首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Surface water optical characteristics, nutrients, and planktonic chlorophyll a concentrations were analyzed in the Cape Fear River (CFR) plume over a 2-year period. CFR discharge during the dry year (109 ± 105 m3s−1) was only 25% of the wet year discharge (429 ± 337 m3s−1). Partitioning the contributions of phytoplankton pigments, non-pigmented particles, and colored dissolved organic matter (CDOM) to the absorption of photosynthetically active radiation (PAR) indicated that CDOM was the dominant contributor to PAR absorption. Particulate absorption was relatively greater during the dry year. Pigment absorption was minor and varied little among stations or between years. Chlorophyll a concentrations were reduced at the most plume-influenced stations during the wet year, despite lower turbidity and higher nitrate concentrations. Ammonium and orthophosphate concentrations were not different between years. CDOM absorption [a CDOM (412)] ranged from 0.05 to 8.25 m−1 with highest values occurring near the CFR mouth. Our results suggest that for coastal ecosystems with significant blackwater river inputs, CDOM may exert a major limiting influence over near-shore primary production.  相似文献   

2.
Optical constituents as suspended particulate matter (SPM), chlorophyll (Chl-a), colored dissolved organic matter (CDOM), and grain sizes were obtained on a transect in the arctic fjord-type estuary Kangerlussuaq (66°) in August 2007 along with optical properties. These comprised diffuse attenuation coefficient of downwelling PAR (K d(PAR)), upwelling PAR (K u(PAR)), particle beam attenuation coefficient (c p), and irradiance reflectance R(−0, PAR). PAR is white light between 400 and 700 nm. The estuary receives melt water from the Greenland Inland Ice and stations covered a transect from the very high turbid melt water outlet to clear marine waters. Results showed a strong spatial variation with high values as for suspended matter concentrations, CDOM, diffuse attenuation coefficient K d(PAR), particle beam attenuation coefficients (c p), and reflectance R(−0, PAR) at the melt water outlet. Values of optical constituents and properties decreased with distance from the melt water outlet to a more or less constant level in central and outer part of the estuary. There was a strong correlation between inorganic suspended matter (SPMI) and diffuse attenuation coefficient K d(PAR) (r 2 = 0.92) and also for particle beam attenuation coefficient (c p; r 2 = 0.93). The obtained SPMI specific attenuation—K d*(PAR) = 0.13 m2 g−1 SPMI—and the SPMI specific particle beam attenuation—c p* = 0.72 m2 g−1—coefficients were about two times higher than average literature values. Irradiance reflectance R(−0, PAR) was comparatively high (0.09−0.20) and showed a high (r 2 = 0.80) correlation with K u(PAR). Scattering dominated relative to absorption—b(PAR)/a(PAR) = 12.3. Results strongly indicated that the high values in the optical properties were related to the very fine particle sizes (mean = 2–6 μm) of the suspended sediment. Data and results are discussed and compared to similar studies from both temperate and tropical estuaries.  相似文献   

3.
We investigated the role of sandy beaches in nearshore nutrient cycling by quantifying macrophyte wrack inputs and examining relationships between wrack accumulation and pore water nutrients during the summer dry season. Macrophyte inputs, primarily giant kelp Macrocystis pyrifera, exceeded 2.3 kg m−1 day−1. Mean wrack biomass varied 100-fold among beaches (range = 0.41 to 46.43 kg m−1). Mean concentrations of dissolved inorganic nitrogen (DIN), primarily NOx-N, and dissolved organic nitrogen (DON) in intertidal pore water varied significantly among beaches (ranges = 1 to 6,553 μM and 7 to 2,006 μM, respectively). Intertidal DIN and DON concentrations were significantly correlated with wrack biomass. Surf zone concentrations of DIN were also strongly correlated with wrack biomass and with intertidal DIN, suggesting export of nutrients from re-mineralized wrack. Our results suggest beach ecosystems can process and re-mineralize substantial organic inputs and accumulate dissolved nutrients, which are subsequently available to nearshore waters and primary producers.  相似文献   

