首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   620篇
  免费   25篇
  国内免费   4篇
测绘学   16篇
大气科学   51篇
地球物理   163篇
地质学   228篇
海洋学   29篇
天文学   128篇
综合类   1篇
自然地理   33篇
  2021年   6篇
  2020年   6篇
  2019年   6篇
  2018年   18篇
  2017年   14篇
  2016年   19篇
  2015年   24篇
  2014年   19篇
  2013年   24篇
  2012年   25篇
  2011年   47篇
  2010年   33篇
  2009年   37篇
  2008年   24篇
  2007年   26篇
  2006年   17篇
  2005年   19篇
  2004年   12篇
  2003年   18篇
  2002年   9篇
  2001年   10篇
  2000年   16篇
  1999年   13篇
  1998年   12篇
  1997年   10篇
  1996年   5篇
  1995年   12篇
  1993年   8篇
  1992年   8篇
  1991年   5篇
  1990年   7篇
  1989年   7篇
  1988年   9篇
  1987年   5篇
  1986年   6篇
  1984年   6篇
  1983年   5篇
  1981年   7篇
  1979年   4篇
  1977年   4篇
  1976年   6篇
  1975年   5篇
  1973年   8篇
  1970年   8篇
  1969年   4篇
  1968年   4篇
  1952年   6篇
  1951年   4篇
  1950年   4篇
  1949年   4篇
排序方式: 共有649条查询结果,搜索用时 15 毫秒
1.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   
2.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two-stage light-gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane-driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high-temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.  相似文献   
3.
We report the B abundances and isotopic ratios of two olivine grains from the S‐type asteroid Itokawa sampled by the Hayabusa spacecraft. Olivine grains from the Dar al Gani (DaG) 989 LL6 chondrite were used as a reference. Since we analyzed polished thin sections in both cases, we expect the contribution from the solar wind B (rich in 10B) to be minimal because the solar wind was implanted only within very thin layers of the grain surface. The Itokawa and DaG 989 olivine grains have homogeneous B abundances (~400 ppb) and 11B/10B ratios compatible with the terrestrial standard and bulk chondrites. The observed homogeneous B abundances and isotopic ratios of the Itokawa olivine grains are likely the result of thermal metamorphism which occurred in the parent asteroid of Itokawa, which had a similar composition as LL chondrites. The chondritic B isotopic ratios of the Itokawa samples suggest that they contain little cosmogenic B (from cosmic‐ray spallation reactions) rich in 10B. This observation is consistent with the short cosmic‐ray exposure ages of Itokawa samples inferred from the small concentrations of cosmogenic 21Ne. If other Itokawa samples have little cosmogenic B as well, the enrichment in 10B found previously on the surface of another Itokawa particle (as opposed to the bulk grain study here) may be attributed to implanted solar wind B.  相似文献   
4.

The volcanic rocks of the Colíder and Roosevelt formations are extensively exposed in the south-central portion of the Amazonian Craton where effusive and pyroclastic rocks have been mapped. Both units, topped by chemical sediments and oceanic facies as rhyolite and andesite lavas, rhyodacite, and porphyritic dacite, with frequent intercalations of pyroclastic and epiclastic deposits. Whole-rock geochemistry for 55 samples of rhyolitic to andesitic composition suggests the involvement of fertile mantle-derived components with E-MORB to OIB compositions. The analyzed rocks display calc-alkaline to shoshonitic affinity consistent with generation related to an active continental margin. The whole-rock Sm-Nd isotope data from selected felsic volcanic rocks of the Colíder and Roosevelt formations yield negative initial εNd values between –3 and –9, indicating the predominantly crustal nature of the parental magmas with early Archean to late Paleoproterozoic (ca. 2.5–2.0 Ga) depleted mantle model ages.

  相似文献   
5.
Carbon isotope (δ13Corg) analyses of non-marine clastic rocks and neritic carbonates and black shales spanning the Silurian/Devonian transition are compared from two richly fossiliferous sequences in Qujing of East Yunnan and Zoige of Sichuan, South China. The two sections, Xishancun and Putonggou sections in South China, reveal positive δ13Corg shifts happening in the Upper Pridoli and Lower Devonian and reaching peak values as heavy as ?25.2‰ (Xishancun) and ?19.9‰ (Putonggou) in the lowermost Lochkovian following the first occurrence of the thelodont Parathelodus and the conodont Icriodus woschmidti woschmidti (only in Putonggou Section and together with Protathyris-Lanceomyonia brachiopod fauna). These results replicate a globally known positive shift in δ13Corg from the uppermost Silurian to the lowermost Devonian. The δ13Corg variations across the Silurian/Devonian Boundary (SDB) at the two sections in South China exhibit a shift in carbon isotopic composition similar to the detailed SDB curves from the borehole Klonk-1 drilled at top of the Klonk Global Standard Stratotype-Section and Point (GSSP) in the Prague Basin, Czech Republic. In addition, four microvertebrate assemblages, including the Liaojiaoshan, Xishancun, Yanglugou and Xiaputonggou assemblages, are recognized from the Silurian/Devonian transition exposed in the Xishancun and Putonggou sections, respectively. The results from both carbon isotope stratigraphy and microvertebrate assemblage sequences suggest that the SDB in South China is located at the base of the Xishancun Formation (between sample QX-20 and sample QX-21) in the Xishancun Section and the lower part of the Xiaputonggou Formation (between sample ZP-09 and sample ZP-10) in the Putonggou Section. The isotopic trend for organic carbon together with the changes of microvertebrate remains across the SDB can offer an approach to a potential correlation of the SDB from different sedimentary facies, which help to correlate the marine with non-marine deposits.  相似文献   
6.
