首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 244 毫秒
1.
New radiometric ages from the Subpenninic nappes (Eclogite Zone and Rote Wand – Modereck Nappe, Tauern Window) show that phengites formed under eclogite-facies metamorphic conditions retain their initial isotopic signature, even when associated lithologies were overprinted by greenschist- to amphibolite-facies metamorphism. Different stages of the eclogite-facies evolution can be dated provided 40Ar/39Ar dating is combined with micro-structural analyses. An age of 39 Ma from the Rote Wand – Modereck Nappe is interpreted to be close to the burial age of this unit. Eclogite deformation within the Eclogite Zone started at the pressure peak along distinct shear zones, and prevailed along the exhumation path. An age of ca. 38 Ma is only observed for eclogites not affected by subsequent deformation and is interpreted as maximum age due to the possible influence of homogenously distributed excess argon. During exhumation deformation was localised along distinct mylonitic shear zones. This stage is mainly characterised by the formation of dynamically recrystallized omphacite2 and phengite. Deformation resulted in the resetting of the Ar isotopic system within the recrystallized white mica. Flat argon release spectra showing ages of 32 Ma within mylonites record the timing of cooling along the exhumation path, and the emplacement onto the Venediger Nappe. Ar-release patterns and 36Ar/40Ar vs.39Ar/40Ar isotope correlation analyses indicate no significant 40Ar-loss after initial closure, and only a negligible incorporation of excess argon. From the pressure peak onwards, eclogitic conditions prevailed for almost 8–10 Ma.  相似文献   

2.
Noblesse multi-collector noble gas mass spectrometer is specially designed for multi-collection of Ar isotopes with different beam sizes, especially for small ion beams, precisely, and hence is perfectly suitable for 40Ar/39Ar geochronology. We have analyzed widely used sanidine, muscovite, and biotite standards with recommended ages of ~ 1.2–133 Ma, with the aim to assess the reliability of Noblesse for 40Ar/39Ar dating. An ESI MIR10 30W CO2 laser was used for total fusion or incremental heating samples. Extracted gases were routinely purified by four SAES NP10 getters (one at ~ 400 °C and others at room temperature). A GP50 getter and a metal cold finger cooled by liquid N (? 196 °C) were also attached for additional purification if necessary. The Ar isotopes were then measured by Noblesse using Faraday or multiplier according to the signal intensities. Over a period of 1.5 months 337 air calibrations produced a weighted mean 40Ar/36Ar of 296.50 ± 0.08 (2σ, MSWD = 4.77). Fish Canyon sanidine is used to calculate J-values, which show good linear relationship with position in irradiation. The age of four mineral standards (Alder Creek sanidine, Brione muscovite, Yabachi sanidine, and Fangshan biotite) are within error of the accepted ages. Five Alder Creek sanidine aliquots yielded an age range of 1.174–1.181 ± 0.013 Ma (2σ) which broadly overlaps the established age of the standard and the uncertainty approaches those of the foremost Ar/Ar laboratories in the world. The weighted mean ages of four Brione muscovite aliquots (18.75 ± 0.16 Ma, 2σ), five Yabachi sanidine aliquots (29.50 ± 0.19 Ma, 2σ), and three Fangshan biotite aliquots (133.0 ± 0.76 Ma, 2σ) are consistent with the recommended values of these standards, and the uncertainties are typical of modern Ar/Ar laboratories world-wide.  相似文献   

