首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Fine sediment inputs can alter estuarine ecosystem structure and function. However, natural variations in the processes that regulate sediment transport make it difficult to predict their fate. In this study, sediments were sampled at different times (2011–2012) from 45 points across intertidal sandflat transects in three New Zealand estuaries (Whitford, Whangamata, and Kawhia) encompassing a wide range in mud (≤63 μm) content (0–56 %) and macrofaunal community structure. Using a core-based erosion measurement device (EROMES), we calculated three distinct measures of sediment erosion potential: erosion threshold (? c ; N m?2), erosion rate (ER; g m?2 s?1), and change in erosion rate with increasing bed shear stress (m e ; g N?1 s?1). Collectively, these measures characterized surface (? c and ER) and sub-surface (m e ) erosion. Benthic macrofauna were grouped by functional traits (size and motility) and data pooled across estuaries to determine relationships between abiotic (mud content, mean grain size) and biotic (benthic macrofauna, microbial biomass) variables and erosion measures. Results indicated that small bioturbating macrofauna (predominantly freely motile species <5 mm in size) destabilized surface sediments, explaining 23 % of the variation in ? c (p ≤ 0.01) and 59 % of the variation in ER (p ≤ 0.01). Alternatively, mud content and mean grain size cumulatively explained 61 % of the variation in m e (p ≤ 0.01), where increasing mud and grain size stabilized sub-surface sediments. These results highlight that the importance of biotic and abiotic predictors vary with erosion stage and that functional group classifications are a useful way to determine the impact of benthic macrofauna on sediment erodibility across communities with different species composition.  相似文献   

2.
To test a recently developed oxybarometer for silicic magmas based on partitioning of vanadium between magnetite and silicate melt, a comprehensive oxybarometry and thermometry study on 22 natural rhyolites to dacites was conducted. Investigated samples were either vitrophyres or holocrystalline rocks in which part of the mineral and melt assemblage was preserved only as inclusions within phenocrysts. Utilized methods include vanadium magnetite–melt oxybarometry, Fe–Ti oxide thermometry and -oxybarometry, zircon saturation thermometry, and two-feldspar thermometry, with all analyses conducted by laser-ablation ICP–MS. Based on the number of analyses, the reproducibility of the results and the certainty of contemporaneity of the analyzed minerals and silicate melts the samples were grouped into three classes of reliability. In the most reliable (n = 5) and medium reliable (n = 10) samples, all fO2 values determined via vanadium magnetite–melt oxybarometry agree within 0.5 log units with the fO2 values determined via Fe–Ti oxide oxybarometry, except for two samples of the medium reliable group. In the least reliable samples (n = 7), most of which show evidence for magma mixing, calculated fO2 values agree within 0.75 log units. Comparison of three different thermometers reveals that temperatures obtained via zircon saturation thermometry agree within the limits of uncertainty with those obtained via two-feldspar thermometry in most cases, whereas temperatures obtained via Fe–Ti oxide thermometry commonly deviate by ≥50 °C due to large uncertainties associated with the Fe–Ti oxide model at T-fO2 conditions typical of most silicic magmas. Another outcome of this study is that magma mixing is a common but easily overlooked phenomenon in silicic volcanic rocks, which means that great care has to be taken in the application and interpretation of thermometers and oxybarometers.  相似文献   

3.
Debris flow density determined by grain composition   总被引:1,自引:1,他引:0  
Density is one of the most important parameters of debris flows. Because observing an active debris flow is very difficult, finding a method to estimate debris flow density is urgently needed for disaster mitigation engineering. This paper proposes an effective empirical equation in terms of grain size distribution (GSD) parameters based on observations in Jiangjia Gully, Yunnan Province, China. We found that the GSD follows P(D) = KD exp(? D/Dc), with μ and Dc representing the fine and coarse grains, respectively. In particular, μ is associated with some characteristic porosity of soil in the natural state and increases with increased porosity. Dc characterizes the grain size range of the flow and increases with the grain concentration. Studies show that flow density is related to both parameters in power law. Here, we propose an empirical equation for estimating flow density: ρ = 1.26μ -0.132 + 0.049Dc0.443, which provides not only an estimation of the density for a flow, but also describes the variation in density with the GSD of material composition; this provides important information related to the design of debris flow engineering structures.  相似文献   

4.
Bubbles grow in decompressing magmas by simple expansion and by diffusive supply of volatiles to the bubble/melt interface. The latter phenomenon is of significant geochemical interest because diffusion can fractionate elements and isotopes (or isotopologues) of dissolved components. This raises the possibility that the character of volatile components in bubbles may not reflect that of volatiles dissolved in the host melt over the lifetime of a bubble—even in the absence of equilibrium vapor/melt isotopic fractionation. Recent experiments have confirmed the existence of an isotope mass effect on diffusion of the volatile element Cl in silicate melt [Fortin et al. (Isotopic fractionation of chlorine during chemical diffusion in a dacitic melt and its implications for isotope behavior during bubble growth (abstract), 2016 Fall AGU Meeting, 2016)], so there is a clear need to understand the efficacy of diffusive fractionation during bubble growth. In this study, numerical models of diffusion and mass redistribution during bubble growth were implemented for both “passive” volatiles—those whose concentrations are generally well below saturation levels—and “active” volatiles such as CO2 and H2O, whose elevated concentrations and limited solubilities are the cause of bubble nucleation and growth. Both diffusive and convective bubble-growth scenarios were explored. The magnitude of the isotope mass effect on passive volatiles partitioned into bubbles growing at a constant rate R in a static system depends upon R/D L, K d and D H/D L (K d = bubble/melt partition coefficient; D H/D L = diffusivity ratio of the heavy and light isotopes). During convective bubble growth, the presence of a discrete (physical) melt boundary layer against the growing bubble (of width x BL) simplifies outcomes because it leads to the quick onset of steady-state fractionation during growth, the magnitude of which depends mainly upon R?x BL/D L and D H/D L (bubble/melt fractionation is maximized at R?x BL/D L ≈0.1). Constant R is unrealistic for most real systems, so other scenarios were explored by including the solubility and EOS of an “active” volatile (e.g., CO2) in the numerical simulations. For plausible decompression paths, R increases exponentially with time—leading, potentially, to larger isotopic fractionation of species partitioned into the growing bubble. For volatile species whose isotope mass effects on diffusion have been measured (Cl, Li), predicted isotope fractionation in the exsolved vapor can be as large as ?4‰ for Cl and ?25‰ for Li.  相似文献   

5.
The b-value of the Gutenberg–Richter’s frequency–magnitude relation and the p-value of the modified Omori law, which describes the decay rate of aftershock activity, were investigated for more than 500 aftershocks in the Aksehir-Afyon graben (AAG) following the 15 December 2000 Sultandagi–Aksehir and the 3 February 2002 Çay–Eber and Çobanlar earthquakes. We used the Kandilli Observatory’s catalog, which contains records of aftershocks with magnitudes ≥2.5. For the Çobanlar earthquake, the estimated b-values for three aftershock sequences are in the range 0.34 ≤  b ≤ 2.85, with the exception of the one that occurred during the first hour (4.77), while the obtained p-values are in the range 0.44 ≤ p ≤ 1.77. The aftershocks of the Sultandagi earthquake have a high p-value, indicating fast decay of the aftershock activity. A regular increase of b can be observed, with b < 1.0 after 0.208 days for the Çay–Eber earthquake. A systematic and similar increase and decrease pattern exists for the b- and p-values of the Çobanlar earthquakes during the first 5 days.  相似文献   

6.
Diffusion couple experiments with wet half (up to 4.6 wt%) and dry half were carried out at 789–1,516 K and 0.47–1.42 GPa to investigate water diffusion in a peralkaline rhyolitic melt with major oxide concentrations matching Mount Changbai rhyolite. Combining data from this work and a related study, total water diffusivity in peralkaline rhyolitic melt can be expressed as:
$ D_{{{\text{H}}_{ 2} {\text{O}}_{\text{t}} }} = D_{{{\text{H}}_{ 2} {\text{O}}_{\text{m}} }} \left( {1 - \frac{0.5 - X}{{\sqrt {[4\exp (3110/T - 1.876) - 1](X - X^{2} ) + 0.25} }}} \right), $
$ {\text{with}}\;D_{{{\text{H}}_{ 2} {\text{O}}_{\text{m}} }} = \exp \left[ { - 1 2. 7 8 9- \frac{13939}{T} - 1229.6\frac{P}{T} + ( - 27.867 + \frac{60559}{T})X} \right], $
where D is in m2 s?1, T is the temperature in K, P is the pressure in GPa, and X is the mole fraction of water and calculated as = (C/18.015)/(C/18.015 + (100 ? C)/33.14), where C is water content in wt%. We recommend this equation in modeling bubble growth and volcanic eruption dynamics in peralkaline rhyolitic eruptions, such as the ~1,000-ad eruption of Mount Changbai in North East China. Water diffusivities in peralkaline and metaluminous rhyolitic melts are comparable within a factor of 2, in contrast with the 1.0–2.6 orders of magnitude difference in viscosities. The decoupling of diffusivity of neutral molecular species from melt viscosity, i.e., the deviation from the inversely proportional relationship predicted by the Stokes–Einstein equation, might be attributed to the small size of H2O molecules. With distinct viscosities but similar diffusivity, bubble growth controlled by diffusion in peralkaline and metaluminous rhyolitic melts follows similar parabolic curves. However, at low confining pressure or low water content, viscosity plays a larger role and bubble growth rate in peralkaline rhyolitic melt is much faster than that in metaluminous rhyolite.
  相似文献   

7.
Evans blue (EB) dye has been successfully removed from aqueous solution through chemisorption process with synthetic layered double hydroxides (LDH) [Zn1?x Al x (OH)2NO3·nH2O, x = 0.2–0.33]. Detailed evaluation of dye adsorption characteristics in aqueous medium has been studied for different layer charged hydroxides. The objective of the study was efficient removal of a dye by LDH and understanding the structure–property relationship of the LDH on its adsorption behaviour. Highest Langmuir monolayer adsorption capacity (Qt) of 113.64 mg g?1 was observed for highest layer charge x = 0.33, and it is higher than previously reported values for the LDH-EB dye system. Under optimized condition, 99% of EB dye is removed from aqueous solution within 60 min at 313 K. The monotonous increase in Qt value with increasing layer charge is correlated with layer charge density (LCD) and lower particle size of the synthetic LDH. The variation in Qt among different layer charged materials is marginal (3.46–4.17%) with respect to the respective anion exchange capacity (AEC) of LDH NO3. The limited contribution of AEC surmises the occurrence of surface-only adsorption and absence of intercalation as validated by the XRD analysis. The spontaneity of the EB dye removal increases with increasing temperature and LCD. The chemisorption nature of the adsorption reaction is well supported by the thermodynamics values.  相似文献   

8.
Pyroxenes of general stoichiometry Mg(Ge x Si1?x )O3 were encountered in attempts to synthesise Ge-substituted talcs at 0.2 GPa, 650–700 °C. Orthopyroxenes (Pbca) of compositions x = 0.21, 0.30, and 0.34 were identified, and also a P21/c clinopyroxene of composition x = 0.63, and C2/c clinopyroxenes of compositions x = 0.91 and 1. End-member clinoenstatite MgSiO3-P21/c synthesised at 16 GPa, 1300 °C and transformed from C2/c was also included in the study. Crystal structure refinements using single-crystal XRD data showed that unit-cell parameters vary linearly with Si–Ge for the Pbca and P21/c pyroxenes, both of which have two symmetrically non-equivalent tetrahedral chains. Refinement of Si–Ge occupancies at tetrahedral sites showed that the two chains of all primitive pyroxenes have very different compositions, with XGe(TB) ? XGe(TA). This difference arises from the greater flexibility of the B-chain to rotate in response to tetrahedral expansion due to increasing Ge content. The TA-M2 shared polyhedral edge imposes significant constraints on the flexibility of the A-chain, which can accommodate much less Ge than the B-chain. Linear trends of cell parameters, site occupancies, and structural parameters for the primitive pyroxenes, when extrapolated to published data for MgGeO3Pbca, extend across the entire Si–Ge join.  相似文献   

