首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sediment production, transport and yield were quantified over various timescales in response to rainfall and runoff within an alluvial gully (7 · 8 ha), which erodes into dispersible sodic soils of a small floodplain catchment (33 ha) along the Mitchell River, northern Australia. Historical air photographs and recent global positioning system (GPS) surveys and LiDAR data documented linear increases in gully area and volume, indicating that sediment supply has been relatively consistent over the historic period. Daily time lapse photography of scarp retreat rates and internal erosion processes also demonstrated that erosion from rainfall and runoff consistently supplied fine washload (< 63 µm) sediment in addition to coarse lags of sand bed material. Empirical measurements of suspended sediment concentrations (10 000 to >100 000 mg/L) and sediment yields (89 to 363 t/ha/yr) were high for both Australian and world data. Total sediment yield estimated from empirical washload and theoretical bed material load was dominated by fine washload (< 63 µm). A lack of hysteresis in suspended sediment rating curves, scarp retreat and sediment yield correlated to rainfall input, and an equilibrium channel outlet slope supported the hypothesis that partially or fully transport‐limited conditions predominated along the alluvial gully outlet channel. This is in contrast to sediment supply‐limited conditions on uneroded floodplains above gully head scarps. While empirical data presented here can support future modelling efforts to predict suspended sediment concentration and yield under the transport limiting situations, additional field data will also be needed to better quantify sediment erosion and transport rates and processes in alluvial gullies at a variety of spatial and temporal scales. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
When a sediment laden river reaches a flat basin area the coarse fraction of their sediment load is deposited in a cone shaped structure called an alluvial fan. In this article we used the State Space Soil Production and Assessment Model (SSSPAM) coupled landform–soilscape evolution model to simulate the development of alluvial fans in two- and three-dimensional landforms. In SSSPAM the physical processes of erosion and armouring, soil weathering and sediment deposition were modelled using state-space matrices, in both two and three dimensions. The results of the two-dimensional fan showed that the fan grew vertically and laterally keeping a concave up long profile. It also showed a downstream fining of the sediments along the fan profile. Both of these observations are in agreement with available literature concerning natural and experimental fan formations. Simulations with the three-dimensional landform produced a fan with a semicircular shape with concave up long profiles and concave down cross profiles which is typical for fans found in nature and ones developed in laboratory conditions. During the simulation the main channel which brings sediment to the fan structure changed its position constantly leading to the semicircular shape of the fan. This behaviour is similar to the autogenic process of ‘fanhead trenching’ which is the major mechanism of sediment redistribution while the fan is developing. The three-dimensional fan simulation also exhibited the downstream fining of sediments from the fan apex to the peripheries. Further, the simulated fan also developed complex internal sediment stratification which is modelled by SSSPAM. Currently such complex sediment stratification is thought to be a result of allogenic processes. However, this simulation shows that, such complex internal sediment structures can develop through autogenic processes as well. © 2020 John Wiley & Sons, Ltd.  相似文献   

3.
Colluvial and alluvial sediments represent important geoarchives to reconstruct long-term soil erosion and to gain insight into the complex system of sediment cascades and sediment fluxes within a catchment. In this respect, the temporal information of sediment archive formation is essential and achievable through optical stimulated luminescence (OSL) dating. In this study, colluvial and alluvial sediments from a mesoscale catchment in northern Bavaria were investigated and dated by OSL. Insufficient sediment bleaching was detected for some of the samples. In these cases, the method proposed by Fuchs and Lang [Fuchs, M., Lang, A., 2001. OSL dating of coarse-grain fluvial quartz using single-aliquot protocols on sediments from NE Peloponnese, Greece. Quaternary Science Reviews 20, 783–787.] was applied for equivalent dose (De) determination. The calculated OSL ages are in stratigraphic order and their accuracy is confirmed by 14C age control. Based on the chronostratigraphies for alluvial and colluvial archives, there is a dominant synchronous sedimentation history for the Medieval and Modern period, but initiation of Holocene sedimentation occurred at different times in the upper and lower parts of the catchment. The latter phenomenon might be explained by the decoupled sediment fluxes between both the slope–channel system and the upper and lower catchment.  相似文献   

4.
A typical gully sub-basin with a complex geomorphological form is used to do a model test of gravity erosion of loess by considering the sequence of slopes in a prototype gully creating a sequence of underlying surface forms in the upper reaches. The results show that the runoff from heavy rainfall is the main external force for the erosion of loess, and also is an important influencing factor to stimulate and intensify the development of gravity erosion. The soil structure and the height of the...  相似文献   