3.
Geotectonically the Fengyang and Zhangbaling regions belong to the North China craton and the Dabie-Sulu oragene, respectively. Neo-Archean gneiss and amphibolite and metamor-phosed sea-facies sodic volcanic rocks axe the main outcrops in the two regions, respectively. The Zhangbaling terrane strike-skipped along the Tancheng-Lujiang fault zone in Mesozoic and Cenozo-ic eras and got close to the Fengyang terrane. Mesozoic Yanshanian intrusions occur broadly in thetwo regions. Gold-beating quartz veins occur in the metamorphic rocks in the Fengyang region and in the granodiorite and metamorphosed sea-facies sodic volcanic rocks in the Zhanghaling region.Generally, the formation of the auriferous quartz veins involved three stages. At the first stage,gold-poor sulfide quartz veins were formed; at the second stage gold-rich quartz sulfide veins wereformed; and at the third stage gold-poor barite and/or carbonate veins were formed. The 40^Ar/29^Ar step-heating plateau ages of the first-stage and the second-stage quartz aggregates from the Zhuding, Maoshan and Shangeheng gold deposits range between 116.1 0.6 Ma and 118.3 0.5 Ma and are pretty close to their least apparent ages and isoehronal ages, respectively. All plat-eau, least apparent and isoehronal ages range between 113.4 0.4 Ma and 118.3 0.5 Ma,which are considered as the formation age range of the quartz. It is reasonable and reliable to takethe 40^Ar/39^Ar age range of the quartz as the formation age range of gold-bearing quartz veins onthe basis of spatial relationship between gold-bearing quartz veins and their country rocks. Thegold deposits in the two regions were formed in Aptian, Cretaceous, when the Tancheng-Lujiangfault zone moved as a normal fault with slightly right-lateral strike-skip, was extensional and expe-rienced very strong magnmtic process. It is shown that the magnmtic hydrothermal fluid is a veryimportant part of the gold ore-forming hydrothermal fluid in the Fengyang and Zhanghaling re-gions. The formation of the gold ore deposits in the Fengyang and Zhanghaling regions had genetic relations with the extensional movement of the Tancheng-Lujiang fault zone and magmatic activities and took place under the extensional dynamic condition in Late Cretaceous. Therefore, the exten-sional movement of the Tancheng-Lujiang fault zone presented the energy and space for magmatic and gold ore-forming processes.  相似文献   

4.
Exhumation of the Tutak mantled gneiss dome without significant cooling has taken place in a doubly plunging anticline within the Sanandaj-Sirjan HP-LT metamorphic belt in the Zagros Thrust System of Iran. Reconstruction of structural evolution of the Tutak gneiss dome at the contact between Arabian and Iranian plates by 40Ar/39Ar geochronology exhibits history of the closure of Neo-Tethyan Ocean. There are two granites of different ages in the core of dome; the oldest corresponds to the central Iranian continental crust and was deformed at about 180 Ma. The younger granite was emplaced in the NE–SW transpression system. The timing of strain-related fabrics and exhumation history of the region illustrates the closure of Neo-Tethys and beginning of continent-continent collision at about 77 Ma, as constrained by a well defined plateau 40Ar/39Ar age obtained on biotite. Then, the biotite age corresponds to the second stage of emplacement of the Bendenow granite-gneiss which illustrating repeated orogenic events. Continuing deformation without interruption that by now has been created at about 77 Ma, was largely restricted to the transpression and high proportion of simple shear components relative to the pure shear components along the NE–SW.  相似文献   

5.
Muscovite and biotite from a crustal-scale mylonite zone (Pogallo Shear Zone, southern Alps) were investigated using furnace step-heating and in-situ UV-laser ablation 40Ar/39Ar geochronology. Undeformed muscovite porphyroclasts yield 40Ar/39Ar plateau ages of 182.0ǃ.6 Ma, whereas in-situ UV-laser ablation 40Ar/39Ar dating and furnace step-heating of strongly deformed muscovite and biotite grains display a range of apparent ages that are systematically younger. The range of 40Ar/39Ar ages measured in the deformed muscovite and biotite is consistent with protracted cooling through argon closure in minerals that exhibit variably developed segmentation on the intra-grain scale. These microstructurally controlled segments are bound by either first-order lattice discontinuities, sub-microscopic structural defects and/or zones of high defect density, which create variable length-scales for intragranular argon diffusion. The observed deformational microstructures within muscovite and biotite acted as intra-grain fast diffusion pathways in the slowly cooled mylonitic rocks. Therefore, the high-spatial resolution 40Ar/39Ar data record the initial and final closure to argon diffusion over a time span of about 60 Ma.  相似文献   