4.
The eastern Alaska Beaufort Sea coast is characterized by numerous shallow (2–5 m) estuarine lagoons, fed by streams and small rivers that drain northward from the Brooks Range through the arctic coastal plain, and bounded seaward by barrier islands and shoals. Millions of birds from six continents nest and forage during the summer period in this region using the river deltas, lagoons, and shoreline along with several species of anadromous and marine fish. We examined biogeochemical processes linking the benthic community to the overall food web structure of these poorly studied but pristine estuaries, which are largely covered by 1.8 m of ice for 10 months annually. In summer, these lagoons are relatively warm with brackish salinities (5–10°C, S = 10–25) compared to more open coastal waters (0–5°C, S > 27). The stable isotopic composition of organic materials in sediments (i.e., benthic particulate organic matter) and water column suspended particulate organic matter from both streams and lagoons are largely indistinguishable and reflect strong terrestrial contributions, based upon δ13C and δ15N values (−25.6‰ to −27.4‰ and 1.4‰ to 3.3‰, respectively). By comparison, shifts toward more heavy isotope-enriched organic materials reflecting marine influence are observed on the adjacent coastal shelf (−24.8‰ to −25.4‰ and 3.4‰ to 5.3‰, respectively). The isotopic composition of lagoon fauna is consistent with a food web dominated by omnivorous detritovores strongly dependent on microbial processing of terrestrial sources of carbon. Biomagnification of 15N in benthic organisms indicate that the benthic food web in lagoons support up to four trophic levels, with carnivorous gastropod predators and benthic fishes (δ15N values up to 14.4‰) at the apex.  相似文献   

5.
A sulfur hexafluoride (SF6) tracer release experiment was conducted in the Stockton Deep Water Ship Channel (DWSC) to quantify mixing and transport rates. SF6 was injected in the San Joaquin River upstream of the DWSC and mapped for 8 days. From the temporal change in SF6 distributions, the longitudinal dispersion coefficient (K x ) was determined to be 32.7 ± 3.6 m2 s−1 and the net velocity was 1.75 ± 0.03 km day−1. Based on the decrease in SF6 inventory during the experiment, the pulsed residence time for waters in the DWSC was estimated at ∼17 days. Within the DWSC from Stockton downstream to Turner Cut, dissolved oxygen concentrations maintained a steady state value of 4 mg l−1. These values are below water quality objectives for the time of year. The low flow rates observed in the DWSC and the inability of oxygen-rich waters from downstream to mix into the DWSC upstream of Turner Cut contribute to the low dissolved oxygen concentration.  相似文献   

6.
The size-fractionated phytoplankton biomass and primary production were investigated in four contrasting areas of Hong Kong waters in 2006. Phytoplankton biomass and production varied seasonally in response to the influence of the Pearl River discharge. In the dry season, the phytoplankton biomass and production were low (<42 mg chl m−2 and <1.8 g C m−2 day−1) in all four areas, due to low temperatures and dilution and reduced light availability due to strong vertical mixing. In contrast, in the wet season, in the river-impacted western areas, the phytoplankton biomass and production increased greater than five-fold compared to the dry season, especially in summer. In summer, algal biomass was 15-fold higher than in winter, and the mean integrated primary productivity (IPP) was 9 g C m−2 day−1 in southern waters due to strong stratification, high temperatures, light availability, and nutrient input from the Pearl River estuary. However, in the highly flushed western waters, chl a and IPP were lower (<30 mg m−2 and 4 g C m−2 day−1, respectively) due to dilution. The maximal algal biomass and primary production occurred in southern waters with strong stratification and less flushing. Spring blooms (>10 μg chl a L−1) rarely occurred despite the high chl-specific photosynthetic rate (mostly >10 μg C μg chl a −1 day−1) as the accumulation of algal biomass was restricted by active physical processes (e.g., strong vertical mixing and freshwater dilution). Phytoplankton biomass and production were mostly dominated by the >5-μm size fraction all year except in eastern waters during spring and mostly composed of fast-growing chain-forming diatoms. In the stratified southern waters in summer, the largest algal blooms occurred in part due to high nutrient inputs from the Pearl River estuary.  相似文献   

7.
With the aim of evaluating temporal changes in sedimentation and organic carbon (Corg) supplied over the last ~100 years, a sediment core was collected at Soledad Lagoon, a costal ecosystem surrounded by mangroves, located in the Cispatá Estuary (Caribbean coast of Colombia). The core sediments were characterized by low concentrations of calcium carbonate (0.2–2.9%), organic matter (3–8%), total nitrogen (0.11–0.38%), and total phosphorus (0.19–0.65 mg g−1). Fe and Al concentrations ranged from 4% to 5%, and Mn from 356 to 1,047 μg g−1. The 210Pb-derived sediment and mass accumulation rates were 1.54 ± 0.18 mm year−1 and 0.08 ± 0.01 g cm−2 year−1, respectively. The sediment core did not provide evidence of human impact, such as enhancement of primary production or nutrient enrichment, which may result from recent land uses changes or climate change. The Corg fluxes estimated for Soledad Lagoon core lay in the higher side of carbon fluxes to coastal ecosystems (314–409 g m−2 year−1) and the relatively high Corg preservation observed (~45%) indicate that these lagoon sediments has been a net and efficient sink of Corg during the last century, which corroborate the importance of mangrove areas as important sites for carbon burial and therefore, long-term sequestration of Corg.  相似文献   

8.
Polycyclic aromatic hydrocarbon (PAH) biota-sediment accumulation factors (BSAF) were quantified in sediments from two sites in southeastern Louisiana in a 14 d microcosm study usingPalaemonetes pugio, andRangia cuneata and two radiolabeled PAHs, phenanthrene and benzo[a]pyrene (b[a]p). For both PAHs studied, mean BSAFs were significantly higher (p<0.0001) in both organisms in sediments from Bayou Trepagnier, (BSAF=0.628 g OC g TLE−1), a brackish swamp, compared to Pass Fourchon (0.065 g OC g TLE−1), a coastal salt marsh. In order to explain observed patterns in BSAFs, organic carbon-normalized PAH distribution coefficients between the sediment and freely dissolved phases (KOC)OBS were determined as well as the various geochemical variables of particulate and dissolved organic matter (POM and DOM, respectively). These included analyses of particle surface area, total organic carbon (TOC), carbon to nitrogen ratios (C∶N), and dissolved organic carbon (DOC). Bayou Trepagnier was higher in surface area, TOC, C∶N, as well as DOC suggesting that the difference in BSAFs may be attributed to compositional differences in POM and DOM between sites. We can not exclude the possibility that other factors (such as differences in organism behavior resulting from contrasting sediment characteristics) were responsible for BSAFs varying between the two sites. Phenanthrene BSAFs were typically higher than b[a]p BSAFs, suggesting contaminants were limited in their desorption from sediment particles as a function of PAH molecular weight. Mean BSAFs for both PAHs were higher on Day 7 than on Day 14. The reason for this decrease is unclear, but did not appear to be due to organisms becoming increasingly stressed in the microcosms. Visual observations indicated that animals remained feeding while no decreases in organism total lipid levels were detected. The trends in BSAFs between sites and over the time course of this experiment suggest that contaminant bioaccumulation in estuarine systems should not be considered to be an equilibrium process.  相似文献   

