首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
王新敏  张霞  徐文明  鲁坦 《气象》2011,37(5):576-582
利用河南省地面观测站1960-2005年的雷暴观测资料分析了全省雷暴活动的时空分布特征.根据雷暴活动特征和雷暴天气产生的环境场条件,基于T213/T639数值模式输出产品计算了多个大气动力、热力参数,经诊断分析及相关性分析后选取与地闪关系较好的对流稳定度指数、850 hPa假相当位温、400~850 hPa垂直风切变等5个参数作为预报因子,采用ADTD地闪定位资料和T213/T639数值模式输出产品,分别建立雷电潜势预报模型.雷电潜势预报方法于2008-2009年在河南省汛期业务中应用评估表明,基于T213/T639数值产品的雷电潜势预报技术方法可以为河南省雷电天气的落区预报提供客观定量的参考和依据,且两者都对低槽切变型预报效果最好.  相似文献   

2.
利用安溪县国家气象站2004年至2015年的雷暴观测资料,分析了安溪县雷暴的气候特征及环境背景分类。并根据雷暴活动特征及雷暴天气产生的环境场条件,诊断和分析T639数值模式输出产品与雷暴观测资料的相关性,对41个相关因子做显著性检验,挑选相关性较好的9个因子做分析。对9个预报因子进行0,1化处理并进行逐步回归,最后选取850hPa垂直速度、850hpa假相当位温、700hPa温度、K指数、850hPa比湿等5个因子,建立雷暴潜势预报方程。利用2015年至2017年T639模式资料进行回代分析评估,发现当雷暴概率预报Y值>0.6时,雷暴预报准确率最高,达85.60%,且漏报率、空报率很低。再以2018年T639数值模式资料对雷暴潜势概率进行计算评估,准确率为83.84%,漏报率为5.75%,空报率为10.41%。由此可见,基于T639数值产品的雷暴潜势方程可以为安溪县雷暴天气的预警预报和防雷减灾服务提供客观的参考和依据。  相似文献   

3.
对12h24mm以上强降水带的预报,模式输出的降水资料是预报的重要依据,但有时偏差较大。依据中尺度分析技术,利用常规资料、EC细网格和T639模式12h预报场对2013年夏季发生在北疆北部的2次区域强降水过程中12h最强降水时段的环境场进行中尺度分析。结果表明,中亚低槽北上强降水落区位于500和700hPa中尺度气旋的第一、四象限及对流层低层冷槽的右侧,850hPa切变线附近,地面中尺度高压前部、边界线和切变线附近及干线西侧的重合区域。西西伯利亚低涡型暴雨位于中尺度短波槽前、高空西南急流出口区左侧辐散区,700和850hPa切变线西侧及干线西南部,850hPa偏西、偏东及东南3股气流汇合区,地面干线的西部、辐合线东部及切变线附近的重叠区域。中亚低槽北上暴雨天气为非典型暴雨易漏报。用模式12h预报场制作高空综合图,可提高预报时效,EC细网格优于T639模式。  相似文献   

4.
利用常规观测资料、T639分析场及卫星云图、自动站等资料对2010年7月22日-8月2日柴达木盆地高温天气的成因进行了分析。结果表明:副热带高压西伸与伊朗高压合并,使得维持在柴达木盆地上空的暖高压更加强盛稳定,是此次高温天气形成和持续数日的主要影响系统;高温持续时间的长短,与副高控制时间的长短、100hPa南亚高压的流型、低层辐合上升运动、下沉气流的绝热增温、非绝热加热因子等有关;T639数值预报产品对此次高温天气过程的预报具有明显的指示意义,对高温天气形成的高空形式及温度预报均有较好的预报能力。  相似文献   

