首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mysid shrimps are an important component of estuarine food webs because they play a key role in energy transfer as intermediate prey. We investigated the seasonal, tidal and depth specific variation in the diet of the estuarine mysids Neomysis integer and Rhopalophthalmus tartessicus and explored its implications for the planktonic community structure of a temperate estuary (Guadalquivir Estuary, SW Spain). Neomysis integer is an opportunistic omnivore feeding mainly on mesozooplankton and on members of the detrital–microbial loop, shifting prey seasonally according to availability. In contrast, R. tartessicus showed a more carnivorous diet and shifted its target prey during seasons of low resource availability. Despite statistically significant differences in diet composition, both species shared prey of similar size, particularly juvenile Mesopodopsis slabberi, the most abundant mysid species in this estuary, and copepods. Although these similarities imply inter-specific resource competition, their co-existence is achieved by niche partitioning and spatial segregation: the higher osmoregulatory capacity and foraging plasticity of N. integer confers a broader niche breadth for this species allowing N. integer to inhabit the more stressful oligohaline region of the estuary where R. tartessicus cannot survive. We propose that this mechanism relaxes the potential for competition between N. integer and R. tartessicus.  相似文献   

2.
The feeding behaviour of adults of the marine calanoid copepod Centropages hamatus was studied in laboratory experiments with ciliates and phytoplankton as food sources. The ingestion rate of algal (flagellates, diatoms) and ciliate prey (oligotrichs) as a function of prey concentration could be described by a Holling type III functional response, with close to zero ingestion rates at concentrations below 5 µg C l− 1. In general, ingestion of ciliates was higher than ingestion of algae, and maximum feeding rates by adult males reached were half the feeding rates of adult females at prey concentrations exceeding 50 µg C l− 1. When diatoms and ciliates were offered together C. hamatus (both sexes) fed exclusively on ciliates as long as they contributed with more than 5% to the mixture. This indicates the capability of active prey selection and switching between suspension feeding and ambush predation. Therefore, the feeding behaviour of adult C. hamatus can be characterised as omnivorous with a preference for larger motile prey. This implies a trophic level above two, if there is a sufficient abundance of protozoan food available.  相似文献   

3.
The spatial distribution of stage-specific abundance and reproduction of the copepod Paracalanus parvus were studied from October 2005 to September 2006 in the Jiaozhou Bay. This copepod occurred continuously in this bay throughout the year. The species reached the lowest abundance in April and peaked in June. From October to December, distribution center mainly occurred in offshore water and at the mouth of the bay. In winter, early copepodites and adults gradually decreased and till February, most of the population was only comprised of CIV–CV stages. Overwintering copepodites matured in March and males tended to mature before female. From May to September, each stage occurred in the population and gradually reached high abundance. Temperature and chlorophyll a (Chl-a) concentration in the three stations can't clearly explain the seasonal variation in stage-specific abundance, so we surmised the important effect of the Yellow Sea. Egg production rate (EPR) reached its lowest in winter and peaked in June at 60.8 eggs female−1 day−1 in nearshore water. In the warming period, EPR in nearshore water was statistically higher and EPR > 10 eggs female−1 day−1 lasted longer than that in offshore water, showing the importance of nearshore water for recruitment of P. parvus. Our study showed that EPR was positively related to temperature and total chlorophyll a in offshore water and mouth of the bay. In nearshore water, the relationships between EPR and temperature and Chl-a in three size fractions were not the same as those in offshore water, suggesting complicated ecosystem in such a eutrophic area in warming period.  相似文献   

4.
Surveys of the abundance and size composition of the ctenophore Bolinopsis mikado were conducted in Tokyo Bay over a 5-year period from 1990 to 1994. B. mikado appeared throughout the year, and its mass occurrence was observed between August and November; annual maximum abundance ranged from 19 to 91 ind. m–2. Water temperature seems to influence the seasonal variation of B. mikado abundance. Environmental conditions (e.g. rough waters due to a typhoon) and predation by the beroid ctenophore Beroe cucumis appear to affect annual variations of B. mikado abundance. Size frequency distributions of B. mikado indicated that its reproduction was most active in summer and fall but occurred throughout the year in Tokyo Bay. A sharp decline of the copepod population in August 1990 was probably due to predation by B. mikado which was very abundant at that time; its predatory impact was estimated to be 24 % day–1.  相似文献   