6.
On the eastern extremity of the Jiaodong peninsula, China, shoshonitic magmas have been injected into the supracrustal rocks of the Sulu ultra-high pressure (UHP) terrane during the crustal exhumation phase. These granitoids (collectively termed the Shidao igneous complex or Jiazishan alkaline complex) show geochemical and isotopic signatures of an enriched subcontinental lithospheric mantle and intruded soon after the subducted Yangtze crust had reached peak metamorphic pressure conditions (240–220 Ma). We have applied various geochronometers to an alkali-gabbro sample from the Jiazishan pluton and the results allow reconstruction of the Triassic-to-present thermal history. Initial rapid cooling of the gabbro at crustal depths is indicated by the close agreement between the Sm-Nd mineral isochron age (228?±?36 Ma) and the Rb-Sr biotite age (207?±?1) Ma. This interpretation is confirmed by previously published U-Pb zircon ages (225–209 Ma), and 40Ar/39Ar amphibole and K-feldspar ages (~214 Ma) from the Jiazishan syenites. A titanite fission-track age of 166?±?8 Ma (closure temperature range 285–240°C) records widespread Jurassic magmatism in the Jiaodong peninsula, indicating that the gabbro reached upper crustal levels before it was reheated by nearby Jurassic plutons. A subsequent cooling and reheating event is indicated by an apatite fission-track age of 106?±?6 Ma which coincides with the emplacement of the adjacent Weideshan pluton (108?±?2 Ma) and postdates a period of regional lithospheric thinning beneath eastern China. A period of slow cooling (or thermal stability) from late Cretaceous to early Tertiary, documented by an apatite (U-Th)/He age of 39?±?5 Ma, was followed by a final stage of more enhanced cooling since the late Eocene. Results of this work imply that the eastern Sulu terrane has experienced a complex cooling and reheating history. Our data are consistent with a model of initial rapid cooling (sudden exhumation) of the UHP terrane, driven by the release of buoyancy forces, followed by two progressively slower cooling intervals (both after renewed crustal reheating) during the Jurassic and Cretaceous.  相似文献   

7.
Isotope datings of amphibole-bearing mafics and metamafics in the northern part of the Anadyr-Koryak region allow clarification of the time of magmatic and metamorphic processes, which are synchronous with certain stages of the geodynamic development of the northwest segment of the Pacific mobile belt in the Phanerozoic. To define the 40Ar/39Ar age of amphiboles, eight samples of amphibole gabbroids and metamafics were selected during field work from five massifs representing ophiolites and mafic plutons of the island arc. Rocks from terranes of three foldbelts: 1) Pekulnei (Chukotka region), 2) Ust-Belaya (West Koryak region), and 3) the Tamvatnei and El’gevayam subterranes of the Mainits terrane (Koryak-Kamchatka region), were studied. The isotope investigations enabled us to divide the studied amphiboles into two groups varying in rock petrographic features. The first was represented by gabbroids of the Svetlorechensk massif of the Pekulnei Range and by ophiolites of the Tamvatnei Mts.; their magmatic amphiboles show the distribution of argon isotopes in the form of clearly distinguished plateau with an age ranging within 120–129 Ma. The second group includes metamorphic amphiboles of metagabbroids and apogabbro amphibolites of the Ust-Belaya Mts., Pekulnei and Kenkeren ranges (El’gevayam subterranes). Their age spectra show loss of argon and do not provide well defined plateaus the datings obtained for them are interpreted as minimum ages. Dates of amphiboles from the metagabbro of the upper tectonic plate of the Ust-Belaya allochthon points to metamorphism in the suprasubduction environment in the fragment of Late Neoproterozoic oceanic lithosphere in Middle-Late Devonian time, long before the Uda-Murgal island arc system was formed. The amphibolite metamorphism in the dunite-clinopyroxenite-metagabbro Pekulnei sequence was dated to occur at the Permian-Triassic boundary. The age of amphiboles from gabbrodiorites of the Kenkeren Range was dated to be Early Jurassic that confirmed their assignment to the El’gevayam volcanic-plutonic assemblage. These data are consistent with geological concepts and make more precise the available age dates. Neocomian-Aptian 40Ar/39Ar age of amphibolites from the Pekulnei and Tamvatnei gabbroids make evident that mafics of these terranes (varying in geodynamic formation settings and in petrogenesis) were generated in later stages of the development of the West Pekulnei and Mainits-Algan Middle-Late Jurassic-Early Cretaceous island arc systems, presumably due to breakup of island arcs in the Neocomian.  相似文献   