9.
Sized aggregates of glasses (47–84 wt% SiO2) were fused from igneous-derived cohesive fault rock and igneous rock, and step-heated from ~400 to >1,200 °C to obtain their 39Ar diffusion properties (average E=33,400 cal mol?1; D o=4.63×10?3 cm2 s?1). At T<~1,000 °C, glasses containing <~69 wt% SiO2 and abundant network-forming cations (Ca, Fe, Mg) reveal moderate to strong non-linear increases in D and E, reflecting structural modifications as the solid transitions to melt. Extrapolation of these Arrhenius properties down to typical geologic T-t conditions could result in a 1.5 log10 unit underestimation in the diffusion rate of Ar in similar materials. Numerical simulations based upon the diffusion results caution that some common geologic glasses will likely yield 40Ar/39Ar cooling ages rather than formation ages. However, if cooling rates are sufficiently high, ambient temperatures are sufficiently low (e.g., <65–175 °C), and coarse particles (e.g., radius (r) >~1 mm) are analyzed, glasses with compositions similar to ours may preserve their formation ages.  相似文献   

10.
There is currently limited research available on the secondary metabolites of moulds in workplaces. The aim of this study was to determine the mould contamination in museums (N = 4), composting plants (N = 4) and tanneries (N = 4) and the secondary metabolite profiles of Alternaria, Aspergillus and Penicillium isolates from these workplaces. Alternaria, Aspergillus and Penicillium species were identified using the ITS1/2 sequence of the rDNA region. Mould metabolites were quantitatively analysed on standard laboratory medium and mineral medium containing materials specific to each workplace using liquid chromatography-mass spectrometry. We also examined the cytotoxicity of the moulds using MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assays. Air microbiological contamination analyses showed a number of microorganisms, ranging from 2.4 × 103 CFU m?3 (composting plants) to 6.8 × 104 CFU m?3 (tanneries). We identified high percentages of Alternaria, Aspergillus and Penicillium moulds (air 57–59%, surfaces 10–65%) in all workplaces. The following moulds were the most cytotoxic (>90%): Alternaria alternata, A. limoniasperae, Aspergillus flavus, Penicillium biourgeianum, P. commune and P. spinulosum. The same mould species isolated from different working environments exhibited varying toxigenic and cytotoxic properties. Modifying the culture medium to simulate environmental conditions most often resulted in the inhibition of secondary metabolite production. Moulds isolated from the working environments produced the following mycotoxins (ng g?1): chanoclavines (0.28–204), cyclopiazonic acid (27.1–1045), fumigaclavines (0.33–10,640,000), meleagrin (0.57–13,393), roquefortins (0.01–16,660), rugulovasines (112–220), viridicatin (0.12–957), viridicatol (4.23–2753) and quinocitrinines (0.07–1104), which may have a negative impact on human health.  相似文献   

11.
The Southern Marginal Zone of the Limpopo Complex is composed of granite-greenstone cratonic rocks reworked by a Neoarchean high-grade tectono-metamorphic event. Petrographic and mineral chemical characterization of an Al–Mg granulite from this zone is presented here. The granulite has a gneissic fabric with distinct Al-rich and Si-rich layers, with the former preserving the unusual lamellar (random and regular subparallel) intergrowths of corundum and symplectic intergrowth of spinel with orthopyroxene. The Al-rich layer preserves mineral assemblages such as rutile with orthopyroxene + sillimanite ± quartz, Al-rich orthopyroxene (~11 wt%), spinel + quartz, and corundum in possible equilibrium with quartz, while the Si-rich layer preserves antiperthites and orthopyroxene + sillimanite ± quartz, all considered diagnostic of ultrahigh-temperature metamorphism. Application of Al-in-opx thermometry, ternary feldspar thermometry and construction of suitable pressure–temperature phase diagrams, compositional and model proportion isopleth results indicate PT conditions as high as ~1,050–1,100 °C, and ~10–12 kbars for the Al–Mg granulite. Our report of ultrahigh-temperature conditions is significant considering that the very high temperature was reached during decompression of an otherwise high-pressure granulite complex (clockwise P–T path), whereas most other ultrahigh-temperature granulites are linked to magma underplating at the base of the crust (counterclockwise P–T path).  相似文献   

12.
The sound velocity (V P) of liquid Fe–10 wt% Ni and Fe–10 wt% Ni–4 wt% C up to 6.6 GPa was studied using the ultrasonic pulse-echo method combined with synchrotron X-ray techniques. The obtained V P of liquid Fe–Ni is insensitive to temperature, whereas that of liquid Fe–Ni–C tends to decrease with increasing temperature. The V P values of both liquid Fe–Ni and Fe–Ni–C increase with pressure. Alloying with 10 wt% of Ni slightly reduces the V P of liquid Fe, whereas alloying with C is likely to increase the V P. However, a difference in V P between liquid Fe–Ni and Fe–Ni–C becomes to be smaller at higher temperature. By fitting the measured V P data with the Murnaghan equation of state, the adiabatic bulk modulus (K S0) and its pressure derivative (K S ) were obtained to be K S0 = 103 GPa and K S  = 5.7 for liquid Fe–Ni and K S0 = 110 GPa and K S  = 7.6 for liquid Fe–Ni–C. The calculated density of liquid Fe–Ni–C using the obtained elastic parameters was consistent with the density values measured directly using the X-ray computed tomography technique. In the relation between the density (ρ) and sound velocity (V P) at 5 GPa (the lunar core condition), it was found that the effect of alloying Fe with Ni was that ρ increased mildly and V P decreased, whereas the effect of C dissolution was to decrease ρ but increase V P. In contrast, alloying with S significantly reduces both ρ and V P. Therefore, the effects of light elements (C and S) and Ni on the ρ and V P of liquid Fe are quite different under the lunar core conditions, providing a clue to constrain the light element in the lunar core by comparing with lunar seismic data.  相似文献   

13.
The crystal chemistry of a ferroaxinite from Colebrook Hill, Rosebery district, Tasmania, Australia, was investigated by electron microprobe analysis in wavelength-dispersive mode, inductively coupled plasma–atomic emission spectroscopy (ICP–AES), 57Fe Mössbauer spectroscopy and single-crystal neutron diffraction at 293 K. The chemical formula obtained on the basis of the ICP–AES data is the following: \( ^{X1,X2} {\text{Ca}}_{4.03} \,^{Y} \left( {{\text{Mn}}_{0.42} {\text{Mg}}_{0.23} {\text{Fe}}^{2 + }_{1.39} } \right)_{\varSigma 2.04} \,^{Z1,Z2} \left( {{\text{Fe}}^{3 + }_{0.15} {\text{Al}}_{3.55} {\text{Ti}}_{0.12} } \right)_{\varSigma 3.82} \,^{T1,T2,T3,T4} \left( {{\text{Ti}}_{0.03} {\text{Si}}_{7.97} } \right)_{\varSigma 8} \,^{T5} {\text{B}}_{1.96} {\text{O}}_{30} \left( {\text{OH}} \right)_{2.18} \). The 57Fe Mössbauer spectrum shows unambiguously the occurrence of Fe2+ and Fe3+ in octahedral coordination only, with Fe2+/Fe3+ = 9:1. The neutron structure refinement provides a structure model in general agreement with the previous experimental findings: the tetrahedral T1, T2, T3 and T4 sites are fully occupied by Si, whereas the T5 site is fully occupied by B, with no evidence of Si at the T5, or Al or Fe3+ at the T1T5 sites. The structural and chemical data of this study suggest that the amount of B in ferroaxinite is that expected from the ideal stoichiometry: 2 a.p.f.u. (for 32 O). The atomic distribution among the X1, X2, Y, Z1 and Z2 sites obtained by neutron structure refinement is in good agreement with that based on the ICP–AES data. For the first time, an unambiguous localization of the H site is obtained, which forms a hydroxyl group with the oxygen atom at the O16 site as donor. The H-bonding scheme in axinite structure is now fully described: the O16H distance (corrected for riding motion effect) is 0.991(1) Å and an asymmetric bifurcated bonding configuration occurs, with O5 and O13 as acceptors [i.e. with O16···O5 = 3.096(1) Å, H···O5 = 2.450(1) Å and O16H···O5 = 123.9(1)°; O16···O13 = 2.777(1) Å, H···O13 = 1.914(1) Å and O16H···O13 = 146.9(1)°].  相似文献   

