首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The impact of the Laurentide Ice Sheet (LIS) deglaciation on Northern Hemisphere early Holocene climate can be evaluated only once a detailed chronology of ice history and sea‐level change is established. Foxe Peninsula is ideally situated on the northern boundary of Hudson Strait, and preserves a chronostratigraphy that provides important glaciological insights regarding changes in ice‐sheet position and relative sea level before and after the 8.2 ka cooling event. We utilized a combination of radiocarbon ages, adjusted with a new locally derived ΔR, and terrestrial in‐situ cosmogenic nuclide (TCN) exposure ages to develop a chronology for early‐Holocene events in the northern Hudson Strait. A marine limit at 192 m a.s.l., dated at 8.1–7.9 cal. ka BP, provides the timing of deglaciation following the 8.2 ka event, confirming that ice persisted at least north of Hudson Bay until then. A moraine complex and esker morphosequence, the Foxe Moraine, relates to glaciomarine outwash deltas and beaches at 160 m a.s.l., and is tightly dated at 7.6 cal. ka BP with a combination of shell dates and exposure ages on boulders. The final rapid collapse of Foxe Peninsula ice occurred by 7.1–6.9 cal. ka BP (radiocarbon dates and TCN depth profile age on an outwash delta), which supports the hypothesis that LIS melting contributed to the contemporaneous global sea‐level rise known as the Catastrophic Rise Event 3 (CRE‐3).  相似文献   

2.
The alternation of terrestrial and marine deposits is an indicator of past environmental and sea‐level changes. The age of deposition is usually dated by means of radiocarbon. However, radiocarbon dates of molluscan shells from coastal areas may be complicated by various sources of carbon, and problematic for deposits of 40–50 ka or older. Herein, we apply the Optically Stimulated Luminescence (OSL) dating method to date samples from terrestrial and marine/coastal sediments extracted from three cores in the south Bohai Sea, China. Multiple‐ and single‐aliquot regenerative‐dose procedures using OSL signals from fine‐silt (4–11 μm), coarse‐silt (38–63 μm) and fine‐sand (63–90 or 90–125 μm) quartz were employed to determine the equivalent dose (D e). The results showed that: (i) OSL ages from quartz of different grain sizes and different protocols are consistent with each other; (ii) for Holocene samples, most of the radiocarbon dates agree well with OSL ages; (iii) for pre‐Holocene samples, radiocarbon dates cluster at 40–50 14 C ka BP, whereas OSL ages are in stratigraphic order from 11 ka to 176 ka. Because of the self‐consistency of the quartz OSL ages, the stratigraphic agreement in the three cores, and the clustering of the radiocarbon dates, we suggest that the quartz OSL ages are more reliable with respect to dating the samples from the south Bohai Sea. Finally, the four marine strata identified in the south Bohai Sea are likely to have formed during the Holocene, Marine Isotopic Stage (MIS) 3–5, MIS 6 and probably MIS 7, respectively.  相似文献   

3.
The cave lion, Panthera spelaea, was widespread across northern Eurasia and Alaska/Yukon during the Late Pleistocene. Both morphology and DNA indicate an animal distinct from modern lions (probably at the species level) so that its disappearance in the Late Pleistocene should be treated as a true extinction. New AMS radiocarbon dates directly on cave lion from across its range, together with published dates from other studies – totalling 111 dates – indicate extinction across Eurasia in the interval ca. 14–14.5 cal ka BP, and in Alaska/Yukon about a thousand years later. It is likely that its extinction occurred directly or indirectly in response to the climatic warming that occurred ca. 14.7 cal ka BP at the onset of Greenland Interstadial 1, accompanied by a spread of shrubs and trees and reduction in open habitats. Possibly there was also a concomitant reduction in abundance of available prey, although most of its probable prey species survived substantially later. At present it is unclear whether human expansion in the Lateglacial might have played a role in cave lion extinction. Gaps in the temporal pattern of dates suggest earlier temporary contractions of range, ca. 40–35 cal ka BP in Siberia (during MIS 3) and ca. 25–20 cal ka BP in Europe (during the ‘Last Glacial Maximum’), but further dates are required to corroborate these. The Holocene expansion of modern lion (Panthera leo) into south-west Asia and south-east Europe re-occupied part of the former range of P. spelaea, but the Late Pleistocene temporal and geographical relationships of the two species are unknown.  相似文献   