5.
阿勒泰地区一次强寒潮天气成因分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用常规观测资料、欧洲中期天气预报中心(ECMWF)预报产品及T639数值模式的初始场和预报产品,运用天气动力学诊断方法对阿勒泰地区2014年4月23—24日寒潮天气进行诊断分析和检验。结果表明:欧洲脊向西北方向强烈发展,脊前西北急流带建立加强,引导新地岛附近的强冷空气东南下到西西伯利亚地区堆积增强;欧洲脊顶部受冷空气侵袭,快速向南衰退,促使西西伯利亚强冷空气大举南下,形成寒潮天气。850hPa强冷平流及前期地面气温异常偏高是形成强降温的主要原因;强冷平流和高空动量下传是造成强风的主要原因。08时起报的ECMWF 850hPa温度预报较20时的稳定;ECMWF对于96h内850hPa温度预报误差较小;ECMWF对于大风区预报能力较T639的略强,但对于极大风速出现时间、大风的起风时间、大风持续时间的预报,两个模式在实际中均有较高的参考价值。  相似文献   

6.
孟祥翼 《气象科技》2017,45(6):1049-1057
利用2000—2014年5月1日到6月10日河南省121个气象观测站点的逐日观测数据、欧洲中心模式预报资料,对河南省干热风天气进行分析,总结了干热风天气形势分类模型,同时利用多元回归法建立了河南省干热风天气的客观预报方法。分析结果得出:河南省干热风天气发生主要形势为西北气流型、高压脊型和纬向环流型3类;通过多元回归分析筛选出日最高温度预报因子为前一日最高气温、当日最低气温、08:00气温、EC850hPa 24h温度预报,相对湿度预报因子为EC850hPa 24h相对湿度预报、前一日14:00相对湿度、当日08:00露点温度,风速预报因子为EC细网格过去3h10m阵风预报,建立温度、湿度和风速3要素的预报方程;利用预报方程对2014年预报时段的天气进行检验,结果表明,对于轻干热风预报的TS评分为62%,重干热风预报的TS评分为64%。  相似文献   

7.
T639数值产品对吉林地区降水预报的释用分析   总被引:1,自引:0,他引:1  
胡长雷  张炜  徐兴波 《吉林气象》2013,(4):12-13,27
通过把T639数值预报产品中有关降水所需水汽、动力条件的物理量,按吉林市各点进行插值,进入数据库,与降水实况资料进行对比检验,找出各物理量在降水预报中的临界值,在此基础上用各物理量集合确率进行集合降水预报,有效提高了T639数值预报产品对吉林地区降水天气的预报水平。由于降水在天气过程中是非连续性因子,而各物理量因子都是连续性因子,本文将对使用连续性好的物理量预报非连续性的降水方面进行分析。  相似文献   

8.
随着气象业务现代化发展,精细化天气分析需求越来越大,主要体现在更高的时空分辨率和更为丰富的资料内容上。利用NCEP/FNL 1°×1°间隔6 h再分析资料,通过GrADS绘图,运用批处理和VB语言编写自动化处理程序,可迅速还原历史天气形势,生成如全风速脉动、湿位涡等非常规诊断物理量,对MICAPS起到有效补充。同时集成欧洲中心细网格及T639模式预报部分产品,其中EC模式2 m温度及逐6 h降水预报以一维折线叠加柱状图呈现,使用起来更为直观方便; T639模式时序图则以剖面显示预报时段的相对湿度场、风场、温度场及垂直速度场,为业务人员制作预报及对外服务提供依据。程序操作简单,易于维护,解决了资料时间和数据自动识别的难点,具有资料批量下载、总控文件规范生成的优点和依照需求实现多要素、多层次资料叠加显示的功能。出图迅速且丰富,能帮助预报人员从多个角度了解强降水天气过程的成因及特点,提升了撰写技术总结效率。产品均以图片形式分类储存,方便共享给基层测报人员使用,为县(市)气象台站进行技术总结交流提供技术支撑。  相似文献   

9.
本文使用2009~2012年新疆冬季43场暴雪天气过程中ECWMF和T639L60(2.5*2.5)数值预报产品预报场资料,通过天气学检验方法,对新疆主要影响系统,即西西伯利亚低槽、乌拉尔山大槽、北方横槽、中亚低值系统和其对应的高空500hPa形势、海平面气压做72小时内的滚动预报场与相对应实况场的检验。检验结果表明:两家模式对于高空500hPa形势场预报都比较好,尤其是48h之内,ECWMF的准确率略高于T639;海平面气压场两家模式的预报准确率均低于500hPa形势场,T639要优于ECWMF,尤其是48h之内,一般海平面气压中心强度的预报值较实况会有偏小3~5hPa的误差,以上结论可较好地指导预报业务。  相似文献   