8.
The Malkhan granite-pegmatite system located in Central Transbaikalia, in the southwestern portion of the Malkhan-Yablonovy structure-formational zone of the Caledonian folding comprises two granite massifs (Bolsherechensk and Oreshny) and a miarolitic pegmatite field of the same name, which adjoins the Chikoi deep-seated fault and Lower Cretaceous Chikoi rift depression in the north. The first 40Ar/39Ar data were obtained on porphyritic biotite granites of the Oreshny massif and on K-feldspar, muscovite, and lepidolite from the Oktyabrskaya pegmatite vein. According to these data, the age of the granitepegmatite system is 123.8–127.6 Ma, which is consistent with the age of Lower Cretaceous rocks from the Chikoi depression. The intimate spatial relationship and isochronism between the Chikoi depression and the Malkhan granite-pegmatite system are strongly suggestive of a rift regime that affected its evolution, thus highlighting the need to regard the evolution of this system as being intimately related to depression development. Such a model can easily be realized within the framework of the concept of a metamorphic core complex, which was used to explain the nature of Transbaikal-type rift depressions and conjugate granite-gneiss swells.  相似文献   

9.
The Duguer area represents one of the few occurrences of high-grade metamorphic rocks in the ‘Central Uplift’ zone of the Qiangtang terrane, central Tibet. The metamorphic rocks consist mainly of orthogneiss, paragneiss, and schist. To better understand the formation of these rocks, seven samples of gneiss and schist from the Duguer area were selected for in situ zircon U–Pb analysis and Ar–Ar dating of metamorphic minerals. The results suggest two distinct metamorphic stages, during the Late Triassic (229–227 Ma) and Late Jurassic (150–149 Ma). These stages correspond to the closure of the Palaeo-Tethys Ocean and northward subduction of the Bangong–Nujiang Neo-Tethys oceanic crust, respectively. We suggest that the Late Triassic metamorphic rocks of the Duguer area in the central South Qiangtang subterrane provide evidence of continental collision between the North and South Qiangtang subterranes, following the subduction of oceanic crust. It is likely that deep subduction of oceanic crust occurred along the Longmu Co–Shuanghu–Lancangjiang suture zone (LSLSZ), which would have hindered exhumation owing to the high density of oceanic crust. Subsequent break-off and delamination of the subducted oceanic slab at ~220 Ma may have resulted in exhumation of high-pressure and high-grade metamorphic rocks in the South Qiangtang subterrane. The Late Jurassic ages of metamorphism and deformation obtained in this study indicate the occurrence of an Andean-type orogenic event within the South Qiangtang subterrane. This hypothesis is further supported by an apparent age gap in magmatic activity (150–130 Ma) along the magmatic arc, and the absence of Late Jurassic sediments.  相似文献   

10.
Pegmatites of the Emiytas basic-ultrabasic metamorphic complex have a granodiorite-granite composition. Their genetic relations with the host amphibolites follow from the low initial 87Sr/86Sr ratios of 0.7028 and from the P-T conditions (650°C and 10 kbar), which are close to those of the host rocks. Amphibole, biotite, and muscovite megacrysts analyzed by the 40Ar/39Ar method yielded plateau ages of 209.7 ± 0.9, 203.0 ± 0.9, and 178.5 ± 1.5 Ma, respectively. The former two minerals contain excess Ar, whereas the K-Ar system of the muscovite is undisturbed. The cooling of the complex to the closure temperature of this system was likely controlled by its exhumation to a shallower depth level. Zircons from the Emiytas pegmatites occur as polyhedral equant crystals with weakly contrasting sectorial zoning, very low concentrations of U (4–8 ppm in the enriched domains), and low Th/U ratios (0.002–0.003), which suggest that the mineral crystallized at significant depth in the presence of fluid. Tentative SHRIMP II measurements (five analyses) yielded a zircon age of 202 ± 17 Ma. The applying a specialized approach to the analysis of young low-U zircons on an ion probe is discussed. In spite of the small number of analyses, new geochronologic data leave no doubt that the crystallization age of the pegmatites is Late Triassic-Early Jurassic and invalidate earlier ideas that the Emiytas complex is Precambrian-Early Paleozoic. This conclusion makes the Emiytas amphibolites to be one of the various oceanic and suprasubduction complexes related to the Mesozoic South Anyui suture, which is important for reconstructions of the tectonic evolution of the East Siberian Arctic shelf.  相似文献   

