to Neolithic farming economies, but the nature, timing and ecological–cultural context of the earliest cereal use in the British Isles and northwest Europe is still uncertain. We present AMS radiocarbon dating and fine‐resolution pollen evidence from the Isle of Man for cereal growing in the latter stages of a distinct episode of forest disturbance at almost 6000 yr BP (uncalibrated). The coherent ecological structure of this phase at the fine resolution level suggests that it records cereal cultivation well before the Ulmus decline, rather than wild grass pollen grains. This example is one of a cluster of early dates for cereal‐type pollen near the start of the sixth millenium BP, including several around the Irish Sea, which indicate that the introduction of cereal agriculture probably occurred as early in the central British Isles as in the northern European plain. This early cereal phase is followed later by a probable phase of pre‐Ulmus decline pastoral activity. We also report Mesolithic age woodland disturbance around 7000 yr BP (uncalibrated) and the first radiocarbon dates for mid‐Holocene forest history of the Isle of Man. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

7.
Unglaciated parts of the Yukon constitute one of the most important areas in North America for yielding Pleistocene vertebrate fossils. Nearly 30 vertebrate faunal localities are reviewed spanning a period of about 1.6 Ma (million years ago) to the close of the Pleistocene some 10 000 BP (radiocarbon years before present, taken as 1950). The vertebrate fossils represent at least 8 species of fishes, 1 amphibian, 41 species of birds and 83 species of mammals. Dominant among the large mammals are: steppe bison (Bison priscus), horse (Equus sp.), woolly mammoth (Mammuthus primigenius), and caribou (Rangifer tarandus) – signature species of the Mammoth Steppe fauna (Fig. 1), which was widespread from the British Isles, through northern Europe, and Siberia to Alaska, Yukon and adjacent Northwest Territories. The Yukon faunas extend from Herschel Island in the north to Revenue Creek in the south and from the Alaskan border in the west to Ketza River in the east. The Yukon holds evidence of the earliest-known people in North America. Artifacts made from bison, mammoth and caribou bones from Bluefish Caves, Old Crow Basin and Dawson City areas show that people had a substantial knowledge of making and using bone tools at least by 25 000 BP, and possibly as early as 40 000 BP. A suggested chronological sequence of Yukon Pleistocene vertebrates (Table 1) facilitates comparison of selected faunas and indicates the known duration of various taxa.  相似文献   

8.
Here, we present and discuss results from geo‐archaeological and palaeo‐zoological investigations at the Palaeolithic site Pymva Shor, in the Russian Arctic. As many as 3324 vertebrate fauna remains were recovered during two excavations. This includes bones of mammals, birds and fish. Radiocarbon dates were obtained from 26 specimens. The results show ages in the range 30–3 cal. ka BP. Hare and reindeer are the best represented amongst the identified mammalian species, whilst ptarmigan and various wader species dominate the avian bones. The Pleistocene assemblage includes herbivorous herd animals such as horse, bison and musk ox. These species are typical of the treeless tundra‐steppe landscape that existed during the Lateglacial. Of particular interest is a cave lion specimen that has been radiocarbon dated to approximately 15.5 cal. ka BP. According to our knowledge, this is one of the latest dated examples of this species in Eurasia. The faunal composition in the Holocene assemblage is strikingly different and includes distinct forest taxa such as beaver and pine marten. The avifauna also supports a forested environment with the presence of black grouse. A few stone artefacts were found within the strata, and have been radiocarbon dated to 16–15 cal. ka BP, suggesting that there were humans in the Pymva Shore area at that time. We identified impact notches and cut marks on some radiocarbon‐dated reindeer and bison bones, showing that humans were present twice during the Younger Dryas period. A fourth occupation phase is identified during the mid‐Holocene (6–5 cal. ka BP). We also investigated river terraces and obtained a series of luminescence dates. These have been used to reconstruct the geological history and the relationship to the find‐bearing strata.  相似文献   

9.
Late Precambrian and Palaeozoic platform sediments from the Central–South Taimyr Peninsula (Arctic Siberia) are all remagnetised. The remagnetisation is prefold and is related to thermal remagnetisation caused by Taimyr Trap magmatism. The remagnetisation age is estimated to 220–230 Ma and, hence, is considerably younger than the ca. 251 Ma age for the main body of Siberian Trap flood basalts. The folding that affected the Taimyr region platform sediments also included the Taimyr “Traps,” hence, relegating Taimyr deformation to post-Mid Triassic time, and most probably, to a Late Triassic age. This shows that whilst thrusting terminated in the Urals during the Permian, crustal shortening continued in Taimyr, Novaya–Zemlya and the South Barents Sea, well into the Mesozoic.  相似文献   

