首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hydrography and distributions of cod larvae on Georges Bank were surveyed during two research cruises in April and May 1993 in order to relate larval drift between cruises to the vernal intensification of the frontal component of the residual circulation. We observed the transport of two patches of cod larvae. One patch, which had maximum larval cod densities of 45 larvae 100 m−3 in April, appeared to have been advected south about 75 km between surveys, while the other, which had maximum larval cod densities of 20 larvae 100 m−3 in April, appeared to have been advected north-northeast about 25 km. Maximum larval densities in each patch sampled during the second cruise in May were 15 and 18 larvae 100 m−3, respectively, and mean growth in total length for larvae in the two patches was approximately 5.5 mm and 4.5 mm, respectively, between the two cruises. During the April cruise there was a large volume of anomalous cold, fresh water, of Scotian Shelf origin, which occupied much of the eastern third of Georges Bank. During May, relatively cold, fresh water appeared in a band from the Northeast Peak along the Southern Flank, between Georges Bank water on the top of the Bank, and upper Slope Water offshore. The distribution of cold, fresh water suggests its participation in the general clockwise circulation around the Bank. The transport of cod larvae comprising the first patch appeared to become organized within, and move along, the frontal boundary established by the Scotian Shelf-like water mass, while larvae in the second patch, which we assumed to have moved to the north, may have been transported northward in an on-Bank flow of warmer and saltier upper Slope Water, which may have originated from a Gulf Stream Ring. Based upon observed transport of the first patch of larvae in relation to the frontal boundary, we present a conceptual model of frontal mixing currents on Georges Bank, where current velocities may reach 5 cm s−1 at the depth of the pycnocline. We suggest that this frontal component of the residual circulation, which is in addition to that resulting from tidal rectification, may be important in the transport of fish larvae, and that interannual variability in the degree of intrusion of extrinsic water masses may contribute to variable larval cod drift patterns, to variable larval cod retention on the Bank, and ultimately, to variable larval fish recruitment to the early juvenile stage.  相似文献   

2.
Transects were made with the Video Plankton Recorder (VPR) in different water masses on the southern flank of Georges Bank in May 1992. CTD-data, chlorophyll fluorescence, and attenuation were measured simultaneously. Images were recorded at a rate of 60 fields per second, as the instrument was towed at 2 m s−1 (4 knots). Tapes from high and low magnification cameras (imaging volumes of 0.62 ml and 33 ml, respectively) were analyzed with respect to the distribution of copepods and other grazers, as well as invertebrate predators. This paper describes the differences in patterns of occurrence of important zooplankters in well-mixed and stratified waters on the Bank and in Slope Water south of these stations. Planktonic taxa were sampled over the same range of scales as the fluorescence and hydrography, allowing direct visual comparisons of the spatial distributions of these variables. Late copepodites of Calanus finmarchicus were strongly concentrated near the surface in the stratified area, while a dense belt of Limacina sp. and Oikopleura sp. occurred below the pycnocline. Other fragile forms were also found to be dominant. Colonies of hydroid polyps were very abundant at the mixed station, especially deeper in the water column, indicating that they may have been transported up from the bottom. Colonies of the diatom Chaetoceros socialis were abundant in the cold bottom water in the stratified region and also in the mixed area. These colonies may have been in the process of sedimenting out of the water column, as similarly sized and shaped marine snow was abundant in the same area. In the Slope Water, acantharia and Trichodesmium were found in the chlorophyll maximum above the pycnocline. Other important genera encountered were: Pseudocalanus, Oithona, Centropages, Obelia, Pleurobrachia and Sagitta. Taxa that occurred in all three areas were often differently distributed with respect to depth and physical parameters, indicating that vernal stratification is an important structuring factor of plankton populations.  相似文献   

3.
Turbulence and zooplankton production: insights from PROVESS   总被引:1,自引:0,他引:1  
Zooplankton are directly influenced by turbulence in both a passive and an active manner. Passively, zooplankton are at the mercy of turbulence in how it affects their vertical mixing, encounter rate, detection abilities and feeding current efficiency. Many zooplankton species, however, are actively able to mitigate the effects of turbulence by modifying their behaviour, e.g. vertical migration, prey switching and habituation to hydromechanical stimuli. Both theoretical treatments of these processes and field observations from the northern North Sea are examined. Field observations show that some copepod species actively migrate to avoid high turbulence levels in surface waters. Furthermore, observations show a negative relationship between turbulence and zooplankton ingestion rates. This supports the paradigm of a dome-shaped response for zooplankton production with environmental turbulence. A theoretical treatment shows that the reaction distance, R, for an ambush-feeding copepod feeding on swimming organisms follows R−1/6 where is the turbulent dissipation rate, a result that shows close agreement with previously reported experimental results.  相似文献   