14.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   

15.
High pressure in situ synchrotron X-ray diffraction experiment of strontium orthophosphate Sr3(PO4)2 has been carried out to 20.0 GPa at room temperature using multianvil apparatus. Fitting a third-order Birch–Murnaghan equation of state to the PV data yields a volume of V 0 = 498.0 ± 0.1 Å3, an isothermal bulk modulus of K T  = 89.5 ± 1.7 GPa, and first pressure derivative of K T ′ = 6.57 ± 0.34. If K T ′ is fixed at 4, K T is obtained as 104.4 ± 1.2 GPa. Analysis of axial compressible modulus shows that the a-axis (K a  = 79.6 ± 3.2 GPa) is more compressible than the c-axis (K c  = 116.4 ± 4.3 GPa). Based on the high pressure Raman spectroscopic results, the mode Grüneisen parameters are determined and the average mode Grüneisen parameter of PO4 vibrations of Sr3(PO4)2 is calculated to be 0.30(2).  相似文献   

16.
For feasibility studies and preliminary design estimates, field measurements of shear wave velocity, V s, may not be economically adequate and empirical correlations between V s and more available penetration measurements such as cone penetration test, CPT, data turn out to be potentially valuable at least for initial evaluation of the small-strain stiffness of soils. These types of correlations between geophysical (Vs) and geotechnical (N-SPT, q c-CPT) measurements are also of utmost importance where a great precision in the calculation of the deposit response is required such as in liquefaction evaluation or earthquake ground response analyses. In this study, the stress-normalized shear wave velocity V s1 (in m/s) is defined as statistical functions of the normalized dimensionless resistance, Q tn-CPT, and the mean effective diameter, D 50 (in mm), using a data set of different uncemented soils of Holocene age accumulated at various sites in North America, Europe, and Asia. The V s1Q tn data exhibit different trends with respect to grain sizes. For soils with mean grain size (D 50) < 0.2 mm, the V s1/Q tn 0.25 ratio undergoes a significant reduction with the increase in D 50 of the soil. This trend is completely reversed with further increase in D 50 (D 50 > 0.2 mm). These results corroborate earlier results that stressed the use of different CPT-based correlations with different soil types, and those emphasized the need to impose particle-size limits on the validity of the majority of available correlations.  相似文献   

17.
Pathogen removal is essential for wastewater treatment and its potential reuse in agriculture. Three field-scale wastewater treatment systems consisting of free surface flow were operated around 1.5 years receiving water from urban domestic, rural domestic and industrial sources. The study was conducted to evaluate seasonal performance of constructed wetland systems in removing Escherichia coli, Enterococci and total coliforms under continuous hydraulic flow. Results displayed that all three wetlands gain recognition in removing pathogen load with high removal efficacy till water reaches output ports. Removal efficiencies were even higher, 66–93, 78–92 and 80–94% for E. coli, Enterococci and total coliforms, respectively, within constructed wetlands. Remarkably at shorter temporal scales in CW-A, greater homogeneity of pathogen concentrations was assessed at wetland outlet sites. In outlet ports, results displayed a highly effective removal of E. coli concentration 80–90% (June 2015), 86–92% (October 2015) and 79–92% (February 2016), Enterococci 80–94% (June 2015), 83–94% (October 2015) and 80–94% (February 2016) and total coliforms 85–93% (June 2015), 87–95% (October 2015) and 88–96% (February 2016). Positive correlation was observed between bacterial indicators (E. coliEnterococci, r = 0.038; p < 0.01 and E. coli–total coliforms, r = 0.142; p < 0.01). Removal of bacterial indicators in constructed wetland was also displayed by PCA in which three-component analysis of variance was 98.39% and showed a clear decrease in measured parameter gradients toward samples from outlet ports. Constructed wetlands provide cost-effective treatment systems for reducing the pathogen load in wastewater in variable agro-climatic conditions and thus improve water quality.  相似文献   

18.
A high-pressure single-crystal X-ray diffraction study has been carried out on a P21/c natural Mg-rich pigeonite sample with composition ca. Wo6En76Fs18 using a diamond anvil-cell. The unit-cell parameters were determined at 14 different pressures to 7.14 GPa. The sudden disappearance of the b-type reflections (h + k = odd) and a strong discontinuity (about 2.8%) in the unit-cell volume indicated a first-order P21/cC2/c phase transition between 4.66 and 4.88 GPa. The P(V) data of the P21/c phase were fitted to 4.66 GPa by a third-order Birch–Murnaghan equation of state (BM3 EoS), whereas the limited number of experimental data collected within the C2/c phase between 4.88 and 7.14 GPa were fitted using the same equation of state but with K′ constrained to the value obtained for the P21/c fitting. The equation of state coefficients are V 0 = 424.66(6) Å3, K T0 = 104(2) GPa and K′ = 8(1) for the P21/c phase, and V 0 = 423.6(1) Å3, K T0 = 112.4(8) GPa, and K′ fixed to 8(1) for the C2/c phase. The axial moduli for a, b, and c for the P21/c phase were obtained using also a BM3-EoS, while for the C2/c phase only a linear calculation could be performed, and therefore the same approach was applied for comparison also to the P21/c phase. In general the C2/c phase exhibits axial compressibilities (β c > β a >> β b) lower than those of the P21/c phase (β b > β c ≈ β a; similar to those found in previous studies in clinopyroxenes and orthopyroxenes). The lower compressibility of the C2/c phase compared with that of the P21/c could be ascribed to the greater stiffness along the b direction. A previously published relationship between P c and M2 average cation radius (i.r.) has been updated using all the literature data on P21/c clinopyroxene containing large cations at M2 site and our new data. The following weighted regression was obtained: P c (GPa) = 26(4) ? 28(5) ×  i.r (Å), R 2 = 0.97. This improved equation can be used to predict the critical pressure of natural P21/c clinopyroxene samples just knowing the composition at M2 site.  相似文献   

19.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

20.
The improvement in the capabilities of Landsat-8 imagery to retrieve bathymetric information in shallow coastal waters was examined. Landsat-8 images have an additional band named coastal/aerosol, Band 1: 435–451 nm in comparison with former generation of Landsat imagery. The selected Landsat-8 operational land image (OLI) was of Chabahar Bay, located in the southern part of Iran (acquired on February 22, 2014 in calm weather and relatively low turbidity). Accurate and high resolution bathymetric data from the study area, produced by field surveys using a single beam echo-sounder, were selected for calibrating the models and validating the results. Three methods, including traditional linear and ratio transform techniques, as well as a novel proposed integrated method, were used to determine depth values. All possible combinations of the three bands [coastal/aerosol (CB), blue (B), and green (G)] have been considered (11 options) using the traditional linear and ratio transform techniques, together with five model options for the integrated method. The accuracy of each model was assessed by comparing the determined bathymetric information with field measured values. The standard error of the estimates, correlation coefficients (R 2 ) for both calibration and validation points, and root mean square errors (RMSE) were calculated for all cases. When compared with the ratio transform method, the method employing linear transformation with a combination of CB, B, and G bands yielded more accurate results (standard error = 1.712 m, R 2 calibration = 0.594, R 2 validation = 0.551, and RMSE =1.80 m). Adding the CB band to the ratio transform methodology also dramatically increased the accuracy of the estimated depths, whereas this increment was not statistically significant when using the linear transform methodology. The integrated transform method in form of Depth = b 0  + b 1 X CB  + b 2 X B  + b 5 ln(R CB )/ln(R G ) + b 6 ln(R B )/ln(R G ) yielded the highest accuracy (standard error = 1.634 m, R 2 calibration = 0.634, R 2 validation = 0.595, and RMSE = 1.71 m), where R i (i = CB, B, or G) refers to atmospherically corrected reflectance values in the i th band [X i  = ln(R i -R deep water)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号