首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 723 毫秒
1.
This paper extends our earlier examinations of the utility of various approximations for treating the dynamics of the Earth's liquid core on time-scales of the order of 104 to 108 s. We discuss the effects of representing the response of the mantle and inner core by static (versus dynamic) Love numbers, and of invoking the subseismic approximation for treating core flow, used either only in the interior of the liquid core (SSA-1) or also at the boundaries (SSA-2). The success of each approximation (or combinations thereof) is measured by comparing the resulting surface gravity effects (computed for a given earthquake excitation), and (for the Slichter mode) the distribution of translational momentum, with reference calculations in which none of these approximations is made. We conclude that for calculations of the Slichter triplet, none of the approximations is satisfactory, i.e. a full solution (using dynamic Love numbers at elastic boundaries and no core flow approximation) is required in order to avoid spurious eigenfrequencies and to yield correct eigenfunctions (e.g. conserving translational momentum) and surface gravity. For core undertones, the use of static Love numbers at rigid boundaries is acceptable, along with SSA-1 (i.e. provided the subseismic approximation is not invoked at the core boundaries). Although the calculations presented here are for a non-rotating earth model, we argue that the principal conclusions should be applicable to the rotating Earth. Shortcomings of the subseismic approximation appear to arise because both SSA-1 and SSA-2 lower the order of the governing system of differential equations (giving rise to a singular perturbation problem), and because SSA-2 overdetermines the boundary conditions (making it impossible for solutions to satisfy all continuity requirements at core boundaries).  相似文献   

2.
This paper investigates possible long-period oscillations of the earth's fluid outer core. Equations describing free oscillations in a stratified, self-gravitating, rotating fluid sphere are developed using a regular perturbation on the equations of hydrodynamics. The resulting system is reduced to a finite set of ordinary differential equations by ignoring the local horizontal component of the earth's angular velocity vector, Ω, and retaining only the vertical component. The angular dependence of the eigensolutions is described by Hough functions, which are solutions to Laplace's tidal equation.
The model considered here consists of a uniform solid elastic mantle and inner core surrounding a stratified, rotating, inviscid fluid outer core. The quantity which describes the core's stratification is the Brunt—Väisälä frequency N , and for particular distributions of this parameter, analytical solutions are presented. The interaction of buoyancy, and rotation results in two types of wave motion, the amplitudes of which are confined predominantly to the outer core: (1) internal gravity waves which exist when N 2 > 0, and (2) inertial oscillations which exist when N 2<4Ω2. For a model with a stable density stratification similar to that proposed by Higgins & Kennedy (1971), the resulting internal gravity wave eigenperiods are all at least 8 hr, and the fundamental modes have periods of at least 13 hr. A model with an unstable density stratification admits no internal gravity waves but does admit inertial oscillations whose eigenperiods have a lower bound of 12hr.  相似文献   

3.
We have constructed a general first-order theory describing those small oscillations of a rotating elliptical earth that are affected by the presence of a liquid outer core. The theory is applicable to free core oscillations and earth tides. Care has been taken to include the effects of the wobble or nutation due to the rotation of the outer core relative to the solid earth. On the basis of the theory the free spheroidal modes of degree 2 and order 1 have been investigated. We have searched for and listed undertones with periods less than 28 hr. No upper limit to the eigenperiods has been detected. It is shown that stable, unstable and neutral polytropic cores are capable of free oscillation. At a period close to the sidereal day the spheroidal mode is accompanied by rigid rotation of the liquid outer core with respect to the solid earth. This is the well-known diurnal wobble of the Earth. It appears probable that the diurnal wobble is one of a class of similar wobbles that involve large toroidal motions in the outer core. Finally, the amplitudes of the 18·6-yr principal nutations has been computed. Excellent agreement is found with observed values.  相似文献   

4.
Summary. The basic equations describing the dynamical effects of the Earth's fluid core (Liouville, Navier-Stokes and elasticity equations) are derived for an ellipsoidal earth model without axial symmetry but with an homogeneous and deformable fluid core and elastic mantle.
We develop the balance of moment of momentum up to the second order and use Love numbers to describe the inertia tensor's variations. The inertial torque takes into account the ellipticity and the volume change of the liquid core. On the core—mantle boundary we locate dissipative, magnetic and viscous torques. In this way we obtain quite a complete formulation for the Liouville equations.
These equations are restricted in order to obtain the usual Chandler and nearly diurnal eigenfrequencies.
Then we propose a method for calculating the perturbations of these eigenfrequencies when considering additional terms in the Liouville equations.  相似文献   

5.
The observed time-series of precession/nutation show residuals with respect to an empirical model based on the rigid Earth theoretical nutations and a frequency dependent transfer function with resonances to the Earth's normal modes. These residuals display energy mainly in the frequency domain around 430 and 500 days in the inertial frame. In this frequency band, the energy is possibly related to two normalmode frequencies: the free core nutation (FCN) and the free inner core nutation (FICN). In this paper, we examine the possibility of obtaining this energy from the resonance effect induced by a luni-solar (or planetary) forcing, or by an atmospheric forcing at a frequency very close to these Earth free nutations. The amplification factor due to the resonance is computed from an analytical formula expressed in the case of a simplified three-layer ellipsoidal rotating earth (with an elastic inner core, a liquid outer core and an elastic mantle), as well as the empirical formula based on the analysis of VLBI observations. For the tidal forcing, the theoretical results do not show any resonance at the level of precision we have examined but it is still possible to find one frequency near the FCN or FICN frequencies which could be excited. In contrast, for the atmospheric pressure the level of energy needed could be obtained from the diurnal pressure, depending on the noise level of the Earth's global pressure. We also show that the combination of three waves can explain the observed decrease of energy with time. While the tidal potential amplitudes are too small, a pressure noise level of 0.5 Pa would be sufficient to excite these waves.  相似文献   

6.
A new nutation series for a more realistic model earth   总被引:1,自引:0,他引:1  
The frequency-dependent correction coefficients with respect to the forced nutations of a rigid earth are computed using the complex scalar gravitational-motion equations for an earth model with an anelastic mantle. Oceanic loads and tidal currents enter the model via outer boundary conditions. The ellipticity of the core-mantle boundary and the dynamical ellipticity are adjusted to observations. This requires the behaviour inside the model earth to be regarded as non-hydrostatic. Some relevant equations for the evaluation of boundary conditions and some terms in the equations of motion are expanded to second order in ellipticity. The computation of the equipotential-surface ellipticity profile is carried to second order as well. These second-order expansions lead to increased accuracy of the results in general. Moreover, one achieves a better reliability for the integration at frequencies close to a resonance. This allows the integration of the equations of motion at any relevant nutation period without the need for a normal-mode expansion. A complete new nutation series for a realistic model earth is presented.  相似文献   

7.
In a previous paper, the authors considered the free rotation of an earth model composed of a rigid mantle and a liquid core in the presence of dissipation and under the Hamiltonian formalism, obtaining analytical expressions for the free nutation modes.
In this paper we treat the forced motion. Approximate analytical solutions are worked out by means of Hori's perturbation method, the free solutions obtained in the former paper playing the role of the unperturbed solutions required in the application of the method. These solutions are consistent in the sense that, with the usual terminology, the rigid body solutions and the complex transfer functions are calculated with the same parameters.
Besides in-phase terms, the dissipation at the core–mantle boundary studied in this paper gives rise to out-of-phase terms. From a qualitative perspective, we discuss the issue of the resonance in this context. The presence of dissipation changes dramatically the character of the FCN wobble; that is, it is no longer a regular oscillation but a damped one. A strict resonance phenomenon cannot take place thereby, since the forcing perturbations are oscillations with a real (non-complex) frequency.  相似文献   