9.
The hydroelectric reservoir of Petit Saut, French Guiana, was created in 1994–1995 by flooding 350 km2 of tropical forest. When sampled in 1999, the lake exhibited a permanent stratification separating the 3–5 m thick, oxygenated epilimnion from the anoxic hypolimnion. The rate of anaerobic organic carbon mineralization below the oxycline was on the order of 1 μmol C m−2 s−1 and did not show a pronounced difference between wet and dry seasons. Methanogenesis accounted for 76–83% of anaerobic carbon mineralization, with lesser contributions of sulfate reduction and dissimilatory iron reduction. Upward mixing of reduced inorganic solutes explained 90% of the water column O 2 demand during the dry season, while most O 2 consumption during the wet season was coupled to aerobic respiration of organic matter synthesized in the surface waters. Inorganic mercury species represented 10–40% of total dissolved mercury in the epilimnion, but were of relatively minor importance (≤10%) in the anoxic portion of the water column. Net production of soluble organic mercury compounds in the flooded soils and anoxic water column did not vary significantly between wet and dry seasons. Methylmercury accounted for about 15% of total dissolved mercury below the oxycline. Its estimated net production rate, 0.04 mg m−2 yr−1, is of the same order of magnitude as values reported for contaminated lakes and flooded terrestrial ecosystems.  相似文献   

10.
Phragmites australis has been invading Spartina-alterniflora-dominated salt marshes throughout the mid-Atlantic. Although, Phragmites has high rates of primary production, it is not known whether this species supports lower trophic levels of a marsh food web in the same manner as Spartina. Using several related photochemical and biological assays, we compared patterns of organic matter flow of plant primary production through a key salt marsh metazoan, the ribbed mussel (Geukensia demissa), using a bacterial intermediate. Dissolved organic matter (DOM) was derived from plants collected from a Delaware Bay salt marsh and grown in the laboratory with 14C-CO2. Bacterial utilization of plant-derived DOM measured as carbon mineralization revealed that both species provided bioavailable DOM to native salt marsh bacteria. Total carbon mineralization after 19 days was higher for Spartina treatments (36% 14CO2 ± 3 SE) compared with Phragmites treatments (29% ±2 SE; Wilcoxon–Kruskal–Wallis rank sums test, P < 0.01). Pre-exposing DOM to natural sunlight only enhanced or decreased bioavailability of the DOM to the bacterioplankton during initial measurements (e.g., 7 days or less) but these differences were not significant over the course of the incubations. Mixtures of 14C-labeled bacterioplankton (and possibly organic flocs) from 14C-DOM treatments were cleared by G. demissa at similar rates between Spartina and Phragmites treatments. Moreover, 14C assimilation efficiencies for material ingested by mussels were high for both plant sources ranging from 74% to 90% and not significantly different between plant sources. Sunlight exposure did not affect the nutritional value of the bacterioplankton DOM assemblage for mussels. There are many possible trophic and habitat differences between Spartina- and Phragmites-dominated marshes that could affect G. demissa but the fate of vascular plant dissolved organic carbon in the DOM to bacterioplankton to mussel trophic pathway appears comparable between these marsh types.  相似文献   

11.
We measured seasonal variations in microzooplankton grazing in Long Island Sound (LIS) and San Francisco Bay (SFB). There was consistent evidence of nutrient limitation in LIS, but not SFB. We found higher chlorophyll a concentrations in LIS compared with SFB. In spite of differences in phytoplankton, there were no differences in microzooplankton abundance (summer: LIS, 12.4 ± 1.8 × 103 indiv. L−1; SFB, 14.1 ± 3.0 × 103 indiv. L−1), biomass (summer: LIS, 30.4 ± 5.0 μg C L−1; SFB, 26.3 ± 5.9 μg C L−1), or grazing rates (summer: LIS, 0.66 ± 0.19 day−1; SFB, 0.65 ± 0.18 day−1) between the two estuaries. In common with many other investigators, we found many instances of saturated as well as insignificant grazing. We suggest that saturation in some cases may result from high particle loads in turbid estuarine systems and that insignificant grazing may result from extreme saturation of the grazing response due to the need to process non-food particles.  相似文献   