4.
Studies of mixing were done at the northern flank of Georges Bank in the summer and autumn of 1988. Two time-series of the evolution and intensity of microstructure were examined over a tidal period in the context of tidal forcing and the evolution of the density and velocity field at the site. From the CTD, ADCP and microstructure observations (EPSONDE) on Georges Bank, several interesting features of the mixing processes were found. High dissipation and diffusivity regions appear near the bottom of the Bank. Turbulence near the bottom is highest in intensity and reaches farthest from the bottom at peak tidal flow and diminishes in intensity and vertical extent as the flow decreases. The thickness of the bottom turbulent layer has its maximum value when the flow is strongest and the stratification is weakest. Characterization of the dissipation rate and turbulent diffusivities in respect to buoyancy frequency N, current shear S, Richardson Number Ri and ε/νN2 was done. Dissipation and χT showed little dependence on shear or N2 but decreased at larger Ri. χt was found to be higher in regions of higher N2 and increased as ε/νN2 increased. KT, K and Kν, were all highest near the bottom in excess of 10−2m2s−1 and decreased towards the surface. There was little suggestion of a dependence of mixing efficiency on S2, Ri or ε/νN2, but some indication that Γ decreases with decreasing N2.  相似文献   

5.
Since 1985, a number of measurements have been made in deep water to determine the water-following characteristics of mixed layer drifters with both holey-sock and TRISTAR drogues at 15 m depth. The measurements were done by attaching two neutrally buoyant vector measuring current meters (VMCMs) to the top and the bottom of the drogues and deploying the drifters in different wind and upper ocean shear conditions for periods of 2–4 h. The average velocity of the VMCM records was taken to be a quantitative measure of the slip of the drogue through the water, observed to be 0.5-3.5 cm s−1. The most important hydrodynamic design parameter which influenced the slip of the drogue was the ratio of the drag area of the drogue to the sum of the drag areas of the tether and surface floats: the drag area ratio R. The most important environmental parameters which affected the slip were the wind and the measured velocity difference across the vertical extent of the drogue. A model of the vector slip as a function of R, vector wind and velocity difference across the drogue was developed and a least squares fit accounts for 85% of the variance of the slip measurements. These measurements indicated that to reduce the wind produced slip below 1 cm s−1 in 10 m s−1 wind speed, R > 40. Conversely, if the daily average wind is known to 5 m s−1 accuracy, the displacement of the R = 40 drifter can be corrected to an accuracy of 0.5 km day−1.  相似文献   

6.
The distribution and abundance of viable and non-viable (so-called resting eggs) embryos of the calanoid copepod Tortanus forcipatus were determined in the laboratory by the enumeration of nauplii that emerge from sediments collected in Victoria Harbor (Hong Kong). Sediment cores sliced down to a depth of 37 cm showed the highest number of viable resting eggs near the surface layer (0–5 cm). The number of viable eggs sharply decreased with sediment depth, particularly at the inner harbor stations, although diapause eggs remained viable as deep as 25 cm. 210Pb analyses of the sediments indicated that the mean egg age was 4.9 years. The egg mortality of T. forcipatus in the sediments was 0.135 year−1, or 78.22% annual egg survival, calculated by regressing ln (egg density) from sediment age. The range of horizontal distribution of viable resting eggs was 24.25 × 103–58.90 × 103 m−2, with a mean value of 36.8 × 103 m−2 over all stations. The accumulation of viable resting eggs that can persist for an extended period of time provided evidence for the existence of an egg bank of T. forcipatus in the sediments of Victoria Harbor.  相似文献   

7.
The paper documents the occurrence of long-period internal Kelvin waves in Split Channel in spring 2002. The analyses were performed on thermohaline and current data measured at three moorings and one hydrographic section. The internal oscillation had a period of 5–6 days, being larger just after the generation which was probably excited by the alongshore Sirocco wind. The recorded current amplitude was up to 0.3 m s−1 in the surface layer, while the observed pycnocline displacement was 10–15 m. The oscillation was reproduced by one-dimensional two-layered model of a channel, imposing nodal lines at its entrances. Cross-shore properties of the oscillation, such as observed offshore decrease in pycnocline amplitude, are explained by the dynamics of an internal Kelvin wave propagating along channel boundaries, because the internal Rossby radius is smaller than the width of the channel. Conclusively, the observed oscillation probably represents the fundamental mode of internal waves trapped in the channel complex off Split.  相似文献   