4.
We present a well‐dated, high‐resolution and continuous sediment record spanning the last c. 24 000 years from lake Bolshoye Shchuchye located in the Polar Ural Mountains, Arctic Russia. This is the first continuous sediment succession reaching back into the Last Glacial Maximum (LGM) ever retrieved from this region. We reconstruct the glacial and climate history in the area since the LGM based on sedimentological and geochemical analysis of a 24‐m‐long sediment core. A robust chronology was established using a combination of AMS 14C‐dating, the position of the Vedde Ash and varve counting. The varved part of the sediment core spans across the LGM from 24 to 18.7 cal. ka BP. We conclude that the lake basin remained ice‐free throughout the LGM, but that mountain glaciers were present in the lake catchment. A decrease in both glacial varve preservation and sedimentation rate suggests that these glaciers started to retreat c. 18.7 cal. ka BP and had disappeared from the catchment by 14.35 cal. ka BP. There are no indications of glacier regrowth during the Younger Dryas. We infer a distinct climatic amelioration following the onset of the Holocene and an Early to Middle Holocene thermal optimum between 10–5 cal. ka BP. Our results provide a long‐awaited continuous and high‐resolution record of past climate that supplements the existing, more fragmentary data from moraines and exposed strata along river banks and coastal cliffs around the Russian Arctic.  相似文献   

5.
Nioghalvfjerdsfjorden in North-East Greenland is at present covered by a floating glacier. Raised marine deposits in the surrounding area contain shells of marine molluscs, bones of marine mammals and pieces of driftwood. A fairly systematic sampling of such material has been conducted, followed by extensive radiocarbon dating. We suggest that the Greenland ice sheet extended onto the shelf offshore North-East Greenland during isotope stage 2, perhaps even reaching the shelf break. During the subsequent recession of the ice sheet, the entrance of Nioghalvfjerdsfjorden had become ice-free by 9.7 cal. ka BP. The recession culminated between 7.7 and 4.5 cal. ka BP, during which time the fjord was glacier-free along its entire 80 km length. No dates younger than 4.5 cal. ka BP are available on marine material from the fjord, and it seems probable that the fjord has been continuously covered by the floating glacier since this time. The maximum glaciation was attained around AD 1900, after which thinning and recession took place. The marine limit increases from c. 40 m above sea level near the present margin of the Inland Ice to c. 65 m above sea level at the outer coast. These figures fit into the regional pattern of the marine limit for areas both to the south and north. The marine fauna comprise two bivalves, Macoma calcarea and Serripes groenlandicus, that may represent a southern element present during the Holocene temperature optimum. Remains of three taxa of southern extralimital terrestrial and limnic plants were dated to 5.1 cal. ka BP, and remains of another extralimital plant were dated to 8.8 and 8.5 cal. ka BP. The known Holocene time ranges of the willow Salix arctica and the lemming Dicrostonyx torquatus have been extended back to 8.8 and 6.4 cal. ka BP, respectively, providing minimum dates for their immigration to Greenland.  相似文献   

6.
Lake Ladoga in northwestern Russia is Europe's largest lake. The postglacial history of the Ladoga basin is for the first time documented continuously with high temporal resolution in the upper 13.3 m of a sediment core (Co1309) from the northwestern part of the lake. We applied a multiproxy approach including radiographic imaging, (bio‐)geochemical and granulometric analyses. Age control was established combining radiocarbon dating with varve chronology, the latter anchored to a correlated radiocarbon age from a lake close by. The age‐depth model reveals the onset of glacial varve sedimentation at 13 910±140 cal. a BP, when Lake Ladoga was part of the Baltic Ice Lake. Linear extrapolation of published retreat rates of the Scandinavian Ice Sheet provides a formation age of the Luga moraine close to Lake Ladoga's southern shore of 14.5–15.9 cal. ka BP, older than previously assumed. Varve sedimentation covers the Bølling/Allerød interstadial, the Younger Dryas stadial and the Early Holocene. Varve‐thickness variations, conjoined with grain‐size and geochemical variations, inform about the relative position of the Scandinavian Ice Sheet and the climate during the deglaciation phase. The upper limit of the varved succession marks the change from glaciolacustrine to normal lacustrine sedimentation and post‐dates the drainage of the Baltic Ice Lake as well as the formation of the Salpausselkä II moraine north of Lake Ladoga, by c. 250 years. The Holocene sediment record is divided into three periods in the following order: (i) a lower transition zone between the Holocene boundary and c. 9.5 cal. ka BP, characterized by mostly massive sediments with low organic content, (ii) a phase with increased organic content from c. 9.5 to 4.5 cal. ka BP corresponding to the Holocene Thermal Maximum, and (iii) a phase with relatively stable sedimentation in a lacustrine environment from c. 4.5 cal. ka BP until present.  相似文献   

7.
Fifty‐six new radiocarbon dates from driftwood (mainly Larix, Picea and Populus spp.) collected from the modern and raised shorelines of Melville and Eglinton islands (western Canadian High Arctic) are presented and compared to other driftwood collections from the Canadian Arctic Archipelago (CAA) and Greenland. By documenting the species (provenance) and spatio‐temporal distribution of driftwood at various sites across the Arctic, regional characterizations of former sea‐ice conditions and changes in Arctic Ocean circulation patterns may be deduced. The earliest postglacial invasion of the Canadian Arctic Archipelago by driftwood is recorded on central Melville Island at c. 11 cal. ka BP, suggesting that the modern circulation pattern of Arctic Ocean surface water southeast through the archipelago was established >1000 years earlier than previously proposed. Throughout most of the Holocene until c. 1.0 cal. ka BP, the rate of driftwood delivery to the western Arctic islands was low (~1 recorded stranding event per 200 years) and intermittent, with the longest break in the record occurring between c. 3.0 and 5.0 cal. ka BP. This 2000‐year hiatus is attributed to a period of colder temperatures causing severe sea‐ice conditions and effectively making the coasts of the western Arctic islands inaccessible. After c. 1.0 cal. ka BP, driftwood incursion increased to maximum Holocene levels (~1 recorded stranding event every 20 years). Driftwood identified to the genus level as Larix that was delivered at this time suggests that the Trans Polar Drift current was regularly in its most southwestern position, related to a dominantly positive Arctic Oscillation mode. The Little Ice Age appears to have had little impact on driftwood entry to the western Canadian Arctic Archipelago, indeed the general abundance in the latest Holocene may record infrequent landfast sea ice.  相似文献   

8.
The Qarun Lake in the Faiyum Oasis (Egypt) provides a unique record of Holocene environmental and climate change in an arid area largely devoid of fossil proxy records. Multiple lithological, palaeontological and geochemical proxies and 32 radiocarbon dates from the 26‐m‐long core FA‐1 provide a time series of the lake's transformation. Our results confirm that a permanent lake appeared in the Holocene at c. 10 cal. ka BP. The finely laminated lake sediments consist of diatomite, in which diatoms and ostracods together with lower concentrations of ions indicate a freshwater environment at the end of the early and middle Holocene. This freshwater supply was closely associated with regular inflows of the Nile water during flood seasons, when the Intertropical Convergence Zone (ITCZ) migrated northwards in Africa, although it has probably never reached the Faiyum Oasis. Local rainfall, possibly connected with a northern atmospheric circulation, may have been important during winter. Several phases in the lake's evolution are recognized, represented by oscillations between deep open freshwater conditions during more humid climate and shallow fresh to brackish water during drier episodes. After a long freshwater phase, the lake setting has become more brackish since c. 6.2 cal. ka BP as indicated by diatoms and increasing contents of evaporite ions in the sediment. This clearly shows that since that time the lake has occasionally become partly desiccated. This is a result of reduced discharge of the Nile. In the late Holocene the lake was mostly brackish and then gradually turned into a saline lake. This natural process was interrupted about 2.3 cal. ka BP when a man‐made canal facilitated water inflow from the Nile. The examined FA‐1 core can be used as a reference age model of climate change in the Holocene and its impact on the development and decline of ancient civilizations in northeastern Africa.  相似文献   