The existence of the Cretaceous-Tertiary (K/T) boundary in the non-marine succession is expected at Jiayin in the Heilongjiang River area, China. Zircons from a tuff sample from the Baishantou Member of Wuyun Formation in Jiayin were analyzed by the laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating and fission-track dating methods. Ages of 64.1±0.7 Ma (U-Pb) and 61.7±1.8 Ma (fission-track dating) were obtained, which allow re-evaluation of a previously reported late Maastrichian age for the tuff layer that was in conflict with the paleontological evidence. These results confirm the Danian age of the section in agreement with the paleontological evidence.  相似文献   
7.
8.
Benthic nitrogen (N) cycling was investigated at six stations along a transect traversing the Peruvian oxygen minimum zone (OMZ) at 11°S. An extensive dataset including porewater concentration profiles and in situ benthic fluxes of nitrate (NO3), nitrite (NO2) and ammonium (NH4+) was used to constrain a 1-D reaction-transport model designed to simulate and interpret the measured data at each station. Simulated rates of nitrification, denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) by filamentous large sulfur bacteria (e.g. Beggiatoa and Thioploca) were highly variable throughout the OMZ yet clear trends were discernible. On the shelf and upper slope (80-260 m water depth) where extensive areas of bacterial mats were present, DNRA dominated total N turnover (?2.9 mmol N m−2 d−1) and accounted for ?65% of NO3 + NO2 uptake by the sediments from the bottom water. Nonetheless, these sediments did not represent a major sink for dissolved inorganic nitrogen (DIN = NO3 + NO2 + NH4+) since DNRA reduces NO3 and, potentially NO2, to NH4+. Consequently, the shelf and upper slope sediments were recycling sites for DIN due to relatively low rates of denitrification and high rates of ammonium release from DNRA and ammonification of organic matter. This finding contrasts with the current opinion that sediments underlying OMZs are a strong sink for DIN. Only at greater water depths (300-1000 m) did the sediments become a net sink for DIN. Here, denitrification was the major process (?2 mmol N m−2 d−1) and removed 55-73% of NO3 and NO2 taken up by the sediments, with DNRA and anammox accounting for the remaining fraction. Anammox was of minor importance on the shelf and upper slope yet contributed up to 62% to total N2 production at the 1000 m station. The results indicate that the partitioning of oxidized N (NO3, NO2) into DNRA or denitrification is a key factor determining the role of marine sediments as DIN sinks or recycling sites. Consequently, high measured benthic uptake rates of oxidized N within OMZs do not necessarily indicate a loss of fixed N from the marine environment.  相似文献   
9.
It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (∼1 mmol U per kg sediment) enabled analysis by X-ray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (μm scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass.  相似文献   
10.
Extracellular polymeric substances (EPS) are continuously produced by bacteria during their growth and metabolism. In soils, EPS are bound to cell surfaces, associated with biofilms, or released into solution where they can react with other solutes and soil particle surfaces. If such reaction results in a decrease in EPS bioaccessibility, it may contribute to stabilization of microbial-derived organic carbon (OC) in soil. Here we examined: (i) the chemical fractionation of EPS produced by a common Gram positive soil bacterial strain (Bacillus subtilis) during reaction with dissolved and colloidal Al species and (ii) the resulting stabilization against desorption and microbial decay by the respective coprecipitation (with dissolved Al) and adsorption (with Al(OH)3(am)) processes. Coprecipitates and adsorption complexes obtained following EPS-Al reaction as a function of pH and ionic strength were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stability of adsorbed and coprecipitated EPS against biodegradation was assessed by mineralization experiments for 1100 h. Up to 60% of the initial 100 mg/L EPS-C was adsorbed at the highest initial molar Al:C ratio (1.86), but this still resulted only in a moderate OC mass fraction in the solid phase (17 mg/g Al(OH)3(am)). In contrast, while coprecipitation by Al was less efficient in removing EPS from solution (maximum values of 33% at molar Al:C ratios of 0.1-0.2), the OC mass fraction in the solid product was substantially larger than that in adsorption complexes. Organic P compounds were preferentially bound during both adsorption and coprecipitation. Data are consistent with strong ligand exchange of EPS phosphoryl groups during adsorption to Al(OH)3(am), whereas for coprecipitation weaker sorption mechanisms are also involved. X-ray photoelectron analyses indicate an intimate mixing of EPS with Al in the coprecipitates, which is not observed in the case of EPS adsorption complexes. The incubation experiments showed that both processes result in overall stabilization of EPS against microbial decay. Stabilization of adsorbed or coprecipitated EPS increased with increasing molar Al:C ratio and biodegradation was correlated with EPS desorption, implying that detachment of EPS from surface sites is a prerequisite for microbial utilization. Results indicate that the mechanisms transferring EPS into Al-organic associations may significantly affect the composition and stability of biomolecular C, N and P in soils. The observed efficient stabilization of EPS might explain the strong microbial character of organic matter in subsoils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号