5.
Annual variability in abundance and population structure of the copepod Eurytemora affinis was studied in the maximum turbidity zone of the Seine Estuary in 2005. An Eulerian sampling strategy was applied monthly from March to July and from September to December. Chlorophyll a and suspended particulate matter (SPM) concentration, copepod abundance and stage distribution, and phytoplankton abundance were measured in sub-surface and near-bottom water during the ebb phase. Total E. affinis abundance was at a maximum in March and April (>200 × 103 ind. m−3), and decreased from May to September (<25 × 103 ind. m−3). This decrease corresponds to annual increases in temperature, salinity, chlorophyll a concentration and phytoplankton abundance, which was dominated by large diatoms, and decreases in SPM and river discharge. The phenology observed in 2005 was almost two months earlier compared to previous studies in the 1990s, when E. affinis reached maximum abundance in May and June. The low proportion of nauplii (<50%) in the population and high abundance of ovigerous females suggests that low recruitment is probably related to anomalously low temperatures in late winter (<5 °C). Whatever the horizontal position of the population in the estuary, adult and late copepodid stages are distributed in higher salinity than naupliar stages. Overall E. affinis population abundance was driven by parameters that characterize water masses at the tidal scale and by river discharge and chlorophyll a at the annual scale. By integrating the tidal effect, the high-frequency sampling protocol used appears to be optimal for investigating annual variability of planktonic communities in megatidal estuaries.  相似文献   

6.
Juveniles of both stone flounder Platichthys bicoloratus and starry flounder Platichthys stellatus utilize estuaries as nursery grounds. To understand their habitat selection and the functions of habitats such as food supply, we defined the seasonal distribution of recently settled fish of these species in shallow nursery areas and investigated their feeding habits in the Natori River estuary, Japan. Distribution of stone flounder was limited to the lower estuary (<3 km upriver from the mouth) and stone flounder were most abundant near the mouth. Recently settled starry flounder were first detected further upstream in areas characterized by low salinity <10 and by the absence of the predatory sand shrimp Crangon uritai. Early juvenile stone and starry flounders consumed mainly siphons of the bivalve Nuttallia olivacea and the mysid Neomysis awatschensis, respectively; however, 1- and 2-yr-old fish of both stone and starry flounders fed mainly on the bivalve siphons. These results indicate that habitat selections of juvenile stone and starry flounders enable utilization of preferred prey and predator avoidance, respectively, and that non-overlap of these species' habitats results in avoidance of inter-specific competition for food between these two species.  相似文献   

7.
Predation by the big brackish-water isopod Saduria entomon on two age-classes (juveniles and adults) of the small deposit-feeding amphipod Monoporeia (syn. Pontoporeia) affinis was studied at different oxygen conditions (normoxia>11 mg/l O2, and moderate hypoxia 4 mg/l O2). Vulnerability of juvenile and adult M. affinis was studied in single and mixed age-class treatments. The proportions of juveniles and adults were varied at one total numerical density. The predatory effects were measured as numbers of individuals consumed and of total biomass intake (mg ash-free dry weight). The highest predation rate (in numbers) was detected in the single-prey treatment with juvenile M. affinis, both in normoxia and moderate hypoxia. No preference for any of the two size classes was found in the treatment with equal numbers of adults and juveniles. In normoxia, the total number of prey consumed decreased with increasing proportions of adults, while intake increased in terms of biomass. In moderate hypoxia, high proportions of adults reduced the predation rate of S. entomon to such an extent that also the intake in terms of biomass was significantly negatively affected.  相似文献   

8.
Long-term data assembled from a power station on the Thames estuary were used to model fluctuations in the abundance of pogge (Agonus cataphractus) as a function of estuarine environmental, seasonal and prey availability variables using multiple regression. Temperature was the most important determinant of abundance, with seasonal variables and changes in the relative abundance of age-0 dab, Limanda limanda, possibly as prey, also holding important consequences for pogge abundance. Pogge abundance was also moderately influenced by: salinity, flow, salinity-flow interactions, changes in the relative abundance of Dover sole, Solea solea, and a trend variable. Regular patterns of seasonal (spring/winter) occurrences were associated with the use of warmer estuarine waters to optimize growth and reproductive potential and/or correlated with inshore spawning migrations and the availability of prey species. Both mechanisms suggest opportunistic use of estuarine habitats by pogge. Available temperature-abundance relationships further suggest a well-defined estuarine thermal niche, with an optimum at 9·5 °C. There remains a requirement for improved information on the biology of pogge and factors governing the population dynamics of this important estuarine species.  相似文献   