9.
The new pollen record from the upper 12.75 m of a sediment core obtained in Lake Ladoga documents regional vegetation and climate changes in northwestern Russia over the last 13.9 cal. ka. The Lateglacial chronostratigraphy is based on varve chronology, while the Holocene stratigraphy is based on AMS 14C and OSL dates, supported by comparison with regional pollen records. During the Lateglacial (c. 13.9–11.2 cal. ka BP), the Lake Ladoga region experienced several climatic fluctuations as reflected in vegetation changes. Shrub and grass communities dominated between c. 13.9 and 13.2 cal. ka BP. The increase in Picea pollen at c. 13.2 cal. ka BP probably reflects the appearance of spruce in the southern Ladoga region at the beginning of the Allerød interstadial. After c. 12.6 cal. ka BP, the Younger Dryas cooling caused a significant decrease in spruce and increase in Artemisia with other herbs, indicative of tundra‐ and steppe‐like vegetation. A sharp transition from tundra‐steppe habitats to sparse birch forests characterizes the onset of Holocene warming c. 11.2 cal. ka BP. Pine forests dominated in the region from c. 9.0 to 8.1 cal. ka BP. The most favourable climatic conditions for deciduous broad‐leaved taxa existed between c. 8.1 and 5.5 cal. ka BP. Alder experiences an abrupt increase in the local vegetation c. 7.8 cal. ka BP. The decrease in tree pollen taxa (especially Picea) and the increase in herbs (mainly Poaceae) probably reflect human activity during the last 2.2 cal. ka. Pine forests have dominated the region since that time. Secale and other Cerealia pollen as well as ruderal herbs are permanently recorded since c. 0.8 cal. ka BP.  相似文献   

10.
The Baltic Sea (~393 000 km2) is the largest brackish sea in the world and its hydrographic and environmental conditions are strongly dependent on the frequency of saline water inflows from the North Sea. To improve our understanding of the natural variability of the Baltic Sea ecosystem detailed reconstructions of past saline water inflow changes based on palaeoecological archives are needed. Here we present a high‐resolution study of benthic foraminiferal assemblages accompanied by sediment geochemistry (loss on ignition, total organic carbon) and other microfossil data (ostracods and cladocerans) from a well‐dated 8‐m‐long gravity core taken in the Bornholm Basin. The foraminiferal diversity in the core is low and dominated by species of Elphidium. The benthic foraminiferal faunas in the central Baltic require oxic bottom water conditions and salinities >11–12 PSU. Consequently, shell abundance peaks in the record reflect frequent saline water inflow phases. The first appearance of foraminiferal tests and ostracods in the investigated sediment core is dated to c. 6.9 cal. ka BP and attributed to the first inflows of saline and oxygenated bottom waters into the Bornholm Basin during the Littorina Sea transgression. The transgression terminated the Ancylus Lake phase, reflected in the studied record by abundant cladocerans. High absolute foraminiferal abundances are found within two time intervals: (i) c. 5.5–4.0 cal. ka BP (Holocene Thermal Maximum) and (ii) c. 1.3–0.75 cal. ka BP (Medieval Climate Anomaly). Our data also show three intervals of absent or low saline water inflows: (i) c. 6.5–6.0 cal. ka BP, (ii) c. 3.0–2.3 cal. ka BP and (iii) c. 0.5–0.1 cal. ka BP (Little Ice Age). Our study demonstrates a strong effect of saline and well‐oxygenated water inflows from the Atlantic Ocean on the Baltic Sea ecosystem over millennial time scales, which is linked to the major climate transitions over the last 7 ka.  相似文献   