10.
Lago Roca-Lapataia valley (54°50′S, 68°34′W) is a paleofjord that was occupied by a valley-glacier system during the glacial maximum of the late Pleistocene (estimated ca. 18–20 ka BP). Deglaciation began before 10,080 ± 270 BP. The marine fauna in several marine terraces found in the area shows that early-middle Holocene climatic conditions were basically the same as at present. Species found are characteristic of cold and shallow waters, although minor temperature fluctuations cannot be ruled out for this period. A recent radiocarbon date of 7518 ± 58 BP on Chlamys patagonica (NZ # 7730) confirms that Lago Roca was transformed into a fjord ca. 7500–8000 BP. The sea reached its maximum level of 8–10 m a.s.l. around 6000 BP and at 4000–4500 BP was at least above 6 ± 1 m a.s.l. Later, when sea level fell, Lago Roca was occupied by fresh water and was no longer tidal. The relative land-sea positions during this period are a consequence of combined eustatic and neotectonic processes.  相似文献   

11.
The Late Paleolithic sites existed in cold and dry climat (Ustinovka I, 10–25 ky ago; Ust-Ulma, 19, 360 ± 65 BP) with warmer stages (Suvorovo IV, 15,300 ± 140 BP) and on the Pleistocene/Holocene transition, near 10,000 BP (Suvorovo III). The Final Paleolithic sites existed in Late Glacial time, 10,000–12,000 BP (Gorbatka III, lower level) and in Boreal period, 8,000–9,000 BP (Ilistaya I, 7, 840 ± 60 BP; Timofeevka I). The Developed Neolithic sites existed during the warm and humid Middle-Late Atlantic period, 6,000–8,000 BP; the Late Neolithic sites — 3,000–5,000 BP. The human impact in the Paleolithic-Neolithic was restricted to burning and trampling the vegetation near the sites; the bases of paleoeconomy were hunting, fishing, gathering. The presence of pastoral anthropogenic indicators in pollen spectra of the Neolithic sites may reflect the beginning of cattle breeding.The Bronze Age (end of the 4th-2nd millenia BC) provides the first reliable evidence of cultivated plants (foxtail and Japanese millet) and domestic animals (pig, dog). In the paleoeconomy agriculture and cattle breeding appeared; the first stage of human impact increased (4,000–4,500 BP, ie 2550–3230 cal. BC) is reflected in pollen spectra from cultural layers. From the Early Iron Age to the Middle Ages (end of 2nd millenium BC-13th century AD) agriculture and cattle breeding were the base of paleoeconomy. From the 8th to the 10th centures AD, due to the development of ploughing (arable), the human impact intensified.Paper was presented on the 27th International Geographical Congress, Washington, DC, USA, August 9–14, 1992 (section Human Induced Environmental Change, the Ancient Past)  相似文献   

12.
Excavations at the Wenas Creek Mammoth Site yielded mammoth, bison, and two possible artifacts in a single colluvial stratum, with radiocarbon bone dates ∼17 ka. Eight infrared‐stimulated luminescence (IRSL) samples were collected to establish general ages of site strata, returning multi‐grain estimates consistent with stratigraphic integrity and the radiocarbon dates. Four additional IRSL samples were collected to estimate the depositional age of one artifact found in place. These produced a pooled total of 94 single‐grain estimates from near the artifact, 80% averaging 16.8 ± 0.9 ka, and 20% averaging 5.1 ± 0.5 ka. These results could be interpreted to demonstrate pre‐Clovis age artifact deposition consistent with the bone dates, or a mid to late Holocene intrusion into older deposits, possibly by bioturbation. The single‐grain IRSL dates do not provide proof of pre‐Clovis presence beyond reasonable doubt at this site, but do show that this technique is valuable in assessing the stratigraphic integrity needed for any such claim.  相似文献   

13.
The Saltville Valley of southwestern Virginia contains an abundance of extinct Late Pleistocene megafauna. Recent excavations in the valley produced two particularly notable discoveries, the remains of a scavenged mammoth ( Mammuthus sp.) and a giant short-faced bear ( Arctodus simus ). The bear is the first carnivoran record from Saltville, and its large dental dimensions, dentary proportions, and exceptionally short-face, evince an exceedingly powerful bite for this individual. Mammoth remains are relatively abundant from Saltville, but the material described here preserves extreme examples of scavenging by carnivores. Based on comparisons with the feeding behavior and bone alteration patterns of extant hyenas, cats, wolves, and bears, we conclude that at least two types of large carnivorans scavenged this mammoth carcass. AMS radiocarbon dates of 14 510 ± 55 14C yr BP on the Mammuthus and 14 853 ± 55 14C yr BP on the A. simus demonstrate that they are nearly the same age. Very few direct radiocarbon dates on A. simus have been reported from the contiguous United States. The Saltville A. simus represents the most eastern date for the species, as well as the only date from the Appalachian Highlands.  相似文献   

14.