12.
The bivalve Pisidium amnicum (Müller 1774) is a common species in several European freshwater ecosystems. However, few Iberian watersheds are colonized by this species, and the River Minho estuary is possibly the Iberian aquatic ecosystem with the larger population. In October 2004–2007, investigations on spatial and temporal variations in P. amnicum abundance and biomass were carried out at 16 sites along the River Minho tidal freshwater wetlands. Mean abundance and biomass per site ranged from 0 to 750 ind m−2 and 0 to 7.42 g AFDW m−2, respectively. A clear decrease in the spatial distribution, abundance, and biomass was observed during the 4-year assessment. Furthermore, a stepwise multiple regression model showed that organic matter and conductivity explained 50.2% of the variation in P. amnicum abundance (R 2 = 0.502, F [2, 15] = 7.569, p = 0.005). Ecological knowledge is essential to the implementation of future conservation plans for P. amnicum, and the results of this study are of paramount importance to identify habitats that should be protected in order to preserve this species and provide scientific reference that may be useful in the development of management and/or restoration plans.  相似文献   

13.
There is considerable discussion and uncertainty in the literature regarding the importance of fresh litter versus older soil organic matter as sources of soil dissolved organic carbon (DOC) in forest floor. In this study, the differences of organic carbon concentration and stable isotope composition were analyzed under different background conditions to identify the origins of DOC in forest soil. The data show that there is no significant difference in SOC content between these collected soil samples (P > 0.05), but the litter-rich surface soils have relatively higher DOC concentration than the litter-lacking (P < 0.01) ones, and the δ 13C values of DOC (δ 13CDOC) are closer to δ 13C of litter than δ 13C values of SOC (δ 13CSOC). In the litter-lacking surface soil samples, the range of δ 13CDOC is between δ 13CSOC and δ 13C of dominant plant leaves. These results suggest that DOC mainly derive from litter in the litter-rich surface soil with, and the main path of DOC sources may change with surrounding conditions. In addition, δ 13CSOC and δ 13CDOC become more positive, and the absolute values of Δ (δ 13CDOC − δ 13CSOC) decrease with depth in the soil profiles, which indicate that the percentage of DOC below 5 cm, derived from degradation of humus, may increase with soil depth.  相似文献   

14.
The purpose of this study is to investigate the quality and usage possibility of groundwater in the Çavuşçayı basin and suggest the best water structure for the groundwater use. Results from hydrochemical analyses reveal that groundwater is mostly affected by salty (Na+–Cl) waters of the Incik Formation and brackish (Ca2+, Mg2+–SO 4 2− ) waters of the Bayındır Formation. The Alibaba saltpan discharged (2 l/s) from the Incik Formation is used for salt production. In the basin, salinity risk increases with depth and along the groundwater flow direction. Therefore, shallow water and trenches opened in the alluvium aquifer at the east of the basin were determined to yield suitable water with no Na+ and Cl contamination. Following the heavy rainy period, waters of less salinity and conductivity are possibly used for agriculture.  相似文献   