10.
2015年9—11月T639、ECMWF及日本模式中期预报性能检验   总被引:2,自引:1,他引:1  
张峰 《气象》2016,42(2):246-253
对2015年9—11月T639、ECMWF及日本(文中简称JP)数值模式的中期预报产品进行了分析和检验。结果表明:3个模式对亚洲中高纬环流形势的调整和演变具有较好的预报性能,其中ECMWF模式预报效果最好。ECMWF模式对副热带高压脊线位置预报较为准确,而T639模式对副热带高压西脊点的位置把握更好。3个模式对850 hPa温度的转折性变化趋势均有较好的预报能力,其中对南方地区温度变化的预报能力明显优于北方地区。此外,3个模式对1522号强台风彩虹中心位置和强度120 h预报均存在不同程度的偏差,特别是对台风彩虹发展初期的强度预报明显偏弱。T639和ECMWF模式对静稳天气形势均有较好的中期预报能力,但ECMWF模式对驱散雾 霾的冷空气预报与零场更加一致。  相似文献   

11.
T639和EC模式对内蒙古主要天气系统的预报性能检验   总被引:2,自引:0,他引:2  
利用2012年T639和EC模式500hPa高度场预报产品及ECMWF客观再分析资料,采用天气学检验方法,对内蒙古主要天气影响系统之西风槽、贝加尔湖冷涡、蒙古冷涡和东北冷涡数值产品的预报性能进行检验。检验结果表明:T639和EC模式产品对内蒙古影响系统具有较好的预报性能,36h内的预报性能更为显著。EC模式产品预报准确率优于T639模式产品,但对内蒙古东部地区影响系统的预报稳定性相对较差。T639模式产品在36h的预报能力比较高,对影响系统的生成时间、槽线位置、移动速度及中心强度4项检验指标预报准确率均在80%以上。EC模式预报产品,48h内对影响系统4项检验指标预报准确率均在80%以上。随着预报时效延长,T639和EC模式产品预报能力均有所下降。两套模式产品与实况相关系数空间分布在各时效均具有显著的相关关系,并且对应相关系数空间分布,T639和EC模式产品标准差的大值中心与相关系数的低值中心基本一致。  相似文献   

12.
华北区域性低能见度天气的自动识别及预报   总被引:4,自引:0,他引:4  
利用2002~2011年的能见度观测资料以及NCEP格点资料,采用天气学方法研究了华北地区的低能见度天气过程。结果表明:造成研究区域低能见度的500 h Pa天气形势可分为3种类型:2槽1脊型、低槽型、纬向气流型;用特征物理量作为这3种天气型的入型判据,建立了华北区域性低能见度天气的自动识别系统;并在此基础上,利用K指数、露点温度差以及500 h Pa和850 h Pa的假相当位温差等天气诊断物理量,进行第二次判别,进一步消空,最后制作低能见度天气预报。利用以上建立的预报方案,对2002~2011年进行冬半年逐日回代检验,预报准确率达到了78%左右;对2012年的试预报结果为:出现3 d区域性低能见度天气过程完全报对,试验结果表明预报方法达到了较好的效果。  相似文献   