11.
This paper presents an event stratigraphy based on data documenting the history of vegetation cover, lake‐level changes and fire frequency, as well as volcanic eruptions, over the Last Glacial–early Holocene transition from a terrestrial sediment sequence recovered at Lake Accesa in Tuscany (north‐central Italy). On the basis of an age–depth model inferred from 13 radiocarbon dates and six tephra horizons, the Oldest Dryas–Bølling warming event was dated to ca. 14 560 cal. yr BP and the Younger Dryas event to ca. 12 700–11 650 cal. yr BP. Four sub‐millennial scale cooling phases were recognised from pollen data at ca. 14 300–14 200, 13 900–13 700, 13 400–13 100 and 11 350–11 150 cal. yr BP. The last three may be Mediterranean equivalents to the Older Dryas (GI‐1d), Intra‐Allerød (GI‐1b) and Preboreal Oscillation (PBO) cooling events defined from the GRIP ice‐core and indicate strong climatic linkages between the North Atlantic and Mediterranean areas during the last Termination. The first may correspond to Intra‐Bølling cold oscillations registered by various palaeoclimatic records in the North Atlantic region. The lake‐level record shows that the sub‐millennial scale climatic oscillations which punctuated the last deglaciation were associated in central Italy with different successive patterns of hydrological changes from the Bølling warming to the 8.2 ka cold reversal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Excavations at the Wenas Creek Mammoth Site yielded mammoth, bison, and two possible artifacts in a single colluvial stratum, with radiocarbon bone dates ∼17 ka. Eight infrared‐stimulated luminescence (IRSL) samples were collected to establish general ages of site strata, returning multi‐grain estimates consistent with stratigraphic integrity and the radiocarbon dates. Four additional IRSL samples were collected to estimate the depositional age of one artifact found in place. These produced a pooled total of 94 single‐grain estimates from near the artifact, 80% averaging 16.8 ± 0.9 ka, and 20% averaging 5.1 ± 0.5 ka. These results could be interpreted to demonstrate pre‐Clovis age artifact deposition consistent with the bone dates, or a mid to late Holocene intrusion into older deposits, possibly by bioturbation. The single‐grain IRSL dates do not provide proof of pre‐Clovis presence beyond reasonable doubt at this site, but do show that this technique is valuable in assessing the stratigraphic integrity needed for any such claim.  相似文献   

13.
Nares Strait, a major connection between the Arctic Ocean and Baffin Bay, was blocked by coalescent Innuitian and Greenland ice sheets during the last glaciation. This paper focuses on the events and processes leading to the opening of the strait and the environmental response to establishment of the Arctic‐Atlantic throughflow. The study is based on sedimentological, mineralogical and foraminiferal analyses of radiocarbon‐dated cores 2001LSSL‐0014PC and TC from northern Baffin Bay. Radiocarbon dates on benthic foraminifera were calibrated with ΔR = 220±20 years. Basal compact pebbly mud is interpreted as a subglacial deposit formed by glacial overriding of unconsolidated marine sediments. It is overlain by ice‐proximal (red/grey laminated, ice‐proximal glaciomarine unit barren of foraminifera and containing >2 mm clasts interpreted as ice‐rafted debris) to ice‐distal (calcareous, grey pebbly mud with foraminifera indicative of a stratified water column with chilled Atlantic Water fauna and species associated with perennial and then seasonal sea ice cover) glacial marine sediment units. The age model indicates ice retreat into Smith Sound as early as c. 11.7 and as late as c. 11.2 cal. ka BP followed by progressively more distal glaciomarine conditions as the ice margin retreated toward the Kennedy Channel. We hypothesize that a distinct IRD layer deposited between 9.3 and 9 (9.4–8.9 1σ) cal. ka BP marks the break‐up of ice in Kennedy Channel resulting in the opening of Nares Strait as an Arctic‐Atlantic throughflow. Overlying foraminiferal assemblages indicate enhanced marine productivity consistent with entry of nutrient‐rich Arctic Surface Water. A pronounced rise in agglutinated foraminifers and sand‐sized diatoms, and loss of detrital calcite characterize the uppermost bioturbated mud, which was deposited after 4.8 (3.67–5.55 1σ) cal. ka BP. The timing of the transition is poorly resolved as it coincides with the slow sedimentation rates that ensued after the ice margins retreated onto land.  相似文献   

