首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
2022年1月8日发生的门源M6.9地震诱发了崩塌、滑坡、砂土液化、地裂缝等多种同震地质灾害。通过对门源M6.9地震地质灾害进行现场调查,得出了地质灾害的分布特征和各类型地质灾害的主要特点,分析了地震地质灾害不发育的原因,并对地震地质灾害的长期效应进行了分析预测。研究结果表明:门源地震诱发地质灾害主要分布在震中附近;崩塌、落石总体规模较小,滑坡多为岩质滑坡,且以冰碛物和表层岩土体的溜滑为主。受表层土体冻结和孔隙水压力消散的影响,饱和砂土液化沿较窄的地裂缝呈串珠状分布,喷出物多为粉细砂。地震形成了4条左旋左阶斜列的地表破裂带,并在极震区内形成了大量的地裂缝。断层破碎带对地震动的阻隔作用、覆盖层薄、地表土冻结可能是造成本次地震地质灾害总体不发育的主要原因;地震产生的大量地裂缝导致斜坡和堆积体的稳定性减弱,在耦合集中降雨、冻融作用等因素后可能诱发滑坡灾害,松散堆积于沟床处的崩滑物作为物源,可能会增加地震影响区泥石流灾害的风险。  相似文献   

2.
Liquefaction macrophenomena in the great Wenchuan earthquake   总被引:3,自引:2,他引:1  
On May 12, 2008 at 14:28, a catastrophic magnitude M 8.0 earthquake struck the Sichuan Province of China.The epicenter was located at Wenchuan (31.00°N, 103.40°E). Liquefaction macrophenomena and corresponding destruction was observed throughout a vast area of 500 km long and 200 km wide following the earthquake. This paper illustrates the geographic distribution of the liquefaction and the relationship between liquefaction behavior and seismic intensity, and summarizes the liquefaction macrophenomena, including sandboils and waterspouts, ground subsidence, ground fissures etc., and relevant liquefaction features. A brief summary of the structural damage caused by liquefaction is presented and discussed. Based on comparisons with liquefaction phenomena observed in the 1976 Tangshan and 1975 Haicheng earthquakes, preliminary analyses were performed, which revealed some new features of liquefaction behavior and associated issues arising from this event. The site investigation indicated that the spatial non-uniformity of liquefaction distribution was obvious and most of the liquefied sites were located in regions of seismic intensity Ⅷ. However, liquefaction phenomena at ten different sites in regions of seismic intensity Ⅵ were also observed for the first time in China mainland. Sandboils and waterspouts ranged from centimeters to tens of meters, with most between 1 m to 3 m. Dramatically high water/sand ejections,e.g., more than 10 m, were observed at four different sites. The sand ejections included silty sand, fine sand, medium sand,course sand and gravel, but the ejected sand amount was less than that in the 1976 Tangshan earthquake. Possible liquefaction of natural gravel soils was observed for the first time in China mainland.  相似文献   

3.
On 15 July 1995, the Egion earthquake (Ms = 6.2) occurred in the vicinity of Egion, west-central Greece. Macroseismic observations along the 12 km long E-W trending Egion fault represent short-term or earthquake-related deformation characterized by fairly straight E-W trending surface ruptures with small displacements that mimic the Egion fault geologic offsets and segmentation. Hanging wall converging slip vectors along the Egion fault are clearly related to fault motions at depth. Furthermore, peak accelerations of the built-up area of Egion amount to 0.54 g, that is double the estimated peak acceleration of the Egion coastal area, showing thus close relation between fault trace and attenuation of the ground motion.The Egion fault, with a total geological throw of 200 m and dips to the north at about 55 °, accommodating active tectonic deformation of the Egion area. Its morphotectonic expression reflects long-term deformation in competition with the 1995 earthquake related deformation. The Egion fault is controlling the geomorphic evolution of the Egion area as follows: 1) The fault is defining the evolution of fan-deltas (offshore) and the Meganitas river alluvial plain (onshore). 2) The hanging-wall's greatest subsidence is observed, at the Egion bay, at the central portion of the fault. The Egion bay is located at the central part of the fault showing a strong relationship between the long term slip-rate ratio and the recent coastal morphology. The subsidence gradient or the tectonic activity along the fault is defined by the valley-floor width to valley height index (Vf) of small rivers draining the fault scarp. The Meganitas river course is tilted, when crosses the Egion fault trace, towards the area with the highest subsidence along the fault. 3) Stream incision is more important than slope recession at areas close to the fault trace.All these observations suggest that the Egion fault, which probably hosted the last earthquake, are geomorphically controlling the evolution of a 15 km-long by 5 km-wide zone, fairly similar in dimensions to the surface length of the fault.  相似文献   

4.
The December 26, 2003 Mw 6.6 Bam earthquake is one of the most disastrous earthquakes in Iran. QuickBird panchromatic and multispectral satellite imagery with 61 cm and 2.4 m ground resolution, respectively provide new insights into the surface rupturing process associated with this earthquake. The results indicate that this earthquake produced a 2–5 km-wide surface rupture zone with a complex geometric pattern. A 10-km-long surface rupture zone developed along the pre-existing Bam fault trace. Two additional surface rupture zones, each 2–5 km long, are oblique to the pre-existing Bam fault in angles of 20–35°. An analysis of geometric and geomorphic features also shows that movement on the Bam fault is mainly right-lateral motion with some compressional component. This interpretation is consistent with field investigations, analