首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The well-known Rouse equation is the most widely used equation to determine the vertical distribution of suspended sediment concentration in an open-channel flow. The exponent of Rouse equation, known as Rouse number, contains the parameter β defined by the ratio of sediment diffusion coefficient to turbulent diffusion coefficient. As such to measure sediment concentration accurately, an appropriate expression for β is essentially needed. The present study, therefore, focuses on the derivation of depth-averaged β through modified expressions of sediment and turbulent diffusion coefficients. A regression analysis is done to establish the relation between β and normalized settling velocity, and the relation is used to determine suspension concentration.  相似文献   

2.
The retention of particles within meadows of submerged aquatic vegetation impacts the fate of organic matter, pollen, and larvae. Because flow conditions near the leading edge differ from those over the bulk of the canopy, particle retention is likely to differ as well. In particular, near the leading edge of a wide meadow, flow deceleration generates a vertical updraft, which impacts particle fate. In the fully developed region of the meadow, shear layer vortices at the top of the meadow may also influence particle fate. In this study, the retention of particles was measured along the length of a 10-m model meadow (height h?=?0.1 m) and was connected to the evolving flow field. Two particle sizes, with settling velocity w s50?=?0.00075?,?0.018 m s?1, were released at two heights within the model meadow \( \left(\frac{Z_{rel}}{h}=0.31,0.81\right). \) The retention of particles was measured using microscope slides distributed along the flume bed. Retention increased with distance from the leading edge, associated with the decrease in vertical updraft. Retention was also greater for the particles with higher settling velocity. In the fully developed region of the meadow, particle retention was lower for particles influenced by the shear layer vortices at the top of the meadow (\( \frac{Z_{rel}}{h}=0.81 \)).  相似文献   

3.
Steady-state vertical distribution of cohesive sediments in a flow   总被引:1,自引:0,他引:1  
Settling velocity of diluted suspended aggregates is examined under steady-state conditions. It is shown that if the local settling velocity of the suspended mass of sediments at the bottom is gamma distributed, then, the vertical variation of the local mean settling velocity W¯ is proportional to a power 1/r of the local concentration C, where r is the gamma distribution parameter. That is a consequence of the suspended-sediment sorting produced by the vertical dynamics. The parameter r characterizes the range of settling velocity values for all the aggregates simultaneously in suspension. To cite this article: M. Sánchez et al., C. R. Geoscience 337 (2005).  相似文献   

4.
The use of shear wave velocity (V s) measurements as an in situ test for evaluation of liquefaction potential has increased substantially due to its advantages. Relatively large numbers of studies have been performed to establish the correlation between V s and liquefaction resistance (CRR) of clean sands. Usually, natural sands contain silt and/or clay, and previous studies have shown that both the amount of fines and their nature influence the values of CRR as well as V s. Therefore, the CRR–V s correlations may also be affected by fines content and type of sandy soils. However, effect of fines content and especially fines type of sandy soils on the correlation between V s and CRR is inadequately addressed in the literature. In this study, cyclic triaxial and bender element tests were conducted on samples of sand containing various amounts of different types of fines, and the effects of fines on the values of CRR and V s are investigated. The results show that G 0 and CRR reduce even when small amounts of fines are added to sand. Therefore, use of plasticity index (PI) of the fines fraction is better than the PI of the overall soil when trying to assess the effects of fines. Using obtained experimental data as well as the established semiempirical CRR–V s relationship, the CRR–V s correlation was developed for all the tested soils, and the effect of fines type on the correlation is also examined. Based on the results obtained in this study, CRR–V s correlation is affected by both the amount and the plasticity of the fines present in the sand, and this correlation is soil specific.  相似文献   

5.
The present paper deals with the specification of bed erosion flux that accounts for the effects of sediment-induced stratification in the water column. Owing to difficulties in measuring the bed shear stress b and the erosive shear strength s, we suggest a series of methods that combine laboratory and numerical experiments. A simplified turbulent transport model that includes these effects helps to quantify b and s. Focusing on soft stratified beds, the present study considers erosion rate formulas of the form =f exp {[Tb-Ts]} where is a model constant (=1 for Gularte's (1978) formula and =1/2 for Parchure's (1984) formula). First, the bed erosive strength profile s(Z) is adjusted by forcing the turbulent transport model with measured erosion rates. Second, three procedures are suggested to determine the erosion rate formula coefficients f and : a global procedure and two different layer-by-layer procedures. Each procedure is applied to an erosion experiment conducted in a rotating annular flume by Villaret and Paulic (1986). The use of the layer-by-layer procedure based on a least squares fitting technique provides a closer fit than the global procedure. The present study points out the complementarity of experimental and numerical approaches and also suggests possible improvements in laboratory test procedures.  相似文献   

6.
The estimated undrained shear strength (su) is often not a unique value because it can be evaluated by various test types and/or procedures, such as different failure modes, shear strain rates, and boundary conditions. This study explores (1) the relationship between reference undrained shear strength and in situ shear wave velocity in terms of the effective overburden stress, and (2) the independent relationships to evaluate the undrained shear strength with special consideration of different directional and polarization modes (VH, HV, HH shear waves), which has not been reported. This evaluation is done via a worldwide database compiled from 43 well-documented geotechnical test sites associated with soft ground. Finally, new correlation models are proposed to estimate the undrained shear strength based on the in situ shear wave velocity as well as the plasticity index or the overconsolidation ratio. The application of the shear wave velocity–undrained shear strength relation is illustrated through two independent case studies. The proposed relationships are expected to contribute to reasonable estimates of undrained shear strength as well as offer practical guidance on even extrapolation beyond the data that is available to geotechnical engineers.  相似文献   

7.
The undrained shear strength (s u) of cohesive soils is a crucial parameter for many geotechnical engineering applications. Due to the complexities and uncertainties associated with laboratory and in situ tests, it is a challenging task to obtain the undrained shear strength in a reliable and economical manner. In this study, a probabilistic model for the s u of moderately overconsolidated clays is developed using the Bayesian model class selection approach. The model is based on a comprehensive geotechnical database compiled for this study with field measurements of field vane strength (s u), plastic limit (PL), natural water content (W n), liquid limit (LL), vertical effective overburden stress (\(\sigma_{\nu }^{\prime }\)), preconsolidation pressure (\(\sigma_{\text{p}}^{\prime }\)) and overconsolidated ratio (OCR). Comparison study shows that the proposed model is superior to some well-known empirical relationships for OC clays. The proposed probabilistic model not only provides reliable and economical estimation of s u but also facilitates reliability-based analysis and design for performance-based engineering applications.  相似文献   

8.
The time scales and mechanics of gravitationally driven crystal settling and compaction is investigated through high temperature (1,280–1,500 °C) centrifuge-assisted experiments on a chromite-basalt melt system at 100–1,500g (0.5 GPa). Subsequently, the feasibility of this process for the formation of dense chromite cumulate layers in large layered mafic intrusions (LMIs) is assessed. Centrifugation leads to a single cumulate layer formed at the gravitational bottom of the capsule. The experimentally observed mechanical settling velocity of a suspension of ~24 vol% chromite is calculated to be about half (~0.53) of the Stokes settling velocity, with a sedimentation exponent n of 2.35 (3). Gravitational settling leads to an orthocumulate layer with a porosity of 0.52 (all porosities as fraction). Formation times for such a layer from a magma with initial chromite contents of 0.1–1 vol% are 140–3.5 days, equal to a growth rate of 0.007–0.3 m/day for grain sizes of 1–2 mm. More compacted chromite layers form with increasing centrifugation time and acceleration through chemical compaction: An increase of grain contact areas and grain sizes together with a decrease in porosity is best explained by pressure dissolution at grain contacts, reprecipitation and grain growth into the intergranular space and a concomitant expulsion of intergranular melt. The relation between the porosity in the cumulate pile and effective pressure integrated over time (Δρ · h · a · t) is best fit with a logarithmic function, in fact confirming that a (pressure) dissolution–reprecipitation process is the dominant mechanism of compaction. The experimentally derived equation allows calculating compaction times: 70–80 % chromite at the bottom of a 1-m-thick chromite layer are reached after 9–250 years, whereas equivalent compaction times are 0.2–0.9 years for olivine (both for 2 mm grain size). The experiments allow to determine the bulk viscosities of chromite and olivine cumulates to be of magnitude 109 Pa s, much lower than previously reported. As long as melt escape from the compacting cumulate remains homogeneous, fluidization does not play any role; however, channelized melt flow may lead to suspension and upward movement of cumulate crystals. In LMIs, chromitite layers are typically part of a sequence with layers of mafic minerals, compaction occurs under the additional weight of the overlying layers and can be achieved in a few years to decades.  相似文献   