13.
通过对2013年6月6日20时—7日20时北京地区出现的中到大雨、局地暴雨的天气过程的大尺度天气环流背景、物理量场、北京多普勒雷达产品和海淀风廓线探测数据、VDRAS反演物理量等多种资料详细分析,得出如下结论:1)本次过程500 hPa北京处于从河套以东至长江中下游地区的低槽槽前,温度槽落后于高度槽,地面处于东高西低的形势场中。2)北京处于850 hPa θse高能舌的前部,为对流性天气的出现提供了良好的能量条件。3)强回波在单点稳定少动或多个降水云团先后经过同一地区,造成该地区降水偏大。4)超低空急流加强,且风向由东南转为偏南,南风分量明显加大,有利于水汽的输送和辐合,有利于出现短时强降水。5)据VDRAS反演物理量场的分析,某地区较长时间处于扰动温度相对大值区(0.9~1.2 ℃),与该区域降水较大相对应。强回波的合并与维持和其位于东南风和偏南风的辐合区中相关联。6)对EC、T639数值模式降水预报的检验表明,数值模式对明显大尺度系统影响的降水过程预报效果较好,EC对本次过程的预报能力优于T639。  相似文献   

14.
BP-CCA方法用于四川盆地夏季日降水量的可预报性研究   总被引:1,自引:0,他引:1  
基于BP-CCA方法,首先讨论了多个因子对四川盆地夏季降水降尺度模型的可预报性,然后选取最佳预报因子并进行集合,最终基于T639模式建立最优多因子降尺度预报模型.结果表明,分别以东亚夏季10m纬向风、700hPa纬向风和700hPa相对湿度为预报因子的降尺度模型对四川盆地夏季降水的预报技巧较高,而将三个因子集合的多因子降尺度预报模型具有更好的预报能力.进一步将该方法应用于T639模式预报的预报因子场,发现多因子降尺度模型对降水的预报效果要优于T639模式直接输出的结果.  相似文献   

15.
利用新疆克州地区近45a(1960--2004年)冬春季逐日降水资料,统计分析了克州地区强降雪的时空分布特征;利用NCEP逐日再分析资料对产生强降雪的天气形势、环流特征、物理量场进行归纳总结,将500hPa环流分为中亚低压(涡)槽类、喀布尔低涡(槽)、巴湖低压槽和里咸海低压(涡)槽类,认为高空300hPa的西风急流和低空850hPa偏东急流的密切配合是强降雪天气发生的主要条件。在研究基础上建立克州地区强降雪天气过程预报的概念模型。  相似文献   

16.
利用实况24小时降水、形势场资料及T213、T639、Japan模式降水、形势场的预报资料,对2009年汛期(5-9月,下同)中国降水时空分布进行分析,并对T213、T639、Japan三个常用模式对2009年汛期的天气形势、降水及其影响系统的预报做主客观检验,以期得出2009年汛期降水分布特点及三个模式的降水预报效果对比.结果表明:(1) 2009年汛期华南地区降水量为全国之最,长江中下游和西南东部地区其次,东北和华北地区再次.(2)从TS评分看,Japan模式的小雨~大雨量级评分较高,T639模式暴雨~大暴雨量级评分较高;T213模式对华北地区暴雨、大暴雨量级降水预报评分高于Japan和T639模式.(3)从降水预报偏差看,T213模式对华北预报明显偏强,T639模式对华北预报强度较为适中,两模式对其他区域中等以下强度降水预报偏强,对强降水预报偏弱;T639对中等以下强度降水预报偏强程度明显小于T213,而对强降水除华南和东北区域外,预报偏弱程度明显大于T213;Japan模式预报偏差随降水量级增大而减小,对大雨以上各量级预报均明显偏弱,且偏弱程度明显大于T213、 T639.(4)由代表性形势场预报检验结果可知,除T213对500hPa高度场、850hPa温度场预报效果好于其他两模式外,各模式预报效果相差不大.(5)三个模式对500 hPa副高总体预报偏东、偏北、偏强,但Japan预报效果明显好于T213、T639.(6) T639模式对台风和低涡的预报相对较好,T213较差.  相似文献   

17.
2009年3—5月T639、ECMWF及日本模式的中期预报性能检验   总被引:2,自引:0,他引:2  
马杰  王蕾  秦宝国 《气象》2009,35(8):112-117
为更好地应用T639模式中期预报产品,对2009年3-5月T639模式进行天气学检验,并与ECMWF和日本模式进行了对比分析.结果表明:T639和ECMWF模式及日本模式预报性能均较好,相对地,ECMWF对中高纬大气环流的演变及850hPa温度有较强的预报能力.选取2009年4月23-25目的沙尘天气个例,T639模式对于引发此次沙尘天气的地面强风的中期预报指示意义最好,日本模式次之.  相似文献   