8.
利用ADCP对东海大陆架定点(26°30.052′N,122°35.998′E)连续观测6个多月的海流数据进行分析研究,结果表明:层化对该海域潮流的垂向结构有显著影响,层化导致潮流流速、潮流椭圆长轴、椭圆率和倾角在通过密度跃层时发生较大改变。9月份,东海大陆架存在较强的密度跃层,层化加强,海流流速、M2分潮潮流倾角和M2分潮潮流椭圆率在跃层深度以浅随深度显著增大,跃层处达最大,跃层以深随深度迅速减小;2月份,上层海洋混合较强,密度跃层强度最弱,潮流流速、潮流椭圆长轴、椭圆率和倾角在垂向上变化不大。  相似文献   

9.
The depth-distribution profiles of meiofauna in four transects in the Mngazana River, Transkei were studied during summer 1980. Highest densities [±1000(100 cm3)−1] were encountered within the top 10 cm of the sediment. Nematodes dominated (80%) and the remainder was made up of ciliates, oligochaetes, gastrotrichs, and low numbers of polychaetes, copepods, kinorhynchs and various crustacean larvae. Among chemical parameters Eh correlated most consistantly with distribution, particularly at the lower tidal levels. Temperature and pH appeared to be of lesser importance. The maximum estimated depth of penetration was on average 72 cm at the HW levels; 32 at MW and 23 at LW. The mean dry biomass was estimated at 1073 mg m−2; 941 mg m−2 and 196 mg m−2 at these tidal levels respectively. The importance of preliminary studies designed to estimate the depth distribution of meiofauna is discussed.  相似文献   

10.
This report describes extensive investigations of the near bottom layer of the Western Baltic (Mecklenburg Bight, Darss Sill and Arkona Basin) which were conducted over a 5 year period to determine the typical structure, vertical thickness, vertical turbulence structure, and spatial and temporal variability of this water mass with regard to the area's particular hydrographic conditions. Series of vertical profiles were obtained using the microstructure profiler MSS86, which is capable of measuring high resolution profiles of temperature, conductivity, current shear, light attenuation and pressure down to the seafloor. The near bottom current structure was simultaneously measured with conventional current metres at fixed depths. A typical vertical density structure of the near bottom layer was found. At all investigation sites the Bottom Boundary Layer was separated from the overlying water mass by a well pronounced thermohaline pycnocline. A homogeneous water layer was situated above the bottom with a mean thickness of 2.2 m and typical variation between 0.5 and 3.5 m. The thickness of both the homogeneous layer and of the near bottom layer vary considerably. It is suggested that horizontal advection is responsible for these fluctuations in thickness. The variation in thickness of the Homogeneous Layer is independent of the local mean current velocity, wind speed and energy dissipation rate. Over periods of about 2 days the thickness of the Homogeneous Layer is determined by the average wind speed. The Bottom Boundary Layer shows its own characteristic dynamic, which is largely decoupled from that of the remaining water body. A logarithmic layer was generally not resolved by the current measurements. From dissipation rate measurements, the wall layer was determined to be 0.9 m thick. There was no significant correlation between the dissipation rate and the local wind speed, or between the dissipation rate and local mean current u100. This means that any simple parameterisation relating u100 or friction velocity to the locally produced turbulence and consequently to the resuspension of sediment is probably not applicable to shallow sea areas with properties like the Western Baltic. The investigation of sediment concentration in the BBL illustrates the importance of local effects combined with advection. The sediment stratified layer covers only the bottom most 50 cm.  相似文献   

11.
Patterns of vertical distribution in marine invertebrate larvae interact with coastal hydrodynamics to determine cross-shore distributions, dispersal ranges, and scales of connectivity among populations. We present observations on the vertical distribution of barnacle larvae from southern California, collected from 3 depth intervals every 2 h and over a 48-h period at a fixed nearshore station. Larvae were identified to species and stage of development, and their vertical distributions were tested for day/night and between-stage differences within each species, as well as for correlations with environmental variability. Stage-specific patterns of vertical distribution were distinct and consistent across species. Nauplii were most abundant near the surface at all times, and were numerically dominated by Chthamalus spp. (78% of Nn = 1835). Cyprids were substantially less abundant than nauplii in our samples (Nc = 146) and corresponded mostly to the subtidal barnacle Balanus nubilus (84%). Despite the lower counts and different species composition, our data suggest that cyprids remain within the mid-depth and bottom layers, and that changes in their mean depth of distribution (MDD) may track changes in pycnocline depth. Temporal changes in nauplii MDD were not correlated with water-column variability, wind forcing, or tidal height. The apparent vertical segregation of nauplii and cyprids may be related to previously documented differences in the cross-shore distribution of these stages.  相似文献   

12.
The relationships between the seasonal fluctuations of the copepod Eurytemora affinis and the mysid Neomysis integer were studied from observed data and experimental results, using a predator–prey model in the oligo-mesohaline area of the Gironde estuary. Mean seasonal fluctuations of abundances were derived from long term data series collected from 1978 to 2003 for both species. In situ predator–prey experiments over a seasonal cycle were used to estimate the seasonal variation of the consumption rate of N. integer on E. affinis and to verify the order of magnitude of the biological parameters given by the model.Predator–prey experiments revealed a high seasonal variation in maximum consumption rates with a mean of 56 ± 9 ind. pred−1 d−1. Maximum consumption rates were always higher for adults than for juveniles of Neomysis integer. Recorded selectivities were higher on nauplii than on copepodids + adults of Eurytemora affinis, both for the juveniles and the adults of N. integer. Neomysis integer mainly fed on meroplanktonic larvae, when they were available in higher abundances, than E. affinis in their environment.Spring increases of abundance for Eurytemora affinis copepodids + adults seemed to be mainly controlled by temperature whereas its decreasing abundance in summer was more related to Neomysis integer predation, suggesting that summer fluctuations of E. affinis abundance are probably controlled by mysid predation at summer times. Using a Lotka–Volterra predator–prey model, the seasonal peak of abundance of the mysid N. integer was well reproduced considering a predation on copepodids + adults of E. affinis, and suggested a dependence between mysid and copepod seasonal variations. However, the seasonal peak amplitude could not be explained solely by a predation on copepodids + adults or on nauplii of the copepod. Thus, N. integer is probably dependent on the seasonal fluctuations of the copepod's abundance, complementing its diet with macrophytal detritus during periods of scarce food.  相似文献   

13.
14.
The changes in the phytoplankton absorption properties during a diurnal cycle were investigated at one station located in the north-western area of the Alborán Sea. The experiment was performed in spring when the water column was strongly stratified. This hydrological situation permitted the establishment of a deep chlorophyll a (chl a) fluorescence maximum (DFM) which was located on average close to the lower limit of the mixed layer and the nutricline. The relative abundance of pico-phytoplankton (estimated as its contribution to the total chl a) was higher in the surface, however, micro-phytoplankton dominated the community at the DFM level. Chl a specific absorption coefficient (a*(λ)) also varied with optical depth, with a* (the spectrally average specific absorption coefficient) decreasing by 30% at the DFM depth with respect to the surface. A significant negative correlation between the contribution of the micro-phytoplankton to the total chl a and a* was obtained indicating that a* reduction was due to changes in the packaging effect. Below the euphotic layer, a* increased three-fold with respect to the DFM, which agrees with the expected accumulation of accessory pigments relative to chl a as an acclimation response to the low available irradiance. The most conspicuous change during the diurnal cycle was produced in the euphotic layer where the chl a concentration decreased significantly in the afternoon (from a mean concentration of 1.1 μg L−1 to 0.7 μg L−1) and increased at dusk when it averaged 1.4 μg L−1. In addition, a* and the blue-to-red absorption band ratio increased in the afternoon. These results suggest that a*(λ) diurnal variability was due to increase in photo-protective and accessory pigments relative to chl a. The variation ranges of a*(λ) at 675 and 440 nm (the absorption peaks in the red and blue spectral bands, respectively) in the euphotic layer were 0.01–0.04 and 0.02–0.10 m2 mg−1 chl a, respectively. Approximately 30% out of this variability can be attributed to the diurnal cycle. This factor should therefore be taken into account in refining primary production models based on phytoplankton light absorption.  相似文献   