11.
White micas in carbonate-rich tectonites and a few other rock types of large thrusts in the Swiss Helvetic fold-and-thrust belt have been analyzed by 40Ar/ 39Ar and Rb/Sr techniques to better constrain the timing of Alpine deformation for this region. Incremental 40Ar/ 39Ar heating experiments of 25 weakly metamorphosed (anchizone to low greenschist) samples yield plateau and staircase spectra. We interpret most of the staircase release spectra result from variable mixtures of syntectonic (neoformed) and detrital micas. The range in dates obtained within individual spectra depends primarily on the duration of mica nucleation and growth, and relative proportions of neoformed and detrital mica. Rb/Sr analyses of 12 samples yield dates of ca. 10–39 Ma (excluding one anomalously young sample). These dates are slightly younger than the 40Ar/ 39Ar total gas dates obtained for the same samples. The Rb/Sr dates were calculated using initial 87Sr/ 86Sr ratios obtained from the carbonate-dominated host rocks, which are higher than normal Mesozoic carbonate values due to exchange with fluids of higher 87Sr/ 86Sr ratios (and lower 18O/ 16O ratios). Model dates calculated using 87Sr/ 86Sr values typical of Mesozoic marine carbonates more closely approximate the 40Ar/ 39Ar total gas dates for most of the samples. The similarities of Rb/Sr and 40Ar/ 39Ar total gas dates are consistent with limited amounts of detrital mica in the samples. The d 18O values range from 24–15‰ (VSMOW) for 2–6 µm micas and 27–16‰ for the carbonate host rocks. The carbonate values are significantly lower than their protolith values due to localized fluid-rock interaction and fluid flow along most thrust surfaces. Although most calcite-mica pairs are not in oxygen isotope equilibrium at temperatures of ca. 200–400 °C, their isotopic fractionations are indicative of either 1) partial exchange between the minerals and a common external fluid, or 2) growth or isotopic exchange of the mica with the carbonate after the carbonate had isotopically exchanged with an external fluid. The geological significance of these results is not easily or uniquely determined, and exemplifies the difficulties inherent in dating very fine-grained micas of highly deformed tectonites in low-grade metamorphic terranes. Two generalizations can be made regarding the dates obtained from the Helvetic thrusts: 1) samples from the two highest thrusts (Mt. Gond and Sublage) have all of their 40Ar/ 39Ar steps above 20 Ma, and 2) most samples from the deepest Helvetic thrusts have steps (often accounting for more than 80% of 39Ar release) between 15 and 25 Ma. These dates are consistent with the order of thrusting in the foreland-imbricating system and increase proportions of neoformed to detrital mica in the more metamorphosed hinterland and deeply buried portions of the nappe pile. Individual thrusts accommodated the majority of their displacement during their initial incorporation into the foreland-imbricating system, and some thrusts remained active or were reactivated down to 15 Ma.  相似文献   

12.
Linking ages to metamorphic stages in rocks that have experienced low‐ to medium‐grade metamorphism can be particularly tricky due to the rarity of index minerals and the preservation of mineral or compositional relicts. The timing of metamorphism and the Mesozoic exhumation of the metasedimentary units and crystalline basement that form the internal part of the Longmen Shan (eastern Tibet, Sichuan, China), are, for these reasons, still largely unconstrained, but crucial for understanding the regional tectonic evolution of eastern Tibet. In situ core‐rim 40Ar/39Ar biotite and U–Th/Pb allanite data show that amphibolite facies conditions (~10–11 kbar, 530°C to 6–7 kbar, 580°C) were reached at 210–180 Ma and that biotite records crystallization, rather than cooling, ages. These conditions are mainly recorded in the metasedimentary cover. The 40Ar/39Ar ages obtained from matrix muscovite that partially re‐equilibrated during the post peak‐P metamorphic history comprise a mixture of ages between that of early prograde muscovite relicts and the timing of late muscovite recrystallization at c. 140–120 Ma. This event marks a previously poorly documented greenschist facies metamorphic overprint. This latest stage is also recorded in the crystalline basement, and defines the timing of the greenschist overprint (7 ± 1 kbar, 370 ± 35°C). Numerical models of Ar diffusion show that the difference between 40Ar/39Ar biotite and muscovite ages cannot be explained by a slow and protracted cooling in an open system. The model and petrological results rather suggest that biotite and muscovite experienced different Ar retention and resetting histories. The Ar record in mica of the studied low‐ to medium‐grade rocks seems to be mainly controlled by dissolution–reprecipitation processes rather than by diffusive loss, and by different microstructural positions in the sample. Together, our data show that the metasedimentary cover was thickened and cooled independently from the basement prior to c. 140 Ma (with a relatively fast cooling at 4.5 ± 0.5°C/Ma between 185 and 140 Ma). Since the Lower Cretaceous, the metasedimentary cover and the crystalline basement experienced a coherent history during which both were partially exhumed. The Mesozoic history of the Eastern border of the Tibetan plateau is therefore complex and polyphase, and the basement was actively involved at least since the Early Cretaceous, changing our perspective on the contribution of the Cenozoic geology.  相似文献   