8.
A 2-D time-dependent finite-difference numerical model is used to investigate the thermal character and evolution of a convecting layer which is cooling as it convects. Two basic cooling modes are considered: in the first, both upper and lower boundaries are cooled at the same rate, while maintaining the same temperature difference across the layer; in the second, the lower boundary temperature decreases with time while the upper boundary temperature is fixed at 0°C. The first cooling mode simulates the effects of internal heating while the second simulates planetary cooling as mantle convection extracts heat from, and thereby cools, the Earth's core. The mathematical analogue between the effects of cooling and internal heating is verified for finite-amplitude convection. It is found that after an initial transient period the central core of a steady but vigorous convection cell cools at a constant rate which is governed by the rate of cooling of the boundaries and the viscosity structure of the layer. For upper-mantle models the transient stage lasts for about 30 per cent of the age of the Earth, while for the whole mantle it lasts for longer than the age of the Earth. Consequently, in our models the bulk cooling of the mantle lags behind the cooling of the core-mantle boundary. Models with temperature-dependent viscosity are found to cool in the same manner as models with depth-dependent viscosity; the rate of cooling is controlled primarily by the horizontally averaged variation of viscosity with depth. If the Earth's mantle cools in a similar fashion, secular cooling of the planet may be insensitive to lateral variations of viscosity.  相似文献   

9.
The response of a viscoelastic Earth to the melting of the Late Pleistocene ice sheets has been the subject of a number of investigations employing PREM. In PREM, a non-adiabatic density gradient (NADG) exists in the upper mantle, and to understand the implications of this model it is thus important to examine the effects of this NADG on the Earth's response to surface loads. This paper is based on the assumption that the contribution to the depth dependence of the density that is not due to self-compression is due to compositional change. This contribution is referred to as 'non-adiabatic'. We evaluate the effects of a non-adiabatic density jump (NADJ) for the 670  km discontinuity and the NADG in the upper mantle by adopting a compressible earth model with both a compositional density gradient and a density jump. Numerical calculations based on these models indicate that the magnitude of the Earth's response associated with the NADG is much smaller than that associated with the NADJ at 670  km depth. It is also confirmed that the higher modes associated with the NADJ and the NADG are much more sensitive to the existence of an elastic lithosphere than the fundamental modes associated with the density jumps at the surface and core–mantle boundary.  相似文献   

10.
Analytical approach for the toroidal relaxation of viscoelastic earth   总被引:1,自引:0,他引:1  
This paper is concerned with post-seismic toroidal deformation in a spherically symmetric, non-rotating, linear-viscoelastic, isotropic Maxwell earth model. Analytical expressions for characteristic relaxation times and relaxation strengths are found for viscoelastic toroidal deformation, associated with surface tangential stress, when there are two to five layers between the core–mantle boundary and Earth's surface. The multilayered models can include lithosphere, asthenosphere, upper and lower mantles and even low-viscosity ductile layer in the lithosphere. The analytical approach is self-consistent in that the Heaviside isostatic solution agrees with fluid limit. The analytical solution can be used for high-precision simulation of the toroidal relaxation in five-layer earths and the results can also be considered as a benchmark for numerical methods. Analytical solution gives only stable decaying modes—unstable mode, conjugate complex mode and modes of relevant poles with orders larger than 1, are all excluded, and the total number of modes is found to be just the number of viscoelastic layers between the core–mantle boundary and Earth's surface—however, any elastic layer between two viscoelastic layers is also counted. This confirms previous finding where numerical method (i.e. propagator matrix method) is used. We have studied the relaxation times of a lot of models and found the propagator matrix method to agree very well with those from analytical results. In addition, the asthenosphere and lithospheric ductile layer are found to have large effects on the amplitude of post-seismic deformation. This also confirms the findings of previous works.  相似文献   

11.
Most previous earth models used to calculate viscoelastic relaxation after the removal of the Late Pleistocene ice loads implicitly assume that there is no exchange of mass across the mantle density discontinuities on periods of tens of thousands of years (the material boundary formulation). In the present study, simple incompressible models are used to determine the Earth's behaviour in the case where the density discontinuity remains at a constant pressure rather than deforming with the material (the isobaric boundary formulation). The calculation of the movement of the boundary is more rigorous than in earlier studies and uses the local incremental pressure calculated at the depth of the boundary and allows for the vertical deformation caused by the change in volume as material changes phase. It is shown that the buoyancy modes associated with the density discontinuities decrease in strength and increase in relaxation time analogous to what results when the density contrast is reduced. Also, two viscoelastic modes arise from an isobaric boundary, which is also predicted when there is a contrast in rigidity or viscosity across a material boundary. The difference in predicted radial deformation between the isobaric boundary model and the material boundary model is largest for long-wavelength loads for which the material incremental pressure at depth is largest. If the isobaric boundary model is appropriate for the treatment of the mineral phase changes in the mantle on glacial rebound timescales, then previous inferences of the deep-mantle to shallow-mantle viscosity ratio based on large-scale deformation (spherical harmonic degree < 10) of the Earth and including data from the early part of the glacio-isostatic uplift are too small.  相似文献   

