首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mapocho river, which crosses downtown Santiago, is one of the most important rivers in contact with a population of about six million inhabitants. Anthropogenic activities, industrialization, farming activities, transport, urbanization, animal and human excretions, domestic wastes and copper mining have affected the river, contaminating it and its sediments with heavy metals. Concentration and distribution of Cu, Zn, Pb and Cd were studied with the purpose of determining their bioavailability and their relation with the characteristics of the sediments. Freshly deposited seasonal sediments were collected from 0–8 cm depths from 6 locations (S1 to S6) along the 30-km long channel length, in the four seasons of year on the following dates: May 2001 (D1, autumn); August 2001 (D2, winter); October 2001 (D3, spring) and January 2002 (D4, summer). The dried samples were sifted to obtain the < 63-μm sediment fraction, since it has been shown that large amounts of heavy metals are bound in the fine-grained fraction of the sediment. Cu and Zn were analyzed by atomic absorption spectrophotometry and Pb and Cd by square wave anodic stripping voltammetry. The highest concentrations of Cu (2850 μg g− 1) were found in the northern part of the river (S1, average D1–D4), near the mountains and a copper mine, and then decreased downstream to 209 μg g− 1 (S6). Total Zn showed an irregular variation, with higher values at S1 (1290 μg g− 1) and high values in some winter sampling (1384 μg g− 1 S4, S5–D2). Pb showed different trends, increasing from S1 to S6 (17 to 61 μg g− 1), with the highest values in the summer samples (83 μg g− 1, S4–S6, D4), and total Cd increased slightly from mean values of 0.2 and 0.5 μg g− 1. Partition into five fractions was made using Tessier's analytical sequential extraction technique; the residue was treated with aqua regia for recovery studies, although this step is not part of the Tessier procedure. The results show that Cu, Zn and Pb in the sediments were dependent on the sampling places along the river, and variation in two years was low (D1–D4). The highest values of total organic matter, carbonate and conductivity were found in S6, which has the smallest size particles, while at S1 the sediments were predominantly sand and contain larger amounts of silica. Cu associated with carbonate decreased gradually from 58% (1771 μg g− 1, S1) to 16% (32 μg g− 1, S6); Cu bonded to reducible fraction was almost constant (33% to 37%), and Cu associated with oxidizable fraction increased from 7% (S1) to 34% (S6), but copper content was lower (214 to 68 μg g− 1). Zn had a similar fractionation profile. However, Pb bound to oxidizable fraction did not show significant percent variation along the river (20% to 19%), but the amount bounded was 4 to 12 μg g− 1. The residual fraction increased from 24% to 41% (5 to 25 μg g− 1, S1 to S6). The distribution of Cd in the sediment was almost independent of the sampling stations and was bound to carbonate, reducible and residual fraction in similar proportion. Cu and Zn at S1 were mainly bound to carbonates and reducible phases with 91% and 73% (2779 and 965 μg g− 1, respectively), and with a change in the pH and/or the redox potential of the sediment–water system, these contaminants could easily enter the food chain. In S6 the amount of Cu and Zn in these phases was 50% and 53% (100 to 313 μg g− 1, respectively).  相似文献   

2.
The Okchon black shale in Korea provides a typical example of natural geological materials enriched with potentially toxic elements. The Chung-Joo, Duk-Pyung, Geum-Kwan, I-Won, Bo-Eun and Chu-Bu areas are underlain by these black shales and slates of the Guryongsan Formation or the Changri Formation, which are parts of the Okchon Group in the central part of the southern Korean Peninsula. In order to investigate the enrichment levels and dispersion patterns of potentially toxic elements in the rock–soil–plant system, environmental geochemical surveys were undertaken in the above six study areas in the Okchon Zone. After appropriate preparation, rock and soil samples were analyzed for potentially toxic elements by instrumental neutron activation analysis (INAA) and inductively coupled plasma atomic emission spectrometry (ICP-AES), and plant samples by atomic absorption spectrometry (AAS). In particular, Ba, Cd, Mo, V and U in Okchon black shales are highly enriched, and their mean concentrations are significantly higher than those in black slates. These elements are geochemically associated, and might be enriched simultaneously. The highest mean concentrations of 42.0 μg g−1 As, 2100 μg g−1 Ba, 10.9 μg g−1 Cd, 213 μg g−1 Mo, 83 μg g−1 U, 938 μg g−1 V and 394 μg g−1 Zn are found in black shales from the Duk-Pyung area. Mean concentrations of As, Mo and U in soils overlying black shales occurring in the Duk-Pyung area (30 μg g−1 As, 24 μg g−1 Mo and 50 μg g−1 U) and Chu-Bu area (39 μg g−1 As, 15 μg g−1 Mo and 27 μg g−1 U) are higher than the permissible level. Enrichment index values of the six study areas decrease in the order of Duk-Pyung > Chu-Bu > Bo-Eun > Chung-Joo > Geum-Kwan = I-Won areas. Relationships between trace element concentrations in soils and plants are significantly correlated, and the biological absorption coefficients (BAC) in plants are in the order of Cd > Zn = Cu > Pb, which suggests that Cd is more bioavailable to plants than the other elements. Cadmium concentrations in plant species decrease in the order of chinese cabbage > red pepper > soybean = sesame > rice stalk > corn > rice grain. From the result of sequential extraction analysis of soils, relatively high proportions of Cu, Pb and Zn are present as residual fractions, and that of Cd as non-residual fractions. Cadmium occurs predominantly as exchangeable/water-acid soluble phase in soils, and this is in agreement with the findings of high Cd concentrations in plants.  相似文献   