The first radiocarbon-dated pollen record from the Mamakan section is presented. This record has become the basis for the reconstruction of the vegetation and climate of the Middle Holocene in the Mamakan archaeological area, where a number of well-known Siberian archaeological sites of the Late Mesolithic–Middle Bronze period are located. Reconstructions suggest that sparse spruce and larch stands dominated in the area between 6450 and 6150 cal BP. Later, from 6150 to 4700 cal BP, Scots pine began to spread in a warmer climate than before, following the general trend of its expansion in the southern part of Eastern Siberia. A cooler climate than previously with increased soil and air humidity occurred in the Mamakan region from 4700 to 3840 cal BP, causing the regional expansion of Siberian pine. The time interval from 3840 to 3600 cal BP was characterized by the significant development of pine, spruce, and larch forests. On the basis of the age model, we assume that, in the lower reaches of the Vitim River and, probably, in other mountain regions north of Lake Baikal, Scots pine spread about 600 years later than in the Cis-Baikal region and east of the lake. This transition from dark coniferous-taiga to light coniferous-taiga with a predomination of Scots pine signifies the most fundamental change in vegetation of the Baikal region in the Holocene. This is often discussed as one of the possible causes of the Middle Neolithic cultural hiatus (6660–6060 cal BP), which has been documented in the archaeological records from different parts of this vast region. Reconstruction of vegetation in the Mamakan region suggests that the territory of the Nizhnii Vitim River has been favorable for humans during most of the hiatus recorded in the Cis-Baikal area and may have been considered as a refuge for populations of hunter-gatherers in the Middle Neolithic.

  相似文献   

15.
At the end of the Pleistocene, environmental conditions in the Baltic Basin were affected by the melting glaciers and the resultant freshwater bodies. In contrast to various seal species, there is no subfossil evidence of the harbour porpoise (Phocoena phocoena) from the early Holocene stages of the Baltic Basin. This article is an attempt to clarify the colonization of the harbour porpoise into the Baltic Sea and to reveal the ecological background of this process. All published Holocene subfossil records from the porpoise in the Baltic region were sought and supplemented with those from museums and zoological collections; 148 records document the porpoise's occurrence. The earliest records of the harbour porpoise date from the time between 9600 and 7000 cal. yr BP and originate from the early and middle Mesolithic coastal settlements of the Maglemose and Kongemose culture during the early Littorina stage. Around 7500–5700 cal. yr BP, the porpoise is recorded frequently at many localities from late Mesolithic (Ertebølle culture) and Neolithic in the coastal areas of the western Baltic Sea, as well as for the first time in the Gulfs of Bothnia and Finland. Since 4000 cal. yr BP, P. phocoena has only been recorded in the western Baltic. We suggest that immigration and dispersion of P. phocoena into the Baltic Sea was connected with the Littorina transgression beginning around 9000 cal. yr BP. The continuous influx of seawater and the associated ecological changes led to a new, very species‐rich, fish community and adequate living conditions for the harbour porpoise.  相似文献   

16.
Qagnaxˆ Cave, a lava tube cave on St. Paul Island in the Pribilofs, has recently produced a mid-Holocene vertebrate faunal assemblage including woolly mammoth, polar bear, caribou, and Arctic fox. Several dates on the mammoth remains converge on 5700 14C yr BP. These dates, ~ 2300 yr younger than mammoth dates previously published from the Pribilof Islands, make these the youngest remains of proboscideans, and of non-extinct Quaternary megafauna, recovered from North America. Persistence of mammoths on the Pribilofs is most parsimoniously explained by the isolation of the Pribilofs and the lack of human presence in pre-Russian contact times, but an additional factor may have been the local existence of high-quality forage in the form of grasses enriched by nutrients derived from local Holocene tephras. This interpretation is reinforced by stable carbon and nitrogen isotope values obtained from the mammoth remains. The endpoint of mammoth survival in the Pribilofs is unknown, but maybe coterminous with the arrival of polar bears whose remains in the cave date to the Neoglacial cold period of ~ 4500 to 3500 14C yr BP. The polar bear record corroborates a widespread cooling of the Bering Sea region at that time.  相似文献   