9.
We investigated the relative roles of bottom-up and top-down factors in limiting productivity of an upper trophic level marine predator. Our primary working hypothesis was that the reproductive success of black-legged kittiwakes (Rissa tridactyla) a piscivorous, colonial-nesting seabird, was most limited by the abundance, distribution, and species composition of surface-schooling forage fishes. A secondary working hypothesis was that reproductive loss to kittiwake nest predators was greatest during years of reduced prey availability. We report on a broad-scale, integrated study of kittiwakes and their prey in Prince William Sound, Alaska. Our study spanned five breeding seasons (1995–1999) and focused on three colonies that differed in size (ranging from ca. 220 to ca. 7000 breeding pairs) and proximity to each other (50–135 km apart). Kittiwakes in PWS encountered a variety of aquatic habitats, creating a complex foraging environment for breeding birds. We measured kittiwake reproductive success and foraging activities, while simultaneously measuring the abundance of surface schooling forage fishes throughout the foraging range of breeding kittiwakes. The abundance of primary prey species for kittiwakes (Pacific herring Clupea pallasi, Pacific sand lance Ammodytes hexapterus, and capelin Mallotus villosus) varied both annually and regionally, with no one region consistently having the greatest abundance of prey. Likewise, kittiwake reproductive success varied considerably among colonies and years.We found that bottom-up, top-down, timing mismatch, and colony-specific effects were all important to kittiwake productivity. Although bottom-up effects appeared to be strongest, they were not evident in some cases until other effects, such as geographic location (proximity of colony to prey concentrations) and top-down predation, were considered. Important bottom-up effects on kittiwake reproductive success were not only total prey abundance and distribution, but also species, age composition, and chronology of prey occurrence (match/mismatch of timing with critical brood-rearing periods); these effects varied by colony.Top-down effects of predation on kittiwake nest contents (independent of prey abundance) confounded seabird-forage fish relationships. Ultimately, when confounding factors were minimized, non-linear asymptotic relationships were identified between kittiwakes and their prey, with an asymptotic threshold of fish school surface area density of ca. 5 m2/km2, beyond which top-down, physiological, or phylogenetic constraints likely restrict further reproductive output. The integrated approach of our investigations provided a more thorough understanding of the mechanisms underlying predator–prey relationships in the complex marine environment. However, such mechanistic theories can only be tested and refined through long-term research and monitoring of much greater duration than the 5-year study reported herein.  相似文献   

10.
Cross-shelf distribution and abundance of copepod nauplii and copepodids were measured during three summer upwelling seasons (2000–2002) in a coastal upwelling zone off northern California. These 3 years varied considerably in the intensity of winds, abundance of chlorophyll, and water temperature. The cruises in 2000 were characterized by relaxation conditions, with generally high levels of chlorophyll and high water temperature. The cruises in 2001 and 2002 were dominated by strong and persistent upwelling events, leading to lower chlorophyll and water temperatures. The copepod assemblage was dominated by Oithona spp., Acartia spp. and Pseudocalanus spp., with Metridia pacifica (lucens), Microsetella rosea, Oncaea spp. and Tortanus discaudatus also common during all 3 years. The cross-shelf distribution of copepods was generally shifted offshore during upwelling and onshore during relaxation events, although some variability between species occurred. Abundance of all life stages generally exhibited a negative correlation with cross-shelf transport averaged over at least 1–4 days and lagged by 0–3 days, indicating lower abundances during and immediately after active upwelling. However, copepod nauplii seemed to respond positively to wind events lasting 1–5 days followed by a period of relaxation lasting 6 or 7 days. These rapid rates of change in abundance are probably too great to be due to in situ growth and reproduction alone; physical processes must also play a role. These results suggest a highly dynamic relationship between copepods and upwelling events off northern California, with species-specific responses to upwelling to be expected.  相似文献   