12.
13.
Previous studies of the wander of the rotation pole associated with the Late Pleistocene glacial cycles indicate that the predicted polar wander speed is sensitive to the density jump at the 670 km discontinuity, the thickness of the elastic lithosphere, and the lower mantle viscosity. In particular, the M1 mode related to the density jump at 670 km depth has been shown to contribute a dominant portion of predicted polar wander speed for sufficiently small lower mantle viscosities. In this study, we examine the sensitivity of polar wander to variations in the viscosity of the viscoelastic lithosphere using simplified compressible Maxwell viscoelastic earth models. Model calculations for earth models with a viscoelastic lithosphere of finite viscosity indicate that the contribution of the M1 mode is similar to those associated with the density discontinuity at the core–mantle boundary (C0 mode) and the lithosphere (L0 mode). We speculate that this is due to the interaction between the M1 mode and the transient mode associated with the viscoelastic lithosphere, which reduces the magnitude of polar wander rates. Therefore, the M1 mode does not contribute a dominant portion of the predicted polar wander speed for earth models with a viscoelastic lithosphere of finite viscosity. In this case, predictions of polar wander speed as a function of lower mantle viscosity exhibit the qualitative form of an 'inverted parabola', as predicted for the J ˙2 curve. We caution, however, that these results are obtained for simplified earth models, and the results for seismological earth models such as PREM may be complicated by the interaction between the M1 mode and the large set of transient modes.  相似文献   

14.
The concept of a deformation of a simple, non-rotating, spherically symmetric earth model with a fluid outer core, although it is a highly artificial physical situation, provides a useful computational algorithm that allows one lo determine analytically modes of vibration without any Love-number theory. In particular, on these analytically determined modes, we impose regularity conditions at the centre and boundary conditions at the surface, as well as conditions of continuity at the inner-core-outer-core boundary and at the core-mantle boundary. They lead to an eigenvalue equation for the frequency of oscillation. The range of frequencies obtained in this way for different earth models gives an indication of the influence of compressibility and non-homogeneity on the spectrum of eigenfrequencies.  相似文献   

15.
We derive asymptotic formulae for the toroidal and spheroidal eigenfrequencies of a SNREI earth model with two discontinuities, by considering the constructive interference of propagating SH and P-SV body waves. For a model with a smooth solid inner core, fluid outer core and mantle, there are four SH and 10 P-SV ray parameters regimes, each of which must be examined separately. The asymptotic eigenfrequency equations in each of these regimes depend only on the intercept times of the propagating wave types and the reflection and transmission coefficients of the waves at the free surface and the two discontinuities. If the classical geometrical plane-wave reflection and transmission coefficients are used, the final eigenfrequency equations are all real. In general, the asymptotic eigenfrequencies agree extremely well with the exact numerical eigenfrequencies; to illustrate this, we present comparisons for a crustless version of earth model 1066A.  相似文献   

16.
We investigate the effects of lateral heterogeneities in the upper mantle on the calculation of postglacial land uplift. For the model calculations we use a commercial finite-element code, which enables us to solve the equations governing a layered, isotropic. incompressible, Maxwell-viscoelastic half-space with laterally varying layer thicknesses and physical properties. Following previous investigations performed by Sabadini. Yuen & Portney (1986) and Gasperini & Sabadini (1989), we extend their results using a more realistic loading history and different earth models. We then focus our attention on the question whether lateral heterogeneities in the upper mantle can be modelled correctly using a set of homogeneous earth models. To this end, a comparison of model calculations using both laterally homogeneous and heterogeneous earth models is performed.
We find that lateral heterogeneities in the upper mantle significantly influence the calculated postglacial land uplift. The resolving power of relative sea-level observations for the prescribed lateral heterogeneities used in this study is mainly focused on observations around the load margin and outside the glaciated areas, where differences in predicted land uplift between individual models are large enough to be resolved by observations.
We can qualitatively determine lateral heterogeneities in the upper mantle using a set of laterally homogeneous earth models, if the geological structure, for example a continental margin, is known. However, in order to infer the correct values of lithospheric thickness and asthenospheric viscosity, we need to use laterally heterogeneous models.  相似文献   