3.
The Xiangxi Au–Sb–W deposit, the largest of its type in northwestern Hunan, China, is a sulfide-dominated ore body hosted by low grade metamorphic red slates of the Neoproterozoic Madiyi Formation. Three stages of mineralization, quartz–scheelite, quartz–gold–pyrite, quartz–gold–stibnite, and one metal-barren stage of veining, quartz–calcite, are recognized. Arsenopyrite occurs only as a minor mineral phase in the second stage. Analyses for 21 trace elements show that the enrichment factors of As in the metal deposit (EC [=element concentration of sample/average content of an element in the upper crust]: 190; 43 samples) in ore veins and in the Guanzhuang and Yuershan reference sections (3.7 km and 2.7 km away from the Xiangxi mine, EC: 3.5; 96 samples) are much smaller than those of Sb (52855 [in ore veins], 117 [in the sections]), W (5665, 7.5) and Au (2727, 5.3). The background concentrations of Au and As in the two sections were 1.4 ppb and 1.4 ppm, respectively. Arsenic (with an anomaly coefficient [AC = number of anomalous samples/total number of samples] of 76%) forms a larger geochemical halo than W (AC: 8%) and Au (AC: 32%). Gold and As in the deposit were transported mainly as metal complexes such as Au(HS)2, HnAs3S−(3−n)6 (n=1, 2 or 3) and HAsS02. Au(HS)2 is rapidly precipitated by a geochemical oxidation barrier — the red slates of the Madiyi Formation. As–S complexes in the stratigraphic horizon can be transformed into As–O complexes (e.g., H3AsO03) under oxidizing conditions, and are continuously transported. Therefore, they can be widely distributed in the red slate units, thus forming extensive geochemical haloes, so that As can be used as an indicator element for Au exploration in the Xiangxi region.  相似文献   

4.
The Bell Springs deposit is a bulk-tonnage, low-grade gold deposit, formed in a hot-spring environment, that is hosted by middle Miocene weakly peralkaline, high-silica rhyolite ash flows and rheomorphic tuffs. Ore grade mineralization over about 460 × 460 m was controlled by northeast- and northwest-trending structures. Sixty-nine soil samples collected along a traverse across the Bell Springs deposit, screened into six mesh size fractions, +10, −10+35, −35+80, −80+120, −120+200, and −200, were treated by low-detection-limit acid digestion/organic extraction procedures, and analyzed by ICP or graphite furnace techniques for Au, Ag, As, Bi, Cd, Cu, Ga, Hg, Mo, Pb, Sb, Se, Te, Tl, and Zn. Twenty-five stream-sediment samples were collected from a drainage crossing mineralization and from a nearby tributary. Sediment size fractions of −200 mesh and −10+200 mesh were analyzed by the same procedures used for soils. In addition, analyses of bulk leachable gold via cyanide leach method (BLEG) was done on bulk −10 mesh sediments.Anomalous Au, Ag, As, Sb, and Mo in all soil size fractions revealed the underlying ore. Areas with anomalous Sb and As were about three times larger than areas with anomalous Au and Ag. Analyses of fine-fractions of stream sediments provided the best-defined Au anomalies in drainages. A multi-element factor calculated by multiplying Au, As, Sb, and Mo reinforced anomalous Au in drainages and correlated well with Bell Springs mineralization.  相似文献   