13.
《International Geology Review》2012,54(12):1114-1124
Because of a complicated metamorphic history, the isotopic systematics of the ultrahigh-pressure (UHP) metamorphic rocks in the Dabie-Sulu belt, east China, appear to be rather different from what were expected. Depending on the degree of retrograde metamorphism and on the retentivity of isotopes, the radiogenic isotopic systematics in the UHP metamorphic rocks yielded a wide range of radiometric ages. Some of these ages are geologically meaningful, but others may not be. In some fine-grained UHP metamorphic rocks, Sm/Nd isotopic systematics appear to be in equilibrium among the UHP phases, showing the best estimate for the age of peak metamorphism at 226 ± 3 Ma. On the other hand, retrograde overprinting often makes the interpretation of isotopic data more difficult. It is common to find that the Sm/Nd and Rb/Sr isotopic systematics among the UHP phases and retrograde phases are not in equilibrium. Regression of isotopic data involving both UHP and retrograde minerals in isotopic correlation diagrams often yields geologically meaningless ages. Although 40Ar/39Ar dating of UHP metamorphic rocks has been reported not to be very helpful in establishing the thermal history because of the presence of excess argon, a good correlation between excess argon and rock type in the Dabie-Sulu belt would provide a criterion in identifying the possible sources of excess argon. By taking all the possible effects into consideration, a T-t path with two rapid cooling stages for UHP metamorphic rocks from the Dabie-Sulu belt can be postulated. An initial rapid cooling stage in the period from 226 to 219 Ma may have resulted from rapid exhumation of UHP metamorphic rocks immediately after the peak metamorphism. The second rapid cooling stage, from 450°C to 300°C, may have been caused by the exhumation of the entire terrane, including UHP metamorphic units and their host gneisses, during the period from 180 to 167 Ma.  相似文献   

14.
The Elna Cu(Au)–porphyry deposit is one of the typical ore objects in the northeastern margin of the Argun superterrane facing the Mongolia–Okhotsk foldbelt. Mineralization includes zones of argillization with fine quartz veins in granodiorite of the Elna massif. The geochronological 40Ar/39Ar studies of hydrothermal near-ore metasomatites and magmatic rocks of the deposit show that the age of host granitoids is 126 ± 2 Ma, which corresponds to the upper age boundary of granitoids from the Burinda Complex, whereas the age of overprinted hydrothermal processes is 122–117 Ma. The age of mineralization correlates well with the age of the thermal event in East Asia. An intense stage of magmatism including both volcanic and intrusive forms occurred in this period.  相似文献   