5.
Prior numerical modeling work has suggested that incision into sub-horizontal layered stratigraphy with variable erodibility induces non-uniform erosion rates even if base-level fall is steady and sustained. Erosion rates of cliff bands formed in the stronger rocks in a stratigraphic sequence can greatly exceed the rate of base-level fall. Where quartz in downstream sediment is sourced primarily from the stronger, cliff-forming units, erosion rates estimated from concentrations of cosmogenic beryllium-10 (10Be) in detrital sediment will reflect the locally high erosion rates in retreating cliff bands. We derive theoretical relationships for threshold hillslopes and channels described by the stream-power incision model as a quantitative guide to the potential magnitude of this amplification of 10Be-derived erosion rates above the rate of base-level fall. Our analyses predict that the degree of erosion rate amplification is a function of bedding dip and either the ratio of rock erodibility in alternating strong and weak layers in the channel network, or the ratio of cliff to intervening-slope gradient on threshold hillslopes. We test our predictions in the cliff-and-bench landscape of the Grand Staircase in southern Utah, USA. We show that detrital cosmogenic erosion rates in this landscape are significantly higher (median 300 m/Ma) than the base-level fall rate (~75 m/Ma) determined from the incision rate of a trunk stream into a ~0.6 Ma basalt flow emplaced along a 16 km reach of the channel. We infer a 3–6-fold range in rock strength from near-surface P-wave velocity measurements. The approximately four-fold difference between the median 10Be-derived erosion rate and the long-term rate of base-level fall is consistent with our model and the observation that the stronger, cliff-forming lithologies in this landscape are the primary source of quartz in detrital sediments. © 2020 John Wiley & Sons, Ltd.  相似文献   

6.
The sediment yields of Alpine catchments are commonly determined from streamload measurements made some distance downstream from glaciers. However, this approach indiscriminately integrates erosion processes occurring in both the glacial and proglacial areas. A specific method is required to ascertain the respective inputs from (i) subglacial and supraglacial sediments, (ii) proglacial hillslopes and (iii) proglacial alluvial areas or sandurs. This issue is addressed here by combining high‐resolution monitoring (2 min) of suspended sediment concentrations at different locations within a catchment with discharge gauging and precipitation data. This methodological framework is applied to two proglacial streams draining the Bossons glacier (Mont Blanc massif, France): the Bossons and Crosette streams. For the Bossons stream, discharge and suspended load data were acquired from June to October 2013 at 1.15 and 1.5 km from the glacial terminus, respectively upstream and downstream from a small valley sandur. These hydro‐sedimentary data are compared with the Crosette stream dataset acquired at the outlet of the Bossons glacier subglacial drainage system. A fourfold analysis focusing on seasonal changes in streamload and discharge, multilinear regression modelling, evaluation of the sandur flux balance and probabilistic uncertainty assessment is used to determine the catchment sediment budget and to explain the proglacial sediment dynamics. The seasonal fluctuation of the sediment signal observed is related to the gradual closing of the subglacial drainage network and to the role of the proglacial area in the sediment cascade: the proglacial hillslopes appear to be disconnected from the main channel and the valley sandur acts as a hydrodynamic sediment buffer both daily and seasonally. Our findings show that an understanding of proglacial sediment dynamics can help in evaluating paraglacial adjustment and subglacial erosion processes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
Landform evolution models are powerful tools for determining long-term erosional stability and denudation rates spanning geological timescales. SIBERIA, CAESAR and CHILD are examples of these model. The newly developed State Space Soil Production and Assessment Model (SSSPAM) coupled soilscape-landform evolution model has the ability to assess overall erosion rates of catchment scale landforms either using short-term precipitation events, variable precipitation or time-averaged precipitation (annual average). In addition, SSSPAM has the capability of developing the subsurface soil profile through weathering and armouring. In SSSPAM, physical processes of pedogenesis such as erosion and armouring, diffusion, sediment deposition and weathering are modelled using a state space matrix approach. In this article we simulate the short-term evolution (100 years) of a proposed post-mining landform using both SIBERIA and SSSPAM and compare the erosion and sediment output results. For the short-term simulations SSSPAM's armouring capability was disabled. The models were then used to simulate the evolution of the catchment for 10,000 years. Results demonstrate that the short-term SSSPAM simulation results compare well with the results from the established landform evolution model SIBERIA. The long-term armouring disabled SSSPAM simulations produces simulated erosion rates comparable with SIBERIA simulations both of which are similar to upper limit of field measured denudation rates. The SSSPAM simulation using armouring demonstrated that armouring reduced the erosion rate of the catchment by a factor of 4 which is comparable with the lower limit of field measured denudation rates. This observation emphasizes the importance of armouring in long-term evolution of landforms. Soil profile cross-sections developed from the same results show that SSSPAM can also reproduce subsurface soil evolution and stratification and spatial variability of soil profile characteristics typically observed in the field.  相似文献   

8.
An updated linear computer model for meandering rivers with incision has been developed. The model simulates the bed topography, flow field, and bank erosion rate in an incised meandering channel. In a scenario where the upstream sediment load decreases (e.g., after dam closure or soil conservation), alluvial river experiences cross section deepening and slope flattening. The channel migration rate might be affected in two ways: decreased channel slope and steeped bank height. The proposed numerical model combines the traditional one-dimensional (1D) sediment transport model in simulating the channel erosion and the linear model for channel meandering. A non-equilibrium sediment transport model is used to update the channel bed elevation and gradations. A linear meandering model was used to calculate the channel alignment and bank erosion/accretion, which in turn was used by the 1D sediment transport model. In the 1D sediment transport model, the channel bed elevation and gradations are represented in each channel cross section. In the meandering model, the bed elevation and gradations are stored in two dimensional (2D) cells to represent the channel and terrain properties (elevation and gradation). A new method is proposed to exchange information regarding bed elevations and bed material fractions between 1D river geometry and 2D channel and terrain. The ability of the model is demonstrated using the simulation of the laboratory channel migration of Friedkin in which channel incision occurs at the upstream end.  相似文献   

9.
10.
We explore the link between channel‐bed texture and river basin concavity in equilibrium catchments using a numerical landscape evolution model. Theory from homogeneous sediment transport predicts that river basin concavity directly increases with bed sediment size. If the effective grain size on a river bed governs its concavity, then natural phenomena such as grain‐size sorting and channel armouring should be linked to concavity. We examine this hypothesis by allowing the bed sediment texture to evolve in a transport‐limited regime using a two grain‐size mixture of sand and gravel. Downstream ?ning through selective particle erosion is produced in equilibrium. As the channel‐bed texture adjusts downstream so does the local slope. Our model predicts that it is not the texture of the original sediment mixture that governs basin concavity. Rather, concavity is linked to the texture of the sorted surface layer. Two different textural regimes are produced in the experiments: a transitional regime where the mobility of sand and gravel changes with channel‐bed texture, and a sand‐dominated region where the mobility of sand and gravel is constant. The concavity of these regions varies depending on the median gravel‐ or sand‐grain size, erosion rate, and precipitation rate. The results highlight the importance of adjustments in both surface texture and slope in natural rivers in response to changes in ?uvial and sediment inputs throughout a drainage network. This adjustment can only be captured numerically using multiple grain sizes or empirical downstream ?ning rules. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Erosion, sediment transportation and accumulation in rivers   总被引:8,自引:5,他引:3  
The present paper analyses the interrelation between erosion, sediment transportation and accumulation proposed by N. I. Makkaveyev (1908-1983) and its further development in modem studies of river channel processes in Russia. Spatio-temporal linkages between erosion and accumulation are defined considering channel processes at different scales - river longitudinal profile, channel morphological patterns, alluvial bedforms (bars, dunes) and individual sediment particles. Relations between river geomorphic activity, flow transportation capacity and sediment budgets are established (sediment input and output; channel bed erosion and sediment entrainment into flow - termination of sediment transport and its deposition). Channel planforms, floodplain segments separated by the latter and alluvial channel bedforms are shown to be geomorphic expressions of sediment transport process at different spatial and temporal scales. This paper is dedicated to the 100th anniversary of N. I. Makkaveyev, Professor of the Moscow State University, author of the book "River channel and erosion in its basin" (1955). That book is regarded in Russia as the pioneering work which initiated the complex hydrological and geographical studies of channel processes and laid a basis for the theory of unified fluvial erosion-accumulation process.  相似文献   

12.
Global eustatic lowstands can expose vast areas of continental shelves, and occasionally the shelf edge and the continental slope. The degree of fluvial connectivity to receding shores influences the redistribution of sediments across these emerging landscapes. Shelf and slope emergence in the Dead Sea since the middle of the 20th century, offers a rare opportunity to examine evolution of stream connectivity in response to continuous base-level decline. We characterize the connectivity evolution of two streams, using high-resolution time series of aerial imagery and elevation models, field mapping, and grain-size analyses. Our rich spatiotemporal dataset of evolving channel geomorphology, sediment transport conditions, and sediment redistribution, allows calculating potential coarse sediment mobility in response to base level decline. Following shelf emergence, alluvial fans first prograded onto the low-gradient shelf under unfavourable conditions for transporting coarse sediment to the regressing shoreline. Then, with shelf and slope emergence, the two adjacent streams evolved differently. The smaller, more arid watershed still maintains its highstand delta progradation on the shelf and is practically disconnected from the receding lake. The larger catchment, heading in wetter environments and having a narrower shelf, has incised the shelf and renewed and gradually intensified the sediment transport from the highstand to the lowstand delta. Sediment mobilization to lowstand shorelines is controlled by the evolution of the channel profile and by the average speed of gravel transport (10s-100s m yr-1). These findings from the Dead Sea are relevant to fluvial processes operating on continental shelves during glacial maxima. Streams would have commonly stored high proportions of their coarse sediment on the continental shelves rather than efficiently connecting with the lowstand level. Additionally, differences in sediment routing patterns should exist among nearby streams, primarily due to continental margin geometry and watershed hydrology. © 2019 John Wiley & Sons, Ltd.  相似文献   

13.
In many large alluvial rivers, trees often recruit and survive along laterally accreted sediments on bars. This produces a gradient of tree ages and composition with distance from the active channel. However, in low‐order, gravel‐bed mountain streams, such as the stream investigated in this study, it is suggested that vertical accretion results in sediment deposition patterns on bars that are often highly patchy. Consequently, tree species and ages are also heterogeneously distributed, rather than having distinct linear or arcuate banding patterns with distance from the channel. In addition, overall age patterns of trees on these bars follow the distribution of floods, with numerous young trees and few older trees. Recruitment is fairly continuous on these bars and is not correlated with high water years, suggesting that even flows close to bankfull levels are capable of transporting fine sediment to the bars on which trees establish. This pattern of sediment deposition/erosion and the resulting tree recruitment and survival seem to be a result of valley confinement and the lack of lateral accretion in these smaller, mountainous channels. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
1 INTRODUCTIONThe fluvial processes such as transihon of river pattrms, bank chat and advance, sedimentation anderosion of flood plains and channel beds can be Observed in alluvial rivers. These fluvial PrOcesses are allattributed to variations of the sediment caping caPacity of the flow and the erodibillty of bank matrialor soil. A river sechon may be widened by bank erosion and failure.For examPle, a river channel downstream of a reservoir is scoured because the flow released frOm the…  相似文献   

15.
X-ray diffraction (XRD) of the fine matrix component of four alluvial units and modern channel sediments in the Voidomatis River Basin of northwest Greece shows that fine sediment sources have changed considerably during the late Quaternary. The matrix fraction of the modern channel sediments is derived predominantly from erosion of local flysch rocks and soils. During the last glaciation, however, the fine sediment load of the Voidomatis River was dominated by glacially-ground, finely comminuted limestone materials. Limestone-derived fine sediment is not produced in significant amounts under modern climatic conditions. By combining this XRD work with a detailed programme of clast lithologic 1 analysis we have reconstructed former bedload and fine sediment load composition. The lithological properties of both the coarse (8-256 mm) and fine (< 63 μm) elements of the sediment load have varied markedly during the late Quaternary. A simple, semiquantitative assessment of fine sediment mineralogy, using diffractogram peak-height data, has provided a valuable complement to the information gathered from more traditional clast lithological techniques. Together, in favourable geological settings, fine fraction mineralogy and clast lithological analysis can provide a valuable tool for the reconstruction of late Quaternary alluvial environments.  相似文献   