5.
The Nickel Plate deposit, in which gold occurs as <25 μm blebs associated with arsenopyrite in garnet-pyroxene skarns, is in the subalpine zone near the southern limit of the Thompson Plateau. During the last glaciation the Cordilleran ice sheet moved south-southwest across the deposit and deposited a stony basal till. A dispersion train with anomalous concentrations of gold in tills and soils now extends 2 km down ice from the deposit.Gold contents of samples of humus (LFH horizon) and the −212 μm fraction of mineral soils (A, B and C horizons) was determined by instrumental neutron activation and fire assay-atomic absorption, respectively. Selected samples were examined in detail to determine distribution of gold between different size and density fractions.Despite erratic variability, Au contents of the −212 μm fraction generally decrease from 200–400 ppb close to the mine site to <50 ppb at distal sites. At most sites there is also a twofold increase of gold values down the soil profile. Within samples concentrations of Au in the −420 + 212 μm, −212 + 106 μm, −106 + 53 μm and −53 μm fractions are usually roughly constant. However, because of its abundance, the −53 μm fraction contains more than 70% of the gold. Amenability of gold in this fraction to cyanidation suggests that it is largely free gold. For size fractions > 53 μm the contribution of the heavy mineral (SG > 3.3) fraction to total gold content increases with decreasing grain size.Distribution of gold between size and density fractions is consistent with its release from the bedrock or pre-glacial regolith by glacial abrasion. The bulk of the gold was incorporated into the fine fractions of the till at or close to the source. However, differences between down ice dilution ratios for gold in different heavy mineral size fractions suggest that comminution of host minerals continued to transfer gold to the finer size fractions during glacial transport.For exploration purposes, B and C horizon samples provide the best anomaly contrast. Estimates of the abundance of gold particles in different size fractions indicate that the nugget effect, which causes erratic gold values in the −212 μm fraction, can be avoided by analysis of 30 g of −53 μm material.  相似文献   

6.
Mercury contamination in aquatic environments is of worldwide concern because of its high biomagnification factor in food chains and long-range transport. The rivers, estuary and the bay along the northwestern Bohai Sea coast, northeastern China have been heavily contaminated by Hg due to long-term Zn smelting and chlor-alkali production. This work investigated the distributions of total Hg (THg) and monomethylmercury (MMHg) in the water, sediment and hydrophytes from this area. Concentrations of THg in sediment (0.5–64 mg kg−1) and water (39–2700 ng L−1) were elevated by 1–3 orders of magnitude compared to background concentrations, which induced high concentrations of MMHg in these media. The highest concentration of MMHg in sediment reached 35 μg kg−1, which was comparable to that in the Hg mining area, Wanshan, China, and the highest MMHg concentration of 3.0 ng L−1 in the water sample exceeded the MMHg Chinese drinking water guideline of 1.0 ng L−1. Concentrations of THg in a sediment profile from Jinzhou Bay were found to be consistent with annual Hg emission flux from a local Zn smelter (r = 0.74, p < 0.01), indicating that Hg contamination was mainly caused by Zn smelting locally. For some freshwater hydrophytes, concentrations of THg and MMHg ranged from 5.2 to 100 μg kg−1 and 0.15 to 12 μg kg−1, respectively. Compared to sediment, concentrations of THg in hydrophytes were 2–3 orders of magnitude lower but MMHg was comparable or higher, indicating that the bioaccumulation in plants was distinct for the two Hg species studied. The data suggest that a significant load of Hg has been released into the northwestern coastal region of the Bohai Sea.  相似文献   

7.
This study reports on the behavior of two redox-sensitive elements, As and Sb, along the turbidity gradient in the freshwater reaches of the turbid Gironde Estuary. During a 17-month survey, surface water and suspended particulate matter (SPM) were sampled monthly at six sites representing both fluvial branches of the Gironde Estuary. Additionally, two longitudinal high resolution profiles were sampled along the fluvial estuary of the Garonne Branch during two contrasted seasons, i.e. with and without the presence of the maximum turbidity zone (MTZ). Seasonal variability and spatial distribution of dissolved (<0.2 μm; <0.02 μm) and particulate As, Sb and Fe were measured and combined with SPM data to understand metalloid behavior in the estuarine freshwater turbidity gradient.At the two main fluvial entries of the Gironde Estuary, dissolved As and Sb concentrations showed strong (by a factor of 2–4) seasonal variations, that were only partly controlled by discharge-related dilution. Seasonal addition of dissolved As and Sb was attributed to the degradation of particulate As and Sb carrier phases in bottom sediment and/or in the adjacent aquifers, rather than release from SPM. In the surface freshwater reaches of the Gironde Estuary, Sb behaved conservatively under all hydrological conditions. In contrast, As was strongly reactive in the presence of the MTZ, with opposite behaviors in the two fluvial branches of the estuary: in the Garonne Branch As was removed from the dissolved phase, whereas in the Dordogne Branch As was added. Redistribution of As between the dissolved and the particulate phases along the turbidity gradient in estuarine freshwater only affected the <0.02 μm fraction, as the 0.02–0.2 μm fraction remained constant (300 ng L−1 in September 2005). Accordingly, As removal seemed to be decoupled from concomitant “colloidal” (0.02–0.2 μm) Fe flocculation in the turbidity gradient. The contrasting behavior of dissolved As in the fluvial estuaries of the Garonne and Dordogne Branches was attributed to sorption processes during equilibration of river-borne dissolved As with estuarine SPM forming the MTZ. This equilibrium, described by a distinct distribution coefficient Kd(As)  11,000 L kg−1 in the MTZ, resulted in either As release (desorption; Dordogne Branch) or removal (adsorption; Garonne Branch) in the respective fluvial estuaries. A mixing experiment under controlled laboratory conditions tended to support that equilibration between the dissolved phase and MTZ particles may induce both As release and removal in the estuarine freshwater reaches, with As distribution evolving towards a distinct Kd value for increasing SPM concentrations. The long-term survey allowed estimating annual (2004) dissolved fluxes of As and, for the first time Sb, at the main fluvial entries of the Gironde Estuary at 30.7 t a−1 and 3.2 t a−1 (Garonne River) and at 8.0 t a−1 and 2.3 t a−1 (Dordogne River), respectively.  相似文献   

8.
Concentrations of arsenic and its geochemically associated elements, Ag, Co, Cu and Ni, were measured together with Al, Ba, Cd, Fe, Mn, Pb, Sr and Zn in aquatic bryophytes. These bryophytes originated from some of the arsenic mineralization zones of the Klodzko-Zloty Stok granodiorite massif and its metamorphic envelope (Sudetes Mts., Poland) and from identical zones of the east Sudetic Rychlebske Mts. and Jesenik Mts. (Czech Republic). Concentrations of As in all examined populations were higher than background values (1 μg/g dry weight) culminating in an average maximum of 6270 μg/g in Chiloscyphus pallescens from a stream draining an area with former arsenic and gold mining near Zloty Stok.This survey has shown that aquatic bryophytes accumulate the examined elements to a high degree especially if growing in areas with mineral deposits. This was demonstrated by strong positive correlations between Ba, Sr, Zn concentrations in water and Platyhypnidium rusciforme.  相似文献   

9.
Surface sediments from the subtropical Pearl River estuary and adjacent South China Sea were investigated by molecular organic geochemical methods to determine the composition, distribution and origin of extractable lipids (n-alkanes, n-alkanols and sterols). The absolute and organic C normalized concentrations of total alkane, n-alkanol, and sterol ranged from 0.16 to 2.67 μg g−1 and 0.9 to 12.3 μg g−1 OC, 24.4 to 427.3 ng g−1 and 63.2 to 1966.7 ng g−1 OC, and 9.0 to 493.5 ng g−1 and 58.4 to 1042.4 ng g−1 OC, respectively. The spatial distributions of these biomarkers indicated that terrestrial-derived molecular biomarkers such as long-chain n-alkanes, n-alkanols and plant-derived sterols were higher at the river mouth and along the coastline, suggesting that a higher proportion of terrestrial particulate organic matter was deposited there. Relatively lower amounts of marine-derived biomarkers such as short-chain n-alkanes, algal sterols at the river mouth reflected the lower primary productivity due to high turbidity. The spatial patterns of these biomarkers were partially related to the estuarine processes and conditions, evidencing an increased terrestrial signal from the Pearl River mouth to the inner estuary, and enhanced marine conditions further offshore.  相似文献   

10.
Ground-water, alluvium, and bedrock samples were collected from drill holes near the Chimney Creek, Preble, Summer Camp, and Rabbit Creek disseminated gold deposits in northern Nevada to determine if Au and ore-related metals, such as As, Sb, and W, are being hydromorphically mobilized from buried mineralized rock, and, if they are, to determine whether the metal-enriched ground water is reacting with the alluvial material to produce a geochemical anomaly within the overburden.Results of chemical analyses of drill-hole water samples show the presence of hydromorphic dispersion anomalies of Au, As, Sb, and W in the local ground-water systems associated with these deposits. Background concentrations for Au in the ground water up-gradient from the buried deposits was less than 1 nanogram per liter (ng/L), near the deposits the Au values ranged from 1 to 140 ng/ L, and in drill holes penetrating mineralized rock, concentrations of Au in the ground water were as high as 4700 ng/L. Highest concentrations of Au were found in ground-water samples where the measured Eh and the distribution of arsenic species, arsenite [As(III)] and arsenate [As(V)], indicated oxidizing redox potentials. Similarly, As, Sb, and W concentrations in the ground water near the deposits were significantly enriched relative to concentrations in the ground water up-gradient from the deposits. In general, however, the highest concentrations of As, Sb, and W occurred in ground-water samples where the measured Eh and the distribution of arsenic species indicated reducing conditions. Arsenic concentrations ranged from 9 to 710 micrograms per liter (μg/L); Sb, from less than 0.1 to 250 μg/L; and W, from 1 to 260 μg/L.In addition, analysis of sequential dissolution and extraction solutions of drill cuttings of alluvium and bedrock indicate geochemical anomalies of gold and ore-related metals in the overburden at depths corresponding to the location of the present-day water table. This relationship suggests that water-rock reactions around these buried deposits are active and that this information could be very useful in exploration programs for concealed disseminated gold deposits.  相似文献   

11.
To be an effective indicator of mineralization in lake sediment surveys within the Canadian Shield, it is desirable that an element migrate in solution or adsorbed on suspensates. Given the low relief and disorganized drainage patterns of this region, dispersal in clastic form in drainage systems is limited and gives rise to erratic distributions. The purpose of this study was to discover whether Au shows significant hydromorphic mobility, which would justify the increasing use that is being made of this element in lake sediments as an indicator for gold mineralization.Waters and lake sediments were collected from Napier Lake, Ontario; PAP Lake, Saskatchewan; and Foster Lake, Manitoba, all of which contain Au-quartz vein mineralization and lie within the glaciated boreal forest zone of the Canadian Shield. In all three areas, profundal lake sediments down-drainage of mineralization contain Au concentrations higher than regional mean concentrations. Significant dissolution and transport of Au was found under oxidizing conditions associated with waters with pH that varied from acid to alkaline. Waters from drill holes penetrating mineralization contain up to 401 ng L−1 Au (note; 1 ng L−1 is equivalent to 1 part per trillion, 10−12). Surface waters overlying or near mineralization collected from bogs, seeps, ponds and streams contain up to 13 ng L−1. The content of Au in lake waters is lower, with a maximum of 1.1 ng L−1. There is also a detectable quantity of Au present in suspensates. Two samples of particulates (> 1 μm) filtered from lake water have Au equivalent to 0.17 ng L−1 and 0.039 ng L−1. While the contents of Au present in solution or as suspensates in lake and stream water are relatively small, they are sufficient, if precipitated, to generate anomalies in lake sediments. Thus for Reservoir Lake, in the Foster Lake area, water from the principal stream entering the lake carries 0.3 ng L−1 Au. This provides an annual flux which far exceeds that required to generate the 7.3 ppb Au contained in profundal sediments of this lake; a content that is anomalous relative to the regional median content of < 1 ppb Au for lake sediments.Hydrogeochemical prospecting involving analysis for Au is one method for tracing the source of anomalous Au in lake sediments. Collection of 1 L samples without field treatment, followed by extraction of Au into MIBK, then analysis by graphite-furnace atomic absorption spectrophotometry, permits detection levels for Au of 0.5 ng L−1. This is below the contents of Au found in some waters from mineralized areas. A detection limit of 0.3 ng L−1 was obtained using larger water samples.  相似文献   

12.
A multidisciplinary geochemical study of the distribution, dispersion, and glacial dispersal, of the pge and associated elements has been undertaken within soil, till, humus, vegetation and water at Ferguson Lake, Northwest Territories, Rottenstone Lake, Saskatchewan and Sudbury, Ontario.As the pge generally are present at low levels in surficial materials, development work on analytical techniques was an essential part of this study.At Ferguson Lake, the spatial distribution patterns of Au, Pt and Pd in till clearly indicate the exposed gossan zones, as expected, but also indicate a possible extension of the zone beneath a peat bog- and till-covered area. Down-ice dispersal of Au, Pt and Pd is limited to one to two hundred metres, in the <63 μm component of the till samples collected from frost boils. In vegetation the pge enrichment extends for several hundred metres down-ice and is best defined by Pd in birch twigs. Detectable, although extremely low, levels of Pt (2.8 ppt) and Pd (2.0 ppt) are present in waters in the vicinity of the gossanous zones at Ferguson Lake.At Rottenstone Lake, moderate to high concentrations of pge, Au, and base metals were found in ashed twigs of black spruce and the hmc of the tills for a distance of less than two hundred metres down-ice of the mineralization. Low Pd and Au concentrations were present in ashed spruce twigs about one kilometre down-ice of the mineralization, where only the hmc of the tills yielded anomalous concentrations of Pt and Au. There appears to be only limited dispersal of the pge and Au. These data indicate that only the hmc and the spruce twigs are of value in detecting Pt and Au in this area. Palladium presents a different picture, being detectable in only some of the soils, absent in the tills and hmc, yet appreciably enriched in the twig ash. The inference is that Pd is moving in solution and is being somewhat adsorbed in the soil but is much more significantly being taken up by the plant roots.At the Sudbury areas the pge, hosted in the Ni-Cu mineralization, are best reflected by elevated levels in the ashed humus of almost all elements examined. There is only minimal response in pge and Au to the mineralization from any of the fractions of the soil; whereas the <2 μm fraction of the B-horizon soil reflects the mineralization by elevated levels of As, Sb, Se, Cr, Co, Ni, Cu, Pb and Zn. Only hmc from the tills show elevated pge, Au and variable enhancement in As, Sb, Se and the base metals. The < 2 μm portion of the tills tends to be highest in As, Se, Cr and the base metals.This ongoing study shows that surficial materials and vegetation are effective in identifying areas of concealed pge mineralization. Various pathfinder elements, primarily Cu and Ni, but perhaps also As, Se, Sb and the other base metals, in the < 2 μm B-horizon soils and tills, may be informative in a preliminary evaluation of the pge potential of an area, prior to undertaking the more expensive precious-metal analyses. Humus and vegetation both appear extremely effective, and most cost efficient, and heavy-mineral concentrates (hmc) appear effective, for identifying areas with pge potential, whereas hmc from tills appear most effective for zeroing in on the site of the pge mineralization.  相似文献   