18.
对2011年9月14日淄博地区暴雨天气过程的天气形势,红外云图和济南多普勒雷达组合反射率因子、基本速度产品演变,以及欧洲中心数值预报,T639和日本数值预报产品进行了分析。结果表明,这是一次高空槽和副热带高压外围西南气流与低层切变线长时间共同作用产生的暴雨,发生在呈带状云团云顶亮温低于240k和雷达强回波43dBz长时间影响时段,当处于0.5。仰角济南雷达辐合线附近同时低层有冷平流时降水强度较大。数值预报与实况对比分析表明,日本、欧洲中心、T639数值预报模式都预报出14日副高有减弱东撤南退,日本预报副高系统稳定,位置偏南,欧洲中心更偏南,T639预报偏北;三种数值预报均预报有低层切变线影响,日本数值预报与实况相当,欧洲中心和T639对14日白天的切变线预报较好;对地面倒槽预报,T639对于14日白天预报与实况相吻合,日本和欧洲中心比实况偏晚;T639和日本降水量预报对暴雨预报具有较强指导意义。  相似文献   

19.
利用1980—2017年逐日雾观测资料、NCEP/NCAR 1°×1°再分析资料,采用统计学、天气学、累积频率等方法分析了衢州市雾日的时空分布特征及雾预报方法。结果表明:①衢州市雾的空间分布呈北多南少、山区明显多于平原的特征;雾出现时间主要集中在冬春季,83.2%的雾出现在23时—次日09时,峰值在06时;②容易导致衢州出现区域性雾的地面天气类型有4类:冷锋前暖区型、大陆高压型、入海高压后部型和低槽型;500 hPa高空环流形势有3种:低槽型、高压脊型和纬向气流型;③雾发生前一天对流层低层小风、高湿并伴有逆温,其中低槽型雾逆温层接地,其他3种类型逆温层抬离地面;④用累积频率法定量给出了雾出现的相对湿度、风速、逆温的阈值与消空指标。⑤经过两年使用,该预报模型预报准确率达71.2%,具有较强的预报价值。  相似文献   

20.
利用24 h降水实况资料和高空实况形势场资料、ECMWF模式形势场预报资料及ECMWF、JMA、T639模式降水预报资料,对2015年江西省汛期(4月上旬至7月上旬)区域性暴雨的时空分布特征进行分析,并对2015年江西省汛期区域性暴雨的影响系统和降水预报结果进行了短期主观检验,对比分析了ECMWF、JMA和T639等3种数值模式对江西省区域性暴雨系统预报的效果。结果表明:ECMWF模式对江西省汛期暴雨天气系统的调整和演变具有一定的预报能力,如对副热带高压和西南急流的预报;但随着预报时效增加,预报误差增大。ECMWF模式预报的48 h和72 h副热带高压强度较实况明显偏弱,预报的副热带高压西脊点位置偏东,随着季节转变预报的副热带高压强度明显偏弱,其中24 h预报的准确率较高。ECMWF模式对高空槽的预报基本准确;ECMWF模式对切变线移动的总体预报效果较好,72 h预报的切变线移动偏慢;ECMWF模式对700 hPa西南急流强度的预报易偏弱,对850 hPa和925 hPa西南急流的预报易偏强;ECMWF模式预报的急流轴位置多数偏北;ECMWF模式对低层比湿的预报较实况偏强。随着预报时效临近,ECMWF、JMA和T639等3种数值模式对江西省汛期区域性暴雨的预报具有较强的调整能力;JMA模式预报的暴雨与实况最接近,表现出对雨带分布具有较强的预报性能,但对降水量级预报偏弱;ECMWF模式对降水强度的预报性能较好,预报的降水分布总体偏北;T639模式预报的主雨带范围较实况偏大,3个模式均存在对暴雨以上量级降水漏报的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号