14.
Weckström, J., Seppä, H. & Korhola, A. 2010: Climatic influence on peatland formation and lateral expansion in sub‐arctic Fennoscandia. Boreas, Vol. 39, pp. 761–769. 10.1111/j.1502‐3885.2010.00168.x. ISSN 0300‐9843. The initiation and lateral expansion patterns of five small sub‐arctic peatlands in the Fennoscandian tree‐line region were studied by 21 accelerator mass spectrometry (AMS) 14C‐dated basal‐peat samples representing three to six dates per site. The radiocarbon dates were converted to calendar years and are based on the median probability. When combined with earlier basal‐peat dates from the region, four distinctive periods can be observed in the cumulative record of the dates. The early Holocene, from c. 10 000 to 8000 cal. yr BP, was characterized by the fast initiation and rapid expansion of peatlands, whereas at 8000–4000 cal. yr BP lateral expansion was modest. The most intensive period of peatland expansion occurred at the beginning of the late Holocene at c. 4000 to 3000 cal. yr BP, after which it slowed down towards the present. All these periods are in rough agreement with the main Holocene climatic periods in the area, namely the relatively warm and moist early Holocene, the warm and dry Holocene thermal maximum (HTM) at 8000–4000 cal. yr BP, and the start of the cooler and moister trend (neoglacial cooling) from c. 4000 cal. yr BP to the present, indicating a broad‐scale climatic control on the lateral growth of sub‐arctic peatlands in Fennoscandia. In order to study the lateral expansion of peatlands and to evaluate their Holocene succession patterns, more studies based on multiple dates from the same peatland are needed.  相似文献   

15.
The concept that Rannoch Moor, the centre of the Younger Dryas (YD), West Highland Icefield, was deglaciated as early as 12.5 cal ka BP is discussed in the light of radiocarbon dates and varve sequences from outlet glaciers of this icefield, and climate change during the YD. The maximum positions of three YD glaciers were reached after 11.6–11.8 cal ka BP (Lomond), and after 11.8–11.9 cal ka BP (Spean and Treig) indicating that ice remained on Rannoch Moor until long after c.12.5 cal ka BP, and possibly until the YD/Holocene transition at c.11.7 cal ka BP. Further, the Spean glacier dammed a proglacial lake in Lochaber for at least 495 varve years over a period that included the deposition of the Vedde Ash (c.12.1 cal ka BP) and a late YD ash layer (c. 11.7–11.2 cal ka BP), a thesis at variance with supposed early YD deglaciation. Recent examination of this issue using 10Be exposure age determinations from Rannoch Moor is equivocal. In view of the presence of hard water algae at the sampling site on Rannoch Moor it is recommended that the ‘early’ 14C dates from Rannoch Moor need to be further reassessed using chronological constraints provided by dated microtephra, and a collaborative radiocarbon dating programme.  相似文献   

16.
Blomvåg, on the western coast of Norway north of Bergen, is a classical site in Norwegian Quaternary science. Foreshore marine sediments, named the Blomvåg Beds and now dated to the Bølling‐Allerød from 14.8 to 13.3 cal. ka BP, contain the richest Lateglacial bone fauna in Norway, numerous mollusc shells, driftwood, and flint that some archaeologists consider as the oldest traces of humans in Norway. The main theme of this paper is that the Blomvåg Beds are overlain by a compact diamicton, named the Ulvøy Diamicton, which was interpreted previously as a basal till deposited during a glacial re‐advance into the ocean during the Older Dryas (c. 14 cal. ka BP). Sediment sections of the Blomvåg Beds and the Ulvøy Diamicton were exposed in ditches in a cemetery that was constructed in 1941–42 and have subsequently not been accessible. A number of radiocarbon and cosmogenic 10Be exposure ages demonstrate that the diamicton is not likely to be a till because minimum deglaciation ages (14.8–14.5 cal. ka BP) from the vicinity pre‐date the Ulvøy Diamicton. We now consider that sea ice and icebergs formed the Ulvøy Diamicton during the Younger Dryas. The Scandinavian Ice Sheet margin was located on the outermost coastal islands between at least c. 18.5 and 14.8 cal. ka BP; however, no ice‐marginal deposits have been found offshore from this long period. The Older Dryas ice margin in this area was located slightly inside the Younger Dryas margin, whereas farther south it was located slightly beyond the Younger Dryas margin.  相似文献   