15.
The 40Ar/39Ar geochronological method was applied to date magmatic and hydrothermal alteration events in the Mantos Blancos mining district in the Coastal Cordillera of northern Chile, allowing the distinction of two separate mineralization events. The Late Jurassic Mantos Blancos orebody, hosted in Jurassic volcanic rocks, is a magmatic-hydrothermal breccia-style Cu deposit. Two superimposed mineralization events have been recently proposed. The first event is accompanied by a phyllic hydrothermal alteration affecting a rhyolitic dome. The second mineralization event is related to the intrusion of bimodal stocks and sills inside the deposit. Because of the superposition of several magmatic and hydrothermal events, the obtained 40Ar/39Ar age data are complex; however, with a careful interpretation of the age spectra, it is possible to detect complex histories of successive emplacement, alteration, mineralization, and thermal resetting. The extrusion of Jurassic basic to intermediate volcanic rocks of the La Negra Formation is dated at 156.3 ± 1.4 Ma (2σ) using plagioclase from an andesitic lava flow. The first mineralization event and associated phyllic alteration affecting the rhyolitic dome occurred around 155–156 Ma. A younger bimodal intrusive event, supposed to be equivalent to the bimodal stock and sill system inside the deposit, is probably responsible for the second mineralization event dated at ca. 142 Ma. Other low-temperature alteration events have been dated on sericitized plagioclase at ca. 145–146, 125, and 101 Ma. This is the first time that two distinct mineralization events have been documented from radiometric data for a copper deposit in the metallogenic belt of the Coastal Cordillera of northern Chile. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
New single grain fusion and core-rim 40Ar/39Ar laserprobe phengite data from the Saih Hatat high-pressure terrane in NE Oman show that individual samples yield a range of apparent ages which is similar to that previously reported from across the entire terrane. The majority of the determined ages are older than the previously reported U-Pb zircon peak metamorphic age. Core to rim age variations within individual grains range from no discernible difference across the grain to grains with older cores, or, rarely, older rims; some samples manifest all three patterns. Numerical diffusion modelling shows that due to the peak temperature of ca. 550°C, the measured apparent ages cannot be explained by simple cooling or by partial retention of crystallisation or detrital ages in an open system. The age variability is better explained by spatially and temporally variable open or closed system behaviour at the mm-cm scale coupled with pervasive and heterogeneously distributed excess argon. Anomalously old eclogite phengite 40Ar/39Ar ages are due either to internally derived 40Ar inherited from a K-bearing precursor, or externally derived 40Ar distributed by grain boundary fluids. Mica-rich schists within the eclogite boudins yield younger phengite ages, suggesting excess argon was absent or diluted. Pelites hosting the eclogite appear to have been affected by later fluid ingress during deformation and greenschist-facies overprint and yield very variable ages commonly with apparently older rims on younger cores. The grain- and sample-scale age variations measured in Saih Hatat indicate that the grain boundary network in eclogite pods was not an efficient transfer pathway for argon transport, whereas the grain boundary network in the surrounding pelites acted as a more efficient pathway on the timescale of the metamorphic cycle.  相似文献   

17.
涂继耀  季建清  钟大赉  周晶 《地球科学》2021,46(12):4533-4545
为揭示东喜马拉雅构造结及其周边区域完整地质演化过程,对采集自雅鲁藏布江墨脱段10块基岩样品进行黑云母40Ar/39Ar测年,并利用“Pecube”软件对年龄代表隆升剥露速率进行定量计算.样品黑云母40Ar/39Ar年龄范围为11.25~24.04 Ma,对应隆升剥露速率范围为0.25~0.51 km/Ma.雅鲁藏布江墨脱段地壳隆升剥露速率存在明显南北差异,北段隆升剥露速率高出约0.2 km/Ma.年代学数据及计算结果表明,与东喜马拉雅构造结内部相比,雅鲁藏布江下游墨脱段为地壳隆升剥露活动相对较弱区域.与喜马拉雅地体向拉萨地体俯冲过程相关北西、北西西走向逆断层活动,不仅在东喜马拉雅构造结内部区域发育,在其东侧雅鲁藏布江墨脱段也可能发育.   相似文献   