15.
Respiration and calcification rates of the Pacific oyster Crassostrea gigas were measured in a laboratory experiment in the air and underwater, accounting for seasonal variations and individual size, to estimate the effects of this exotic species on annual carbon budgets in the Bay of Brest, France. Respiration and calcification rates changed significantly with season and size. Mean underwater respiration rates, deducted from changes in dissolved inorganic carbon (DIC), were 11.4 μmol DIC g−1 ash-free dry weight (AFDW) h−1 (standard deviation (SD), 4.6) and 32.3 μmol DIC g−1 AFDW h−1 (SD 4.1) for adults (80–110 mm shell length) and juveniles (30–60 mm), respectively. The mean daily contribution of C. gigas underwater respiration (with 14 h per day of immersion on average) to DIC averaged over the Bay of Brest population was 7.0 mmol DIC m−2 day−1 (SD 8.1). Mean aerial CO2 respiration rate, estimated using an infrared gas analyzer, was 0.7 μmol CO2 g−1 AFDW h−1 (SD 0.1) for adults and 1.1 μmol CO2 g−1 AFDW h−1 (SD 0.2) for juveniles, corresponding to a mean daily contribution of 0.4 mmol CO2 m−2 day−1 (SD 0.50) averaged over the Bay of Brest population (with 10 h per day of emersion on average). Mean CaCO3 uptake rates for adults and juveniles were 4.5 μmol CaCO3 g−1 AFDW h−1 (SD 1.7) and 46.9 μmol CaCO3 g−1 AFDW h−1 (SD 29.2), respectively. The mean daily contribution of net calcification in the Bay of Brest C. gigas population to CO2 fluxes during immersion was estimated to be 2.5 mmol CO2 m−2 day−1 (SD 2.9). Total carbon release by this C. gigas population was 39 g C m−2 year−1 and reached 334 g C m−2 year−1 for densely colonized areas with relative contributions by underwater respiration, net calcification, and aerial respiration of 71%, 25%, and 4%, respectively. These observations emphasize the substantial influence of this invasive species on the carbon cycle, including biogenic carbonate production, in coastal ecosystems.  相似文献   

16.
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl, NO3 , SO4 2−, HCO3 , PO4 3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3 ) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from 0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater. Low concentrations of NO3 and SO4 2−, and high concentrations of DOC, HCO3 and PO4 3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers studied herein.  相似文献   

17.
We analyzed speleothem calcite from the Oregon Caves National Monument, southwestern Oregon, to determine the preservation, distribution, concentrations and sources of aliphatic lipid compounds preserved in the calcite. Maximum speleothem growth rate occurs during interglaciations and minimum during glacial intervals. Concentrations of the total lipid compounds range from 0.5 to 12.9 μg g−1. They increase at times of low speleothem growth rate, suggesting dilution, whereas the apparent accumulation rate of lipid compounds tends to be highest during times of fastest speleothem growth rate. Such increased accumulation generally corresponds to times of warm (interglacial) climate, suggesting either a greater source of organic materials during interglacial times and/or greater efficiency of compound capture during more rapid calcite growth. Aliphatic lipid compounds include homologous n-alkanoic acids, n-alkanols and methyl n-alkanoates and sterols with concentrations ranging from 0.3 to 7.8 μg g−1, 0.4 to 1.1 μg g−1, 0.5 to 9.6 μg g−1 and 0.1 to 2.7 μg g−1, respectively. Minor amounts of branched methyl n-alkanoates and dimethyl n-alkanedioates are also present. The high concentrations of methyl n-alkanoates are the result of esterification reactions of free fatty acids in alkaline solutions with high pH values associated with the dripping cave waters. The distribution patterns and geochemical parameters and indices indicate that the major sources of the aliphatic lipids involved leaching from higher plants and microbial residues derived from the soil zone above the cave system. The estimated percentage of microbial inputs ranged from 42 to 90% of the total lipids and also showed an increase in accumulation during warm climates. These well-preserved lipid compounds in speleothem calcite could be used as biomarkers for paleoenvironmental study.  相似文献   

18.
We report integrated measurements of sediment oxygen consumption (SOC) and bottom water plankton community respiration rates (WR) during eight cruises from 2003 to 2007 on the Louisiana continental shelf (LCS) where hypoxia develops annually. Averaged by cruise, SOC ranged from 3.9 to 25.8 mmol O2 m−2 day−1, whereas WR ranged from 4.1 to 10.8 mmol O2 m−3 day−1. Total below-pycnocline respiration rates ranged from 46.4 to 104.5 mmol O2 m−2 day−1. In general, below-pycnocline respiration showed low variability over a large geographic and temporal range, and exhibited no clear spatial or inter-annual patterns. SOC was strongly limited by dissolved oxygen (DO) in the overlying water; whereas, WR was insensitive to low DO, a relationship that may be useful for parameterizing future models. The component measures, WR and SOC, were similar to most prior measurements, both from the LCS and from other shallow estuarine and coastal environments. The contribution of SOC to total below-pycnocline respiration averaged 20 ± 4%, a finding that differs from several prior LCS studies, but one that was well supported from the broader estuarine and oceanic literature. The data reported here add substantially to those available for the LCS, thus helping to better understand oxygen dynamics on the LCS.  相似文献   