17.
The shoreline displacement history of the eastern James Bay lowlands in the last 7 ka has been investigated by means of AMS radiocarbon dating of sediments cored from wetlands. We present twelve radiocarbon dates on macrofossils from six sites spread along a gradient of increasing land age and elevation. Palynomorph analysis (pollen, spores, and dinoflagellate cysts) was used to define the isolation stratigraphy. During the last 7 ka the shoreline elevation has regressed at a decreasing rate. The rate of shoreline emergence was initially rapid (6. 5 m/ 100 yr) between 6850 and  6400 cal yr BP then slowed down to 1.4– 2 m/ 100 yr during the late Holocene. Examination of previous relative sea level data based upon mollusc shells reveals high levels of uncertainty that mask potential temporal variability.  相似文献   

18.
This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (δ18Odiatom) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8 cal. ka BP. The δ18Odiatom values range from +29.8 to +35.0‰, and relatively higher δ18Odiatom values around +34.7‰ between c. 7.1 and 5.7 cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since c. 6.1 cal. ka BP accelerates after c. 4 cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8–0.2 cal. ka BP, corresponding to the Little Ice Age. Lake‐level rises result in lower δ18Odiatom values, whereas lower lake levels cause higher δ18Odiatom values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4–4.0 cal. ka BP. Generally, overall high δ18Odiatom values around +33.5‰ characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga δ18Odiatom record is roughly in line with the 60°N summer insolation, a linkage to broader‐scale climate change is likely.  相似文献   

19.
We present and discuss a full list of radiocarbon dates for woolly mammoth and other species of the Mammoth fauna available from Wrangel Island, northeast Siberia, Russia. Most of the radiocarbon dates are published here for the first time. Of the124 radiocarbon dates on mammoth bone, 106 fall between 3700 and 9000 yr ago. We believe these dates bracket the period of mammoth isolation on Wrangel Island and their ultimate extinction, which we attribute to natural causes. The absence of dates between 9–12 ka probably indicates a period when mammoths were absent from Wrangel Island. Long bone dimensions of Holocene mammoths from Wrangel Island indicate that these animals were comparable in size to those on the mainland; although they were not large animals, neither can they be classified as dwarfs. Occurrence of mammoth Holocene refugia on the mainland is suggested. Based on other species of the Mammoth fauna that have also been radiocarbon on Wrangel Island, including horse, bison, musk ox and woolly rhinoceros, it appears that the mammoth was the only species of that fauna that inhabited Wrangel Island in the mid-Holocene.  相似文献   

20.
The start of the Upper Würmian in the Alps was marked by massive fluvioglacial aggradation prior to the arrival of the Central Alpine glaciers. In 1984, the Subcommission on European Quaternary Stratigraphy defined the clay pit of Baumkirchen (in the foreland of the Inn Valley, Austria) as the stratotype for the Middle to Upper Würmian boundary in the Alps. Key for the selection of this site was its radiocarbon chronology, which still ranks among the most important datasets of this time interval in the Alps. In this study we re‐sampled all available original plant specimens and established an accelerator mass spectrometry chronology which supersedes the published 40‐year‐old chronology. The new data show a much smaller scatter and yielded slightly older conventional radiocarbon dates clustering at ca. 31 14C ka BP. When calibrated using INTCAL13 the new data suggest that the sampled interval of 653–681 m in the clay pit was deposited 34–36 cal ka BP. Using two new radiocarbon dates of bone fragments found in the fluvioglacial gravel above the banded clays allows us to constrain the timing of the marked change from lacustrine to fluvioglacial sedimentation to ca. 32–33 cal ka BP, which suggests a possible link to the Heinrich 3 event in the North Atlantic. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号