15.
The mean seasonal cycle and distribution of various life history stages of C. finmarchicus throughout the Georges Bank (GB)-Gulf of Maine (GOM) region were characterized based on 5966 MARMAP zooplankton samples collected during 106 surveys over a 10-year period (autumn 1977–autumn 1987). A high degree of seasonal and spatial variability in C. finmarchicus abundance throughout the region was evident in contoured portrayals of data, grouped into standard stations and 2-month “seasons”.Eight subareas of the Gulf of Maine-Georges Bank region were identified through cluster analysis of standard stations having similar seasonal patterns in mean abundance of C. finmarchicus stages C3, C4, C5 and adults. These were the northern Gulf of Maine (Northern GOM); southern Gulf of Maine (Southern GOM); Scotian Shelf-coastal Gulf of Maine (Scotian-Coastal GOM); Mass Bay; tidally mixed Georges Bank (Mixed GB); tidal front on the Bank separating mixed from seasonally stratified water (Tidal Front GB); seasonally stratified water on the Bank (Stratified GB) and the Continental Slope adjacent to Georges Bank (SLOPE).A distinct seasonal abundance cycle was present in all subareas, but, the magnitude and timing of annual maxima varied greatly among subareas. Peak abundance was reached early (March–April) in Mixed GB, Tidal Front GB and Mass Bay, and late (July–August) in Northern GOM and Scotian-Coastal GOM. Remaining subareas had maxima in May–June. Abundance increased 10-fold from January–February to March–April and decreased sharply from July–August to September–October in all areas except southern GOM and northern GOM. The amplitude of the annual cycle was weakest in northern GOM and southern GOM, where high concentrations of C. finmarchicus persisted year-round, and strongest in the tidally mixed shallow water on GB, where the sparsest densities of C. finmarchicus occurred most of the year. Abundance curves for the various areas converged in March–April, when C. finmarchicus was ubiquitously very abundant (> 104/10 m2), and diverged from September to December.C. finmarchicus stage distribution in the GB-GOM area was highly negatively correlated with mean water column temperature during the stratified season. This seemed more related to the hydrography of the region, which isolates warmer well mixed Georges Bank from the Gulf of Maine and the stratified areas on the Bank, than to temperature, because Calanus abundances decline on the Bank before water temperatures exceed their preferences.A large part of the spatial and seasonal variation in C. finmarchicus abundance and age structure appears to be tightly coupled to major hydrographic regimes and to major circulation patterns in the region. There was a sharp ecotone between well-mixed Georges Bank and the Gulf of Maine as defined by C. finmarchicus abundance patterns and life history distributions. The ecotone is present year-round but is most apparent during the stratified season (May–October), when thermohaline density gradients and the near-surface current jet along the northern flank are generally strongest. The Gulf of Maine had the highest abundances of C. finmarchicus, and lowest spatial and seasonal variation in the region, while tidally mixed Georges Banks displayed the opposite pattern. This indication of stable population centers in the Gulf of Maine would make it a major source of Calanus in the region, particularly during March–April. Distributional patterns also suggest a strong Calanus influence from Scotian Shelf water in northern Gulf of Maine and on the southern flank of Georges Bank.  相似文献   

16.
The wind-induced water exchange between the ria of Ferrol (NW Spain) and the adjacent shelf is analyzed by means of a three-dimensional hydrodynamic model (MOHID2000). Since thermohaline measurements indicate that the estuary can be considered vertically homogeneous a barotropic version of the model has been used. Real in situ wind measurements have been used for model calibration and further analysis. The approach to study the wind effect on water exchange through the ria strait consisted in subtracting the signal calculated with only tidal forcing (Ts) from the one with wind and tidal forcing (WTs). This shows the existence of a residual circulation, with water flowing in wind direction along surfaces layers and a counter current flowing in the opposite direction at bottom layers. The flux across the strait of Ferrol has shown to increase linearly on wind strength, with a correlation larger than 96% and reaching values close to 20 m3 s−1 under real wind forcing.  相似文献   