13.
Gold anomalies in drainage sediments are often erratic, reflecting both the nugget effect and hydraulic effects whereby gold is concentrated at favorable sites along a stream. This study investigates these factors in a stream in northeastern Thailand.Bulk sediment samples, consisting of approximately 40 kg of −12 mm material, were collected from bar and pavement sites along an 8 km study reach. Samples were wet sieved into eight size fractions. The five fractions between 425 μm and 53 μm were then processed to obtain heavy mineral concentrates (SG > 3.3). Gold content of all size and density fractions finer than 425 μm was determined by fire assay-atomic absorption.Concentrations of Au in the heavy mineral concentrates typically range from 10,000 to 50,000 ppb (maximum 198,000 ppb), whereas the corresponding light mineral fractions and the −53 μm fraction generally contain <5 ppb gold. Within the heavy mineral fractions concentrations of Au generally increase downstream away from their supposed source and are higher at pavement than at point bar sites. Variations in abundance of gold between point bar sites can be related to stream characteristics (such as width, velocity and bed roughness) that are indicative of changing energy conditions and of the ability of the stream to winnow light minerals from its bed.The estimated median number of gold particles in the heavy mineral concentrates increase from less than one in the 212–425 μm fraction to about three in the 53–106 μm size range. However, because of dilution by the light mineral and −53 μm fractions, the probability of a 30 g analytical sub-sample containing a particle of gold is so low that in thirteen out of sixteen −149 μm sediment samples no gold was detected. Insofar as this results from dilution by large quantities of −53 μm sediment, failure of conventional sieved sediment samples to reliably detect the anomaly is probably a consequence of increased erosion caused by deforestation and land usage.Heavy mineral concentrates from pavement and other high energy sites are more reliable than conventional sediment samples for detecting gold anomalies of the Huai Hin Laep type. A low sample density is adequate but, because anomaly contrast may increase downstream, careful interpretation is required.  相似文献   

14.
Big sagebrush — a cold-desert species that dominates the terrain over large parts of western United States — was sampled along several traverses that crossed thermally metamorphosed limestone, phyllitic shale, and schist of the Middle and Upper Cambrian Preble Formation that host skarn-, disseminated gold and silver-, and hot springs gold-type mineral occurrences. Patterns of detectable levels of gold (8 to 28 ppb or ng g−1) in ash of new growth were consistent with areas affected by known or suspected gold mineralization. Soils collected along one of the traverses where a selenium-indicator plant was common contained no gold above background levels of 2ppb, but were consistently high in As, Sb, and Zn, and several samples were unusually high in Se (maximum 11 ppm or μg g−1). Sagebrush along this traverse contained Li at levels above norms for this species. We also found a puzzling geochemical anomaly at a site basinward from active hot springs along a range-front fault scarp. Sagebrush at this site contained a trace of gold and an unusually high concentration of Cd (13 ppm) and the soil had anomalous concentrations of Cd and Bi (3.2 and 6 ppm, respectively). The source of this anomaly could be either metal-rich waters from an irrigation ditch or leakage along a buried fault. Despite the limited nature of the study, we conclude that gold in sagebrush could be a cost-effective guide to drilling locations in areas where the geology seems favorable for disseminated and vein precious metals.  相似文献   

15.
The amount of Cu and Fe associated with humic acids was estimated in five sediment cores from a tropical coastal lagoon (Piratininga Lagoon, Rio de Janeiro, Brazil). Core samples were analysed for humic acid contents, total Fe and Cu content. Fe and Cu associated with humic acids were also measured. Results show amounts of humic acids ranging from 0.7 to 21.7% of the dry weight of sediment (average 4.6%, standard deviation 4.4%). Concentrations of Fe and Cu ranged from 0.3 to 6.0% (average 2.2%, S.D. 1.2%) and from <1.0 to 65.0 μg g−1 (average 28.6 μg g−1, S.D. 16.4 μg g−1), respectively. The results of strongly bound metals show that while humic acids are the main carrier for Cu, Fe does not seems to be significantly associated with this organic matter.  相似文献   

16.
Sewage sludges are dewatered end products of human sewage waste and are recognised repositories of organic pollutants and heavy metals. They may be considered targets for economic extraction of Au because of the documented Au content of sewage sludges worldwide which are of the order of some ore deposits currently mined for Au. They are also highly nutrient enriched (nitrogen and phosphorus) and therefore amenable to use as agricultural fertiliser or as covers for mine wastes. The sewage of Melbourne, Australia, a city with a current population of 3.3 million, was stockpiled in large, closed, lagoonal tanks from 1898 until 1980. In 1995 Echidna Mining, an Australian gold exploration company, acquired the exploration rights to the ground surrounding the historic sludge reserves and commenced a program of resource evaluation, utilising RNAA, INAA, GFAAS, ICP–MS and FLAAS to determine 31 elements, including Au, Ag, Sb, As, Cd, Hg, Zn, Cu, and Pb. The study was initiated to determine Au, Ag and other metal variations in both space and time and to investigate the economics of chemical extraction of the precious metals. A total of 149 samples from over 50 hand-auger drillholes to a depth up to 4 m have been analysed from the stockpiles, with Au assays yielding remarkably consistent results. Average grades of 0.77 g/t Au and 18.8 g/t Ag have been documented for a measured resource of 770,000 m3 (of an estimated 1.6–2.5 million m3 contained) at a density of 1.0 g/cm3 and an average moisture content of around 40%. Laboratory-based extractive metallurgy of the Werribee sludges has demonstrated that Au, Ag and Zn can be removed with relative ease by heap-leaching using modified conventional technology, albeit with prohibitive reagent consumption. The extraction of the precious metals also results in the variable removal of contaminant metals such as Cd, As, Sb, Hg and Cr which may render the sludges fit for sale as agricultural fertiliser, provided organic pollutants and pathogenic organisms are below governmental environmental protection limits, an area beyond the scope of this paper. Another potential avenue of the exploitation of sewage sludges is discussed: that of the utilisation of sludges to extract contaminant metals from waste water and contaminated mine waters, which we demonstrate on pure aqueous synthetic samples. This paper presents a study of the exploitation of an historic sludge resource for its contained Au and residue post-metal extraction.  相似文献   

17.
This study investigates Sb speciation in sediments along the drainage of the Upper Peter adit at the Bralorne Au mine in southern British Columbia, Canada, and compares the behavior of Sb with that of As. The Upper Peter mineralization consists of native Au in quartz-carbonate veins with 1 wt.% sulfides dominated by pyrite and arsenopyrite although stibnite, the primary Sb-bearing sulfide mineral, can be locally significant. Dissolved Sb concentrations can reach up to 349 μg L−1 in the mine pool. Sediments were collected for detailed geochemical and mineralogical characterization at locations along the 350-m flow path, which includes a 100-m shallow channel within the adit, a sediment settling pond about 45 m beyond the adit portal and an open wetland another 120 m farther downstream. From the mine pool to the wetland outlet, dissolved Sb in the drainage drops from 199 μg L−1 to below the detection limit due to the combined effect of dilution and removal from solution. Speciation analyses using X-ray absorption near-edge structure (XANES) spectroscopy indicate that Sb(III)–S accounts for around 70% of total Sb in the sediments in the main pool at the far end of the adit. At a short distance (24 m) downstream of the main adit pool, however, Sb(III)–O and Sb(V)–O species represent ?50% of total Sb in the bulk sediments, indicating significant oxidation of the primary sulfides inside the adit. Although Sb appears largely oxidized in the bulk samples collected near the portal, Sb(III)–S species are nevertheless present in the <53-μm fraction, suggesting a higher oxidation rate for stibnite in the coarser grains, possibly due to galvanic interaction with pyrite. Secondary Sb species released from the sulfide oxidation are most likely sorbed/co-precipitated with Fe-, Mn-, and Al-oxyhydroxides along the flow channel in the adit and in the sediment settling pond, with the Fe phase being the dominant sink for Sb.  相似文献   

18.
Experimental studies concerning the dissolved air flotation (DAF) of fine (dp < 100 μm) quartz particles, using two different flotation cells (setups), are presented. Pure and well characterised quartz samples were treated with a commercial amine as collector prior to flotation and bubbles were characterised by the LTM-BSizer technique. Bubble size distribution showed 71% (by volume) and 94% (by number) of the bubbles having sizes (db) lower than 100 μm (i.e. microbubbles). The Sauter and arithmetic mean diameters were 79 μm and 56 μm, respectively, for the bubbles generated at 300 kPa (gauge) saturation pressure (after 30 minute saturation time). Quartz particle size distribution (obtained by laser diffraction) showed a volume-moment diameter of 13 μm. The Rosin–Rammler–Bennett, Gates–Gaudin–Schumann and log-normal distribution functions were well fitted (R2 > 0.96) to the bubble size distribution and quartz particle size distribution data. Values of total quartz recovery ranging from 6% to 53% (by mass) were obtained for the DAF experiments under different collector concentrations (up to 2 mg g− 1), with an optimal collector concentration found at 1 mg g− 1. These results are significant considering that 27% (by volume) of the quartz particles are ultrafine (dp < 5 μm), demonstrating the widely-known efficiency of DAF to remove small particles when applied in the field of water and wastewater treatment. The true flotation behaviour, as a function of particle diameter (dp), exhibits a local minimum when particles are approximately 3–5 μm in size. The results contribute to the discussion in the literature about the existence of such a minimum, which is generally interpreted as a change in the mechanism of particle collection from convection (collision) to diffusion at lower particle sizes.  相似文献   