9.
Dissolution and precipitation rates of brucite (Mg(OH)2) were measured at 25°C in a mixed-flow reactor as a function of pH (2.5 to 12), ionic strength (10−4 to 3 M), saturation index (−12 < log Ω < 0.4) and aqueous magnesium concentrations (10−6 to 5·10−4 M). Brucite surface charge and isoelectric point (pHIEP) were determined by surface titrations in a limited residence time reactor and electrophoretic measurements, respectively. The pH of zero charge and pHIEP were close to 11. A two-pK, one site surface speciation model which assumes a constant capacitance of the electric double layer (5 F/m2) and lack of dependence on ionic strength predicts the dominance of >MgOH2+ species at pH < 8 and their progressive replacement by >MgOH° and >MgO as pH increases to 10-12. Rates are proportional to the square of >MgOH2+ surface concentration at pH from 2.5 to 12. In accord with surface speciation predictions, dissolution rates do not depend on ionic strength at pH 6.5 to 11. Brucite dissolution and precipitation rates at close to equilibrium conditions obeyed TST-derived rate laws. At constant saturation indices, brucite precipitation rates were proportional to the square of >MgOH2+ concentration. The following rate equation, consistent with transition state theory, describes brucite dissolution and precipitation kinetics over a wide range of solution composition and chemical affinity:
  相似文献   

10.
High concentrations of naturally occurring radium pose environmental and health concerns in natural and industrial systems. The adsorption of Ra2+ in saline water is limited compared to its adsorption in fresh water, but the process of co-precipitation may be effective in decreasing its concentration. However, despite its importance, Ra co-precipitation has rarely been studied in high ionic strength environments such as those in evaporitic systems.The fate of Ra in the reject brine of a desalination plant was studied via evaporation batch experiments at ionic strengths (I) ranging from 0.7 to 7.0 mol kg−1. Precipitation sequences revealed that Ra co-precipitated with barite, even though the latter was a trace mineral compared to the precipitated gypsum. The concentration-based effective partition coefficient, , for the co-precipitation reaction was 1.04 ± 0.01. This value of is significantly lower than the value for relatively diluted solutions (1.8 ± 0.1). This low value of is mainly the result of a kinetic effect but is also slightly affected by the ionic strength.Both effects are quantitatively examined in the present paper. It is suggested that a kinetic effect influences the nucleation of (Ra,Ba)SO4, reducing the value of the partition coefficient. This kinetic effect is caused by the favorable nucleation of a more soluble phase (i.e., a phase with a higher BaSO4 fraction). An additional decrease in the partition coefficient results from the ionic strength effect. Considering the activity of Ra2+ and Ba2+ in the solution (rather than their concentration) makes it possible to determine the activity-based partition coefficient (), which accounts for the ionic strength effect. was calculated empirically from the experiments and theoretically via a kinetic model. The two derived values are consistent with one another and indicate the combined effect of ionic strength and precipitation kinetics.Finally, the common assumption that γRa2+/γBa2+=1 was re-examined using a numerical model to predict the experimental results. As the ionic strength increases, this assumption becomes less appropriate for predicting the change in as calculated in the experiments. Understanding the co-precipitation of Ra in such systems is crucial for risk assessments in which both Ra concentration and ionic strength are relatively high.  相似文献   

11.
We have carried out a detailed identification of lines in the optical spectrum of the post-AGB star V510 Pup associated with the infrared source IRAS 08005-2356 based on observations with high spectral resolution. Absorption lines of the ions FeII, TiII, CrII, and YII are present at wavelengths from 4549 to 8546 Å. The absorption by YII and other s-process elements is anomalously strong, and the absorption is also strong in the circumstellar C2 Swan bands. The profiles of most of the lines (of hydrogen and metals) display P Cygni absorption-emission profiles. All the absorption lines are shifted toward the blue, suggesting an outflow of stellar material. The expansion velocity of the envelope derived from the Swan bands arising there is V exp =42 km/s. The highest wind velocity determined from the absorption wings of the FeII(42) P Cygni profiles reaches 240 km/s. Based on the star’s kinematic characteristics and the amount of interstellar absorption, it is at a distance of d≈3?4 kpc, which corresponds to an absolute magnitude of Mv≈?6m.  相似文献   