16.
Numerical simulation experiments of water erosion at the local scale (20 × 5 m) using a process‐based model [Plot Soil Erosion Model_2D (PSEM_2D)] were carried out to test the effects of various environmental factors (soil type, meteorological forcing and slope gradient) on the runoff and erosion response and to determine the dominant processes that control the sediment yield at various slope lengths. The selected environmental factors corresponded to conditions for which the model had been fully tested beforehand. The use of a Green and Ampt model for infiltration explained the dominant role played by rainfall intensity in the runoff response. Sediment yield at the outlet of the simulated area was correlated positively with rainfall intensity and slope gradient, but was less sensitive to soil type. The relationship between sediment yield (soil loss per unit area) and slope length was greatly influenced by all environmental factors, but there was a general tendency towards higher sediment yield when the slope was longer. Contribution of rainfall erosion to gross erosion was dominant for all surfaces with slope lengths ranging from 4 to 20 m. The highest sediment yields corresponded to cases where flow erosion was activated. An increase in slope gradient resulted in flow detachment starting upstream. Sediment exported at the outlet of the simulated area came predominantly from the zone located near the outlet. The microrelief helped in the development of a rill network that controlled both the ratio between rainfall and flow erosion and the relationship between sediment yield and slope length. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
In meandering rivers cut into bedrock, erosion across a channel cross‐section can be strongly asymmetric. At a meander apex, deep undercutting of the outer bank can result in the formation of a hanging cliff (which may drive hillslope failure), whereas the inner bank adjoins a slip‐off slope that connects to the hillslope itself. Here we propose a physically‐based model for predicting channel planform migration and incision, point bar and slip‐off slope formation, bedrock abrasion, the spatial distribution of alluvial cover, and adaptation of channel width in a mixed bedrock‐alluvial channel. We simplify the analysis by considering a numerical model of steady, uniform bend flow satisfying cyclic boundary conditions. Thus in our analysis, ‘sediment supply’, i.e. the total volume of alluvium in the system, is conserved. In our numerical simulations, the migration rate of the outer bank is a specified parameter. Our simulations demonstrate the existence of an approximate state of dynamic equilibrium corresponding to a near‐solution of permanent form in which a bend of constant curvature, width, cross‐sectional shape and alluvial cover distribution migrates diagonally downward at constant speed, leaving a bedrock equivalent of a point bar on the inside of the bend. Channel width is set internally by the processes of migration and incision. We find that equilibrium width increases with increasing sediment supply, but is insensitive to outer bank migration rate. The slope of the bedrock point bar varies inversely with both outer bank migration rate and sediment supply. Although the migration rate of the outer bank is externally imposed here, we discuss a model modification that would allow lateral side‐wall abrasion to be treated in a manner similar to the process of bedrock incision. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The response of the Ohau River to a lowering of Lake Benmore of 4 m was monitored during a three-month period when the river was carrying mean daily flows between 100 and 400 m3/s from a power station. Initially, the river degraded by up to 0·8 m for a distance of 1·3 km upstream from the lake, but during the 52-day period of minimum lake level, the delta and lower channel aggraded by up to 0·4 m. During that period, an estimated 225 000 m3 of sediment was supplied to the delta, sufficient for rapid progradation of the delta front into the shallow lake and the observed aggradation of the channel and delta surface. Other factors, in this case receiving-basin geometry and sediment yield, may thus control the response of a river-delta system to relative base-level lowering.  相似文献   

19.
This paper presents a three-dimensional (3-D) numerical model to simulate morphological changes in alluvial channels due to bank erosion. A method for the simulation of bank erosion is established. This is incorporated into a 3-D mathematical model for turbulent flow and non-uniform, non-equilibrium sediment transport. This model is applied to simulate morphological changes in the Shishou bend of the middle Yangtze River in China, where serious bank erosions occurred during the last two decades. The double-layer sediment structure of the riverbank on the middle Yangtze River is taken into account in the bank erosion module. Both cohesive and non-cohesive bank material in the different layers are considered. The bank erosion module also includes other factors affecting the rate of bank erosion, such as the longitudinal length of failed bank, the thickness of each layer in the double-layer structure, and the erosion-resisting effect of cohesive material from the top layer of failed bank. A locally-adaptive grid system is proposed to efficiently simulate the lateral migration of alluvial channel due to bank erosion. The predictive capability of the 3-D model is examined by laboratory data. Simulated processes of bank erosion agree with field observations in the Shishou bend during the period of October 1996–October 1998, and the bank erosion module plays a significant role in simulating morphological changes of the study reach. In addition, the equivalent channel-forming discharge, which is defined as a constant discharge that can create the same amount of bank erosion in an alluvial channel as that created by natural runoff processes during the same period of time, is proposed to improve calculation efficiency for feasibility studies.  相似文献   

20.
The interaction between particle weathering and surface armouring and its effect on erosion has been investigated. The effect of soil armouring is to decrease sediment transport with time by preferentially stripping away fine particles. On the other hand the effect of weathering, which breaks down the particles in the armour, is generally believed to increase erosion. By extending an existing armouring model, ARMOUR, and using a variety of published weathering mechanisms this interaction has been explored. The model predicts that while this is generally true, in some cases erosion can be decreased by weathering. When the particles generated by weathering were approximately of equal diameter, erosion increased while armouring decreased. When weathering produced very fine particles by spalling, erosion increased and armouring also increased. When weathering produced a range of particles from fine to coarse, the armour layer broke down and erosion decreased relative to the no‐weathering case. This latter decrease in erosion was due to the high entrainment of coarser transportable materials from the bed decreasing the sediment transport capacity of the flow. In these studies clear regimes could be identified where erosion was limited by either the energy of the flow alone (i.e. ‘transport‐limited’), or the rate of weathering (‘weathering‐limited’); however, for some mechanisms there was an interaction between the two, which we called ‘weathering/transport limited’. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号