11.
《Oceanologica Acta》2002,25(1):13-22
This paper is the first to describe the spatio-temporal changes of mesozooplankton in the Seine estuary. Monthly samples were collected along the estuary in 1996 in order to analyse the seasonal changes of the mesozooplankton community and to identify the major environmental parameters that may influence the spatial distribution of zooplankton in this megatidal estuary. Statistical analysis (canonical correspondence analysis) showed that salinity was the main factor correlated with the longitudinal distribution of zooplankton. Marine species (Temora longicornis, barnacle larvae…) were located in the outer part of the estuary, while more oligohaline species (Eurytemora affinis) were recorded in the inner part of the estuary. A mixed zone was characterised by the presence of the neritic copepods Acartia spp. and Eurytemora affinis. The marine species (e.g. T. longicornis, Oikopleura dioica, Barnacle larvae) showed maximum abundance at the end of spring (June) while the most abundant estuarine species, E. affinis, peaked in late winter-spring and declined with the onset of summer. This copepod dominated the estuarine zooplankton throughout the year, and found in the Seine estuary very high favourable conditions to exhibit ultimate abundances (> 190 000 ind m–3) which is one order of magnitude higher than those found in other European estuaries. It represented the main prey for major planktonivorous species such as suprabenthic and fish species located living in the upstream zone of the Seine estuary.  相似文献   

12.
The vertical and temporal distribution of two calycophoran siphonophores, Chelophyes appendiculata (Eschscholtz, 1829) and Abylopsis tetragona (Otto, 1823) in the Bay of Villefranche (northwestern Mediterranean) was investigated by an analysis of three different planktonic time series. A daily series (1993–1995) showed seasonal peaks of the nectophores of C. appendiculata during spring and particularly in late summer, while the abundance of A. tetragona remained similar throughout the year. A weekly series (1994–1995) showed that C. appendiculata (nectophores and eudoxids) became concentrated above the thermal discontinuity, in the most stratified and warm waters, whereas A. tetragona was collected in large numbers below this discontinuity. A 27-year survey (1966–1993) showed long-term fluctuations of these siphonophore populations, which became abundant in the Bay starting from 1980 and especially after 1984, when the water column grew warm and hypersaline, corresponding to a less rainy period. Temporal (seasonal and long-term) and bathymetric (between 10 and 60 m depth) successions of these two siphonophores were noted in this shallow coastal bay.  相似文献   

13.
The distribution and general population characteristics of five mysid shrimps were investigated in the period 2003–2005 in the Westerschelde estuary, a tidal temperate estuary situated along the Dutch–Belgian border. Multivariate analyses revealed that salinity predominantly governs the spatial distribution of Neomysis integer, Gastrosaccus spinifer, Schistomysis kervillei and Schistomysis spiritus while temperature, and to a lesser extent turbidity, control the distribution of Mesopodopsis slabberi. N. integer is a resident species in the mesohaline zone of the estuary, i.e. all life stages of the species are present in the estuary throughout the year. For the first time since decades N. integer inhabits the oligohaline zone of the estuary supposedly as a consequence of improved oxygen conditions in the upstream reaches. M. slabberi, the most abundant mysid in the Westerschelde, dominates the hyperbenthos of the mesohaline zone of the estuary. The polyhaline zone of the estuary is, most abundantly inhabited by M. slabberi, G. spinifer, S. kervillei and to a lesser extent by S. spiritus. The abundance of the latter four species is low in winter, probably due to a migration towards coastal waters to avoid colder temperatures in the estuary combined with an increased mortality after breeding. The sex ratio of all the mysid populations corresponds to the expected 1:1 female:male ratio and no salinity governed segregation is found between the different life stages of each mysid population. A seasonal variation exists in brood size in the N. integer population regardless of the body size, with a larger number of broods during winter and spring compared to the summer. In the other mysid populations the brood sizes vary only with the length of the ovigerous females.  相似文献   