17.
The structure and tectonic position of the Neoproterozoic Central Taimyr accretionary belt of northwestern Siberia is dominated by the Faddey and Mamont-Shrenk granite-gneiss terranes, ophiolites, and back-arc volcanic rocks. Granites in the granite-gneiss terranes are S-type and formed between 900 and 850 Ma from 1.9 to 1.8 Ga continental crust. U–Pb and Sm–Nd isotopic studies show that the plagiogranites of the Chelyuskin ophiolite belt formed between 850 and 740 Ma. The ophiolite complex was metamorphosed to garnet amphibolite grade around 600 Ma, which is considered to be when the accretionary belt was obducted onto the Siberian continent. Comparison of principal structures of the Central Taimyr accretionary belt with similar structures in Arctic countries permits definition of the principal stages of the Neoproterozoic destruction of the supercontinent Rodinia, in the Arctic region.  相似文献   

18.
The Emilia Romagna slope of the Northern Apennines is strewnwith over 32,000 landslides, 5,000 of which are larger than 1 million cubic metres. They representthe remains of geomorphic agents that shaped the Apennines during the Holocene. Dating themby means of radiocarbon methods adds a contribution to the knowledge about the last periodof the geological geomorphological history of the Apennines. They can also be used to examinethe influence of Quaternary climatic changes on the instability of slopes and, for practicalor planning functions, to assess the periodicity of activity phases of the landslides. Thedating has been carried out on wood remnants buried under the landslide bodies. In some cases theentire tree trunk was found.In this paper we present radiocarbon dating of 20 casestudies in the Northern Apennines. Results range approximately from 13790–13670 cal y BP to950–790 cal`y BP. The oldest case is that of the Morsiano earth-flow, while the younger datedevent is represented by the Marano case that represents an example of how radiometric analysescan further enhance the available historical data. In the Cavola case, wood remnants of different ageswere found at different depths (from 9 to 45 m), allowing the dating of the first and followingperiods of activity of the landslide. The results are discussed and some considerations on the correlationbetween landslide occurrence and Holocene climate changes are proposed.  相似文献   

19.
Numerous caves and terraces with late Late Pleistocene (Upper Neopleistocene according to the Russian stratigraphic scale)–Holocene deposits are located in the Lemeza River valley in the surroundings of the Atysh waterfall, the native reserve territory of the Bashkortostan Republic. Lemeza River runs in the southern part of the western slope of the Urals and belongs to the Belaya River valley system (Russian Federation). A summary of the biostratigraphical investigations between 1992 and 2007 in this area is given. Deposits of cave and fluvial origin are characterized in the framework of the regional stratigraphy. The results of mammalian investigations and radiocarbon dating provide the basis for the stratigraphical subdivision. Palynology, mollusca, fishes, amphibian and reptiles are used for the reconstruction the palaeoenvironments. The Southern Urals stratigraphic subdivisions are correlated with Western European (Weichselian-Holocene), Eastern European (Russia) (Leningrad–Ostashkov–Shuvalov) and Uralian (Nevyansk–Polar Urals–Gorbunovsky) stratigraphic schemes.  相似文献   

20.
A partial steppe bison (Bison priscus) carcass was recovered at Tsiigehtchic, near the confluence of the Arctic Red and Mackenzie Rivers, Northwest Territories, Canada in September of 2007. The carcass includes a complete cranium with horn cores and sheaths, several complete post-cranial elements (many of which have some mummified soft tissue), intestines and a large piece of hide. A piece of metacarpal bone was subsampled and yielded an AMS radiocarbon age of 11,830 ± 45 14C yr BP (OxA-18549). Mitochondrial DNA sequenced from a hair sample confirms that Tsiigehtchic steppe bison (Bison priscus) did not belong to the lineage that eventually gave rise to modern bison (Bison bison). This is the first radiocarbon dated Bison priscus in the Mackenzie River valley, and to our knowledge, the first reported Pleistocene mammal soft tissue remains from the glaciated regions of northern Canada. Investigation of the recovery site indicates that the steppe bison was released from the permafrost during a landslide within unconsolidated glacial outwash gravel. These data indicate that the lower Mackenzie River valley was ice free and inhabited by steppe bison by 11,800 14C years ago. This date is important for the deglacial chronology of the Laurentide Ice Sheet and the opening of the northern portal to the Ice Free Corridor. The presence of steppe bison raises further potential for the discovery of more late Pleistocene fauna, and possibly archaeological evidence, in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号