19.
The results described relate to an investigation into the nature of Au dispersion in glacial till, undertaken to identify optimum search techniques for use in exploration for Au mineralization.The diversity of Au mineralization, in terms of the host rock lithologies, mineralogy and grain size of the Au, would be expected to give rise to differences in the secondary response in the associated overburden. Common exploration procedures involve the analyses of the heavy-mineral fraction or a particular size fraction of the tills. However, having regard to the expected variable response of Au in associated glacial till, attributed to variations in primary mineralization, effective exploration requires that the methodology employed is capable of locating all types of Au mineralization.Bulk till samples were collected from various sites associated with the Owl Creek deposit near Timmins and the Hemlo deposits. Grain size analyses were carried out on the till samples and on the heavy-mineral concentrates. The concentration of the Au in the various fractions was determined by Instrumental Neutron Activation Analysis.Preliminary results allow a number of provisional conclusions to be drawn:
1. (1) Grain size analysis of the −2 mm fraction of tills indicates that the silt and clay fraction constitutes 20–50%, whereas, in contrast, the equivalent heavy-mineral concentrates are dominantly composed of the coarser −500 + 63 μm material.
2. (2) The amount of Au present in the heavy-mineral concentrates of tills represents only a minor proportion of the total Au in the original till samples. In addition, the proportion of the total Au recovered in the heavy-mineral concentrate varies from 4 to 15%. Both factors indicate that caution is necessary in interpreting the significance of heavy-mineral Au data.
3. (3) Examination of the size distribution of Au within the heavy-mineral concentrate indicates that the majority of the Au is contained in the −125 μm fraction.
4. (4) The concentration factor (the original sample weight divided by the heavy-mineral concentrate weight) varies up to 7-fold between samples due presumably to the differing proportions of heavy minerals. Hence, in Au deposits of equivalent economic significance this gives rise to varying Au concentrations in heavy-mineral concentrates according to the quantity of heavy minerals present. Significant interpretation can only be achieved by re-expressing the Au contents of heavy-mineral concentrates in terms of the absolute amount of Au in heavy-mineral concentrates.
5. (5) A comparison of the heavy-mineral concentrates produced by different laboratories indicates marked differences in the weight of the heavy-mineral concentrate, the Au concentration of the heavy-mineral concentrate, the total weight of Au in the heavy-mineral concentrate and the size distribution of the Au in the heavy-mineral concentrate.
6. (6) Analysis of the −63 μm silt and clay size fraction indicates anomalous Au contents within this fraction of the tills collected from Owl Creek and Hemlo, extending over 500 m down-ice from mineralization at Hemlo.
7. (7) Analysis of the −63 μm silt and clay size fraction is suitable for the detection of fine-grained Au deposits that are not amenable to detection on the basis of heavy-mineral concentrate analyses.
8. (8) The analysis of the silt and clay fraction reduces the sample representativity problems associated with analyzing coarser fractions.
9. (9) A comparison of the Au distribution in heavy-mineral concentrates and the −63 μm fraction of till down-ice from the Owl Creek deposit indicates broadly similar dispersion patterns.
In conclusion, although the results are based on relatively few samples, their consistency permits some general conclusions to be drawn. The silt and the heavy-mineral concentrate analyses provide different information and in view of the diversity of exploration targets and surface environments exploration reliability can be increased by analyzing both the −63 μm silt and clay fraction and the heavy-mineral concentrate.  相似文献   

20.
M. Doi  G. Warren  M.E. Hodson   《Applied Geochemistry》2005,20(12):2207-2216
Ochre is an unwanted waste product that accumulates in wetlands and streams draining abandoned coal and metal mines. A potential commercial use for ochre is to remediate As contaminated soil. Arsenic contaminated soil (605 mg kg−1) was mixed with different ochres (A, B and C) in a mass ratio of 1:1 and shaken in 20 mL of deionised water. After 72 h As concentration in solution was ca. 500 μg kg−1 in the control and 1–2.5 μg kg−1 in the ochre treated experiments. In a second experiment soil:ochre mixtures of 0.05–1:1 were shaken in 20 mL of deionised water for 24 h. For Ochres A and C, as solution concentration was reduced to ca. 1 μg kg−1 by 0.2–1:1 ochre:soil mixtures. For Ochre B, as concentration only reached ca. 1 μg kg−1 in the 1:1 ochre:soil mix. Sorption of As was best modelled by a Freundlich isotherm using As sorption per mass of goethite in the ochre (log K = 1.64, n = 0.79, R2 = 0.76, p 0.001). Efficiency of ochre in removing As from solution increased with increasing total Fe, goethite, citrate dithionite extractable Fe and surface area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号