18.
40Ar/39Ar step-heating data were collected from micron to submicron grain-sizes of correlative illite- and muscovite-rich Cambrian pelitic rocks from the western United States that range in metamorphic grade from the shallow diagenetic zone (zeolite facies) to the epizone (greenschist facies). With increasing metamorphic grade, maximum ages from 40Ar/39Ar release spectra decrease, as do total gas ages and retention ages. Previous studies have explained similar results as arising dominantly or entirely from the dissolution of detrital muscovite and precipitation/recrystallization of neo-formed illite. While recognizing the importance of these processes in evaluating our results, we suggest that the inverse correlation between apparent age and metamorphic grade is controlled, primarily, by thermally activated volume diffusion, analogous to the decrease in apparent ages with depth observed for many thermochronometers in borehole experiments. Our results suggest that complete resetting of the illite/muscovite Ar thermochronometer occurs between the high anchizone and epizone, or at roughly 300 °C. This empirical result is in agreement with previous calculations based on muscovite diffusion parameters, which indicate that muscovite grains with radii of 0.05–2 μm should have closure temperatures between 250 and 350 °C. At high anchizone conditions, we observe a reversal in the age/grain-size relationship (the finest grain-size produces the oldest apparent age), which may mark the stage in prograde subgreenschist facies metamorphism of pelitic rocks at which neo-formed illite/muscovite crystallites typically surpass the size of detrital muscovite grains. It is also approximately the stage at which neo-formed illite/muscovite crystallites develop sufficient Ar retentivity to produce geologically meaningful 40Ar/39Ar ages. Results from our sampling transect of Cambrian strata establish a framework for interpreting illite/muscovite 40Ar/39Ar age spectra at different stages of low-grade metamorphism and also illuminate the transformation of illite to muscovite. At Frenchman Mtn., NV, where the Cambrian Bright Angel Formation is at zeolite facies conditions, illite/muscovite 40Ar/39Ar data suggest a detrital muscovite component with an apparent age ≥967 Ma. The correlative Carrara Fm. is at anchizone conditions in the Panamint and Resting Spring Ranges of eastern California, and in these locations, illite/muscovite 40Ar/39Ar data suggest an early Permian episode of subgreenschist facies metamorphism. The same type of data from equivalent strata at epizone conditions (greenschist facies) in the footwall of the Bullfrog/Fluorspar Canyon detachment in southern Nevada reveals a period of slow-to-moderate Late Cretaceous cooling.  相似文献   

19.
The Shihu gold deposit is situated in the central shear zone of the Meso-Cenozoic Fuping metamorphic core complex in the middle-northern part of the Taihang Mountains. This kind of gold deposits named after ‘Shihu type’ widely occurs in this region. Gold-bearing quartz veins are their most important industrial orebodies. Detailed laser 40Ar/39Ar geochronology of the mineralized quartz veins in the study area reveals details of its tectono-magmatic history. The 40Ar/39Ar ages for the quartz are between 134.4 Ma and 155.9 Ma with a mean age of 141±4 Ma on the isochron line and 139±7 Ma on the inverse isochron line, respectively, which is interpreted to be the best estimate of the crystalline age of the quartz veins. The gold mineralization was most likely related to an underplating event that took place in the northern part of the Taihang Mountain at ca. 140 Ma. The timing of gold mineralization in the area is similar to those observed in other major gold-producing provinces in the NCC. This episode is simultaneous with those in the eastern NCC, indicative of a widespread late Yanshanian metallogenic event that was a response either to the subduction of the Izanagi-Pacific plate beneath eastern China or to the removal of the Early Cretaceous lithosphere in the eastern NCC. The ore-forming material sources may be the Early Precambrian metamorphic basement, instead of intermediate-acid rock bodies and dykes.  相似文献   

20.
Sized aggregates of glasses (47–84 wt% SiO2) were fused from igneous-derived cohesive fault rock and igneous rock, and step-heated from ~400 to >1,200 °C to obtain their 39Ar diffusion properties (average E=33,400 cal mol?1; D o=4.63×10?3 cm2 s?1). At T<~1,000 °C, glasses containing <~69 wt% SiO2 and abundant network-forming cations (Ca, Fe, Mg) reveal moderate to strong non-linear increases in D and E, reflecting structural modifications as the solid transitions to melt. Extrapolation of these Arrhenius properties down to typical geologic T-t conditions could result in a 1.5 log10 unit underestimation in the diffusion rate of Ar in similar materials. Numerical simulations based upon the diffusion results caution that some common geologic glasses will likely yield 40Ar/39Ar cooling ages rather than formation ages. However, if cooling rates are sufficiently high, ambient temperatures are sufficiently low (e.g., <65–175 °C), and coarse particles (e.g., radius (r) >~1 mm) are analyzed, glasses with compositions similar to ours may preserve their formation ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号