17.
Summary. Numerical convection models are presented in which plates are simulated by imposing piecewise constant horizontal velocities on the upper boundary. A 4 × 1 box of constant viscosity fluid and two-dimensional (2-D) flow is assumed. Four heating modes are compared: the four combinations of internal or bottom heating and prescribed bottom temperature or heat flux. The case with internal heating and an isothermal base is relevant to lower mantle or whole mantle convection, and it yields a lower thermal boundary layer which is laterally variable and can be locally reversed, corresponding to heat flowing back into the core locally. When scaled to the whole mantle, the surface deflections and gravity and geoid perturbations calculated from the models are comparable to those observed at the Earth's surface. For models with migrating ridges and trenches, the flow structure lags well behind the changing surface 'plate'configurations. This may help to explain the poor correlation between the main geoid features and plate boundaries. Trench migration substantially affects the dip of the cool descending fluid because of induced horizontal shear in the vicinity of the trench. Such shear is small for whole mantle convection, but is large for upper mantle convection, and would probably result in the Tonga Benioff zone dipping to the SE, opposite to the observed dip, for the case of upper mantle convection.  相似文献   

18.
Summary. An existing experimentally verified model for energy dissipation in a processing spherical cavity filled with liquid assumed to be in a semirigidized state except for a viscous Ekman boundary layer is applied to the Earth's liquid core to assess energy dissipation magnitudes. Application of the model to the best available Earth data occurs at the derived energy dissipation maximum for the model. Other existing research showing that the Earth's atmosphere appears to adjust to a state of maximum dissipation led to generic models for systems of maximum dissipation. The maximum dissipation mantle—core model with core motion driven by Earth precession alone, coupled to the mantle only by viscous shear stresses, and with a spherical mantle—core boundary leads to energy dissipation rates on the order of 104 times those necessary for an Earth dynamo. The maximum dissipation model also leads to excessive magnetic field drift rates and to excessive retardation of the Earth's rotation rate. Effects of the mantle—core ellipticity and of magnetic field coupling are briefly discussed and are used to help develop a less than maximum dissipation model also driven by precession alone but using the additional coupling to yield a model more consistent with observed phenomena.  相似文献   

19.
Summary. Earlier efforts to generate the entire theoretical seismograms, including both body and surface waves for realistic sources buried in a radially heterogeneous anelastic, spherical earth, are extended to include the summation of 16 modes. The comparison between a real seismogram and theoretical time series, relative to different attenuation models in the upper mantle, yields information concerning the anelasticity under the Pacific Ocean.  相似文献   

20.
Observations of ice movements across the British Isles and of sea-level changes around the shorelines during Late Devensian time (after about 25 000 yr BP) have been used to establish a high spatial and temporal resolution model for the rebound of Great Britain and associated sea-level change. The sea-level observations include sites within the margins of the former ice sheet as well as observations outside the glaciated regions such that it has been possible to separate unknown earth model parameters from some ice-sheet model parameters in the inversion of the glacio-hydro-isostatic equations. The mantle viscosity profile is approximated by a number of radially symmetric layers representing the lithosphere, the upper mantle as two layers from the base of the lithosphere to the phase transition boundary at 400 km, the transition zone down to 670 km depth, and the lower mantle. No evidence is found to support a strong layering in viscosity above 670 km other than the high-viscosity lithospheric layer. Models with a low-viscosity zone in the upper mantle or models with a marked higher viscosity in the transition zone are less satisfactory than models in which the viscosity is constant from the base of the lithosphere to the 670 km boundary. In contrast, a marked increase in viscosity is required across this latter boundary. The optimum effective parameters for the mantle beneath Great Britain are: a lithospheric thickness of about 65 km, a mantle viscosity above 670 km of about (4-5) 1020 Pa s, and a viscosity below 670 km greater than 4 × 1021 Pa s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号