14.
The spatial spring distribution of Eurytemora affinis (adults and C5) in the Scheldt estuary (Belgium) brackish and freshwater reaches was studied in between 1996 and 2007. The bulk of the E. affinis population being generally situated in the brackish water reach (salinity > 0.5); we studied which environmental factors are responsible for its recent sporadic occurrence in the freshwater estuarine reach. Using PLS analysis, it is shown that its presence upstream is limited by a sufficient oxygen concentration (>4 mg l−1) that is associated with temperature. Not only are the environmental conditions in the upstream zone important, but also the frequent presence of an O2 minimum zone in the mid-estuary (O2 min < 1.3 mg l−1) seems to block the movement of the downstream E. affinis population in an upstream direction. Occasionally, the bulk of the population is however situated upstream. During these periods, high E. affinis abundance was also observed in the Durme tributary. Our findings suggest the possibility to use E. affinis as an “indicator” species of water quality, but also lead us to stress the necessity to consider conditions over the entire estuary when studying restoration effects, not exclusively in the zone of interest.  相似文献   

15.
Although flatfish species utilise a wide range of habitats as adults, several species are confined to a very limited habitat as juveniles. Recruitment levels are dependent on the quality and quantity of these nursery areas and changes therein. In the Baltic Sea, these shallow environments are often subject to influxes of drifting macroalgae, which add structure to otherwise bare sandy substrate. Structure, such as vegetation, alters predator–prey interactions of a wide range of fauna and in an array of marine, freshwater, and terrestrial systems. The aim of our study was to assess the inhibition potential of drifting macroalgae on the foraging efficiency of juvenile flatfish (young of the year Scophthalmus maximus L., young of the year- and group 1 + Platichthys flesus L.) through a series of microcosm experiments. Our results show that foraging success is restricted by drift algae as predation efficiency of all predator species and size classes was negatively affected by the presence of macroalgae. Overall, there was a reduction in predation success by 80 ± 12% due to structural effects and/or the induced changes in water chemistry associated with the algae. Flatfish depend on shallow sandy areas as feeding and nursery grounds during their juvenile stage and frequently occurring macroalgal assemblages drastically change the features of the otherwise bare substrate, setting the stage for small-scale, localised processes potentially affecting population dynamics.  相似文献   

16.
In estuarine sediment flats benthic macroinvertebrates are intensively consumed by a variety of predators, such as aquatic birds and nekton (mostly fish and crustaceans). However, there is still a lack of conclusive studies that evaluate if this predation has a relevant impact on the populations of those invertebrates, which are a key element of the estuarine food chain. In the Tagus estuary we experimentally tested and quantified the impact of predation on the polychaete Hediste diversicolor, one of the most important prey for a variety of predators in many estuaries. Using an exclusion experiment, we compared the seasonal variation in the densities of H. diversicolor from February to November in sediment plots (1) available to both bird and nekton predators, (2) just to nekton, and (3) without predators. We also followed changes in the abundance of potential predators throughout the study. The lowest densities were systematically observed in the plots accessible to all predators, followed by those which excluded just birds, and finally by those that excluded all predators. The exclosures were in place for 9 months, at the end of which the average density of H. diversicolor in the plots protected from all predators was eight times greater than in those without any protection. These results demonstrate that predation had a major impact on the densities of H. diversicolor. The relative importance of bird and nekton predation varied along the study, and this seems to be determined by different peaks of abundance of the two types of predators. However, when present in high densities, birds and nekton seem to have a similar impact on H. diversicolor. Our results suggest that predation is a key factor on the population dynamics of H. diversicolor. In addition, the levels of predation that we observed suggest that this polychaete can be a limited resource, and this could have major ecological consequences for predators for which it is a key prey.  相似文献   

17.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

18.
The food choice of juvenile flounder (Platichthys flesus) and turbot (Scophthalmus maximus) was studied in the northern Baltic Sea during the years 1988, 1989, 1994 and 1995. The diet included organisms from 30 species/taxa in flounder (n = 306) and 10 species/taxa in turbot (n = 41). Flounder 45 mm mainly consumed meiofauna (dominating taxon: Harpacticoida, Copepoda) and larger fish (46–101 mm) consumed macrofauna (dominating taxa: Oligochaeta, Amphipoda and Chironomidae). In terms of biomass, macrofauna dominated for all sizes of flounders, and meiofauna was important only for the smallest fish. A strong seasonal variation could be detected in the diet. In spring, macrofauna dominated for all size classes of fish (only fish > 30 mm were caught in spring), while in summer and autumn meiofauna dominated the diets for fish 45 mm in size. Juvenile turbot (22–88 mm) consumed macrofauna and small fish. Turbot 30 mm consumed mainly amphipods, while > 30 mm turbot consumed mysid shrimps, amphipods and fish.The ontogenetic shift from meio- to macrofauna-sized prey in flounders occurs at a larger fish size in the northern Baltic Sea than reported in other areas, possibly depending on the increased relative importance of meiofauna in the northern Baltic. The seasonal variation in the diet could be due to seasonally changing abundances in the zoobenthos, or for the small fish (1-group, spring), to switching from meio- to macrofauna in order to optimize their energy gain. The 0-group flounders consumed meiofauna for a long period, possibly due to a learning-process or simply due to easy availability of meiofauna. Turbot has a much larger mouth gap than flounders, thus allowing them to consume macrofauna from the beginning of their benthic life.  相似文献   