12.
We have obtained the stellar velocity dispersion in three mutually perpendicular directions in the halos and cores of clusters as a function of time for several non-stationary open-cluster models. During the dynamical evolution of the open-cluster models, the velocity dispersions undergo oscillations that do not decay during 5–10 violent-relaxation timescales, τ vr . We estimated the time for synchronization of the rotation of the open-cluster models and their motion around the center of the Galaxy, t s , which, depending on the model parameters, is t s ? (5–27)τ vr . Synchronization mechanisms for the models are discussed. The disruption of the systems in the force field of the Galaxy is strongly affected by tidal friction. We have also estimated the time for the formation of a spherical stellar-velocity distribution in the cluster models, t σ ? (6 ? 25)τ vr . The impact of instability in the stellar motions in a cluster on the formation of a spherical velocity distribution in the open-cluster models is discussed. We have noted a tendency for a weakening of the dependence of the coarse phase density of the cluster on small initial perturbations of the stellar phase coordinates in the model cluster cores for times about five times longer than the violent-relaxation time.  相似文献   

13.
A simple physical model of gravitational settling from an unsorted, unflocculated source suspension is presented and an equation derived to describe the grain-size spectra of the resulting bottom sediment. Results of grain-size analyses of sediments from a variety of environments and geographical locations are shown to conform with the postulated model. The characteristic size spectrum, termed ‘one-round’ sediment, identifies a deposit which has settled from suspension with no subsequent reworking resulting in modification of the grain-size distribution. The distribution of settling rates of grains in the suspension may be inferred from an analytical form fit to the bottom sediment grain-size spectrum, along with knowledge of certain physical characteristics of the fluid (e.g. mean velocity profile).  相似文献   

14.
Lead speciation in many aqueous geochemical systems is dominated by carbonate complexation. However, direct observations of Pb2+ complexation by carbonate ions are few in number. This work represents the first investigation of the equilibrium over a range of ionic strength. Through spectrophotometric observations of formation at 25 °C in NaHCO3-NaClO4 solutions, formation constants of the form were determined between 0.001 and 5.0 molal ionic strength. Formation constant results were well represented by the equation:
  相似文献   

15.
The attachment energies, the slice energies and the specific surface energies can be calculated in an electrostatic point charge model using the formula derived by Madelung for the potential introduced by an infinite row of equally spaced point charges. Power series are given for the Hankel function iH (0) (1) (iy) and (x)=d ln x!/dx. The logarithmic expression in the Madelung formula converges rapidly when applying a power series, which combines equally charged cations and anions. Besides the specific surface energy ( hkl), the slice energy (E s hkl ) and the attachment energy (E a hkl ) can be considered as special categories of surface energies as they depend on surface configurations as well. The specific surface energy is the energy per unit area of surface needed to split the crystal parallel to a face (hkl). The attachment energy (E a) is the energy released per mole, when a new slice of thickness d hkl crystallizes on an already existing crystal face (hkl). The growth rate of the crystal face (hkl) is a function of its attachment energy. The slice energy (E s) is the energy released per mole, when a new slice d hkl is formed from the vapour neglecting the influence of edge energies. The lattice energy (E c) which is the energy released per mole of a crystal crystallizing from the vapour, is given by the following relation: E c=E a+E s.  相似文献   

16.
We analyze previously published geodetic data and intensity values for the M s = 8.1 Shillong (1897), M s = 7.8 Kangra (1905), and M s = 8.2 Nepal/Bihar (1934) earthquakes to investigate the rupture zones of these earthquakes as well as the amplification of ground motions throughout the Punjab, Ganges and Brahmaputra valleys. For each earthquake we subtract the observed MSK intensities from a synthetic intensity derived from an inferred planar rupture model of the earthquake, combined with an attenuation function derived from instrumentally recorded earthquakes. The resulting residuals are contoured to identify regions of anomalous intensity caused primarily by local site effects. Observations indicative of liquefaction are treated separately from other indications of shaking severity lest they inflate inferred residual shaking estimates. Despite this precaution we find that intensites are 1–3 units higher near the major rivers, as well as at the edges of the Ganges basin. We find evidence for a post-critical Moho reflection from the 1897 and 1905 earthquakes that raises intensities 1–2 units at distances of the order of 150 km from the rupture zone, and we find that the 1905 earthquake triggered a substantial subsequent earthquake at Dehra Dun, at a distance of approximately 150 km. Four or more M = 8 earthquakes are apparently overdue in the region based on seismic moment summation in the past 500 years. Results from the current study permit anticipated intensities in these future earthquakes to be refined to incorporate site effects derived from dense macroseismic data.  相似文献   

17.
Recent improvements to experiments and modelling of batch dissolution in a turbulent reactor, based upon the shrinking object model, are extended to middle loadings of gypsum, that is, in the region between low and high loadings, which lead, respectively, to high under-saturation or saturation with a great excess of solid left undissolved. Dissolved calcium sulphate concentration was monitored by change in electrical conductivity. This investigation uses an improved, ion-pair model for CaSO 4 0 to allow for the presence of calcium or sulphate added as common ions. The study demonstrates that the full dissolution curve for 5.82 mM loadings of 106-μm particles of gypsum (~1.00 g L?1) in de-ionised water barely changed in the presence of either 4.64 or 8.09 mM calcium chloride, or 4.39 mM sodium sulphate. However, this masked a doubling of dissolution rate imposed by comparable increases in ionic strength from sodium chloride. The results are consistent with the ion pair, CaSO 4 0 , being the key species in the rate-determining step of the back-reaction, and perhaps all salt dissolutions, including calcium carbonate. In this case, the rate equation is as follows: \( {\frac{{{\text{d}}c}}{{{\text{d}}t}}} = \frac{S}{V} \cdot (k_{1} - k_{2}^{\prime } \cdot [{\text{CaSO}}_{ 4}^{0} ]) \), where k 1 and k 2′ are rate constants. The reported observations are interpreted as effects of ionic strength and common ion concentrations upon the formation equilibrium for the ion pair. This rate equation readily transforms mathematically to one involving the product of [Ca2+] and [SO4 2?] in the back-reaction. The parallel of this with the well-known PWP equation used in calcium carbonate dissolution is discussed, with the CaHCO3 + ion pair of the equation being replaced by that of CaCO 3 0 . Meanwhile, the earlier use of the product, [Ca2+]½ × [CO3 2?]½, in the back-reaction term of another dissolution rate equation for calcite is shown to be incorrect. Finally, it is argued that the shrinking object model should be repositioned as a logical derivative of the hydrodynamical approach to dissolution.  相似文献   

18.
Aqueous iodine species occur mainly as iodide (I) and iodate (IO3), depending on redox conditions. The adsorption of IO3 on naturally occurring oxides under oxic conditions is of environmental concern. The adsorption behaviors of IO3 by hydrous ferric oxide (HFO), α-FeOOH, and γ-Al2O3 were examined in this study as functions of pH, ionic strength, and solid concentration. Adsorption data were analyzed using an extended triple-layer model (ETLM) for surface complexation modeling to infer IO3 adsorption reactions and equilibrium constants. Results of ETLM analysis suggest that adsorption of IO3 is both an outer-sphere and an inner-sphere process, as expressed by the following complexation reactions, which are consistent with the independent pressure jump kinetic results and adsorption enthalpy measurements
  相似文献   

19.
Spectrophotometric measurements of the pH in natural waters such as seawater have been shown to yield precise results. In this paper, the sulfonephthalein indicator m-cresol purple (mCP, H2I) has been used to determine the pH of NaCl brines. The indicator has been calibrated in NaCl solutions from 5 to 45 °C and ionic strengths from 0.03 to 5.5 m. The calibrations were made using TRIS buffers (0.03 m, TRIS/TRIS-HCl) with known dissociation constants pKTRIS in NaCl solutions [Foti C., Rigano C. and Sammartano S. (1999) Analysis of thermodynamic data for complex formation: protonation of THAM and fluoride ion at different temperatures and ionic strength. Ann. Chim. 89, 1-12]. The values of pH were determined from
pH=pKmCP+log{(R-e1)/(e2-Re3)}  相似文献   

20.
Steady-state magnesite dissolution rates were measured in mixed-flow reactors at 150 and 200 °C and 4.6 < pH < 8.4, as a function of ionic strength (0.001 M ? I ? 1 M), total dissolved carbonate concentration (10−4 M < ΣCO2 < 0.1 M), and distance from equilibrium. Rates were found to increase with increasing ionic strength, but decrease with increasing temperature from 150 to 200 °C, pH, and aqueous CO32− activity. Measured rates were interpreted using the surface complexation model developed by Pokrovsky et al. (1999a) in conjunction with transition state theory (Eyring, 1935). Within this formalism, magnesite dissolution rates are found to be consistent with
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号