19.
Properties of fluorescent dissolved organic matter in the Gironde Estuary   总被引:5,自引:0,他引:5  
The isolation, characterization and study of the properties of aquatic dissolved organic matter (DOM) still represent a challenge because of the heterogeneity, complexity and low concentration of organic material in natural waters. Based on its ability to interact with contaminants and thus to modify their transport and bioavailability, DOM is of interest for environmental purposes. The objective of this work was to better characterize DOM in the Gironde Estuary (southwestern France). The estuary represents an exchange zone between the continent and the Atlantic Ocean and conditions the transfer of organic and inorganic substances from the continental to the oceanic environment. Several samples were collected along the estuary during three cruises in 2002 and 2006. They were analysed using excitation–emission matrix (EEM) spectroscopy, a sensitive technique that allows direct analysis of water samples. Fluorescent DOM and dissolved organic carbon (DOC) did not behave conservatively in this estuarine system, i.e. the organic material did not undergo simple dilution from the upstream to the downstream part of the estuary. A seasonal variability in DOC content was pointed out, whereas few seasonal variations in DOM fluorescence were observed. DOM sources and processing in the estuary were further evaluated by determining two fluorescence indices – the humification index (HIX) and the index of recent autochthonous contribution (BIX). By applying these indices, the relative degree of humification (HIX) and autotrophic productivity (BIX) could be assessed. Based on the fluorescence and DOC results, the estuary was divided into three zones depending on salinity (S) and characterized by specific DOM: (i) A turbid zone of low salinity (S < 5) and high suspended particulate matter concentration with increase in the intensities of the α′ and α fluorophores, characteristic of humic-like compounds. (ii) A mid-estuarine zone (5 < S < 25) characterized by low autotrophic productivity and containing strongly degraded organic material, as shown by the low values of BIX and high values of HIX. (iii) A higher salinity area (S > 25) characterized by increased autotrophic productivity and a marked marine influence, and associated with high and low values of BIX and HIX, respectively. The HIX and BIX indices were shown as useful tools for readily defining and classifying DOM characteristics in estuarine waters.  相似文献   

20.
Here we report on the temporal changes in the composition of dissolved organic carbon (DOC) collected in the tidal freshwater region of the lower Mississippi River. Lignin-phenols, bulk stable carbon isotopes, compound-specific isotope analyses (CSIA) and 13C nuclear magnetic resonance (NMR) spectrometry were used to examine the composition of high molecular weight dissolved organic matter (HMW DOM) at one station in the lower river over 6 different flow regimes in 1998 and 1999. It was estimated that the annual input of DOC delivered to the Gulf of Mexico from the Mississippi River was of 3.1 × 10−3 Pg, which represents 1.2% of the total global input of DOC from rivers to the ocean. Average DOC and HMW DOC were 489 ±163 and 115 ± 47 μM, respectively. 13C-NMR spectra revealed considerably more aliphatic structures than aromatic carbons in HMW DOC. Lignin phenols were significantly 13C-depleted with respect to bulk HMW DOM indicating that C4 grass inputs to the HMW DOM were not significant. It is speculated that C4 organic matter in the river is not being converted (via microbial decay) to HMW DOM as readily as C3 organic matter is, because of the association of C4 organic matter with finer sediments. The predominantly aliphatic 13C NMR signature of HMW DOM suggests that autochthonous production in the river may be more important as a source of DOC than previously thought. Increases in nutrient loading and decreases in the suspended load (because of dams) in the Mississippi River, as well as other large rivers around the world, has resulted in significant changes in the sources and overall cycling of riverine DOC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号