19.
Atlantic–Mediterranean anchovies were genetically characterized at two polymorphic nuclear loci (intron 6 of two creatine-kinase genes) and compared to reference Engraulis albidus and E. encrasicolus samples from the northern Western Mediterranean to provide new insights into their geographic structure. Northeastern Atlantic anchovy, represented by one sample from the Canary archipelago and one sample from the Alboran Sea, were genetically distinct from Mediterranean E. encrasicolus (Weir and Cockerham's  = 0.027–0.311), indicating geographic isolation from either side of the Almería–Oran oceanographic front. Generally smaller genetic differences were evident among anchovy populations from different sub-basins in the Mediterranean ( = − 0.019–0.116), the genetic differences between Black Sea and Ionian Sea/Aegean Sea anchovies being the strongest ( = 0.002–0.116). There was no evidence of the presence of E. albidus in our samples outside Camargue (northern shore of the Western Mediterranean). However, a sample from the southern Western Mediterranean appeared to be genetically intermediate between E. albidus and Mediterranean E. encrasicolus, indicating possible hybridization. Anchovy from the Benguela current system off southern Africa possessed allele frequencies characteristic of E. albidus at one locus and Northeastern Atlantic anchovy at the other locus, suggesting past introgression.  相似文献   

20.
In this study, seasonal and annual variability in the use of estuarine and ocean beaches by young-of-the-year bluefish, Pomatomus saltatrix, was evaluated by indices of abundance in coastal areas of southern New Jersey (1998–2000). Biological and physical factors measured at specific sites were correlated with bluefish abundance to determine the mechanisms underlying habitat selection. In addition, integrative and discrete indicators of bluefish growth were used to examine spatio-temporal dynamics in habitat quality and its effect on habitat selection by multiple cohorts of bluefish. Intra-annual recruitment to coastal areas of southern New Jersey was episodic, and resulted from the ingress of spring-spawned bluefish (hatch-date April) to estuarine beaches in late May to early June, followed by the recruitment of summer-spawned fish (hatch-date early July) to ocean beaches from July to October. Bluefish utilized estuarine and ocean beaches in a facultative manner that was responsive to dynamics in prey composition and temperature conditions. The recruitment and residency of bluefish in the estuary (1998–1999) and ocean beaches (1998), for example, was coincidental with the presence of the Atlantic silverside Menidia menidia and bay anchovy Anchoa mitchilli, the principal prey species for bluefish occupying these respective habitat-types. Bluefish abundance in the estuary (2000) and ocean beaches (1999–2000) was also correlated with water temperature, with the greatest catches of juveniles coinciding with their optimal growth temperature (24 °C). Bluefish growth, estimated as the slope of age–length relationships and daily specific growth rates, equaled 1.27–2.63 mm fork length (FL) d−1 and 3.8–8.7% body length increase d−1, respectively. The growth of sagittal otoliths was also used as a proxy for changes in bluefish size during and shortly before their time of capture. Accordingly, otolith growth rates of summer-spawned bluefish were greater at ocean beaches relative to the estuary and were explained by the more suitable temperature conditions found at ocean beaches during the mid- to late summer. Notwithstanding the fast growth of oceanic summer-spawned bluefish, individuals spawned in the spring were still larger in absolute body size at the end of the summer growing season (240 and 50–200 mm FL for spring- and summer-spawned bluefish, respectively). The size discrepancy between spring- and summer-spawned bluefish at the onset of autumn migrations and during overwintering periods may account for the differential recruitment success of the respective cohorts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号