17.
Satellite-tracked drifters with drogues centered near-surface (5 m) and below the seasonal thermocline (50 m) were launched during late winter and spring of 1988 and 1989 in the northern Great South Channel in the western Gulf of Maine to investigate the regional circulation as part of the South Channel Ocean Productivity Experiment (SCOPEX). Many of the near-surface drifters became entrained in the clockwise gyre over Georges Bank, and eight drifters made a total of 16 complete circuits around the bank during the stratified season. The average recirculation period of these eight drifters was 48 days, and the average drifter speed around the bank was 12 cm s−1. There is no clear evidence from the drifter data that the strength of the clockwise gyre over the bank increased with time during the stratified season. On average, these drifters (i) followed a relatively narrow path around the bank, except over the eastern end of the bank where three preferred paths were observed, (ii) moved fastest over the northern and southern flanks of the bank, (iii) did not enter a core area of 3500 km2 centered at 41°17′N, 68°00′W, approximately 30 km southwest of the topographic center of the bank, and (iv) stopped circling the bank by the end of November, due in part to strong wind events that appeared to drive drifters off the bank. Curiously, none of the near-surface drifters moved from the southern flank of Georges Bank onto the New England shelf as might be expected from continuity of flow along the outer shelf; instead, the drifters that circled the bank tended to move off the bank along its southern flank. None of the drifters with drogues centered at 50 m appeared to recirculate around Georges Bank.  相似文献   

18.
The Upper Gulf of California is the shallow (depth <30 m), tidal area at the head of the Gulf of California. It is an inverse estuary, due to the high evaporation rate (E1·1 m year−1) and almost nil freshwater input from rainfall and the Colorado River. Historical and recent hydrographic data show that the area is almost vertically well-mixed throughout the year, that the horizontal distribution of properties follows the bathymetry, and that the hydrography has a strong annual modulation. As in other negative estuaries, the year-round salinity increase toward the head causes the density to do likewise, despite the seasonally reversing temperature gradient. The pressure gradient thus formed leads to water-mass formation and gravity currents (speed 0·1 ms−1), both in winter and in summer. In winter, the high salinity water sinks beyond 200 m, while in summer it only reaches a depth of 20–30 m. The gravity currents appear to be modulated by the fortnightly tidal cycle, with events in neap tides. This phenomenon causes the presence, at least during neap tides, of slight stratification (Δσt≈−0·2).  相似文献   

19.
A numerical and experimental modeling is presented for studying the transport of waste heat from a nuclear power plant into coastal water by using a full-field physical model with scale distortion, a local physical model with normal scale and a depth-averaged k turbulence model with a modified second-order upwind scheme. Field investigations are also used to provide the calibration and validation of the modeling. A case study simulating the turbulent tidal flow and waste heat transport in the coastal water near Daya Bay Nuclear Power Plant in Southern China was conducted. The experimental result of the case study shows that the water temperature in coastal water was a little oversimulated near the surface and was a little undersimulated near the bottom of heated-water layer by the full-field physical model. The numerical study shows that the depth-averaged k turbulence model presented a satisfied prediction of turbulent tidal flow and far-field temperature distribution in coastal water, although the near-field stratification due to the heated water effluent was not accounted for. The result of the effect of scale distortion on physical model shows that a full-field physical model with a scale distortion of 10 produced a satisfied result of temperature distribution in the present case study.  相似文献   

20.
Although small copepods are one of the main dietary sources for many commercially important fish, their role in the pelagic trophic dynamics has traditionally been underestimated due to the methodology commonly used in plankton sampling. Temporal variation in abundance of adults and nauplii of small copepods (particularly Oithona plumifera) in nearshore waters on the south coast of South Africa was investigated fortnightly over 14 months at site (km) and location (100 m) scales. Sampling was within <500 m of the shore, where depth was ca. 10 m, using vertical hauls of an 80-μm mesh plankton net from 1 m above the seabed to the surface. Twenty-seven adult copepod taxa were recorded, but Oithona spp. was consistently the most abundant. Taxon richness was 7–19 on each sampling occasion. There was strong temporal variation (Oithona varied between 0 and 2300 m−3), but much of this was short-term variability (e.g. between consecutive sampling sessions), with no seasonality or other long-term discernable patterns. There were periods of consistently low numbers, but very high numbers often followed samples with low abundances. Nor was there spatial structure at the location scale, though numbers differed between sites. Despite considerable variability at the location scale within sites, Kenton consistently showed higher densities than High Rocks. Separate analyses, with Bonferroni adjustment, showed that this difference was significant on eight out of 21 occasions for Oithona, six for other pelagic copepods and three for nauplii. This suggests that hydrodynamics favour aggregation of plankton at Kenton. A high degree of short-term variability, with a tendency for aggregation of small zooplankton at certain sites has implications for both pelagic processes and food-web links between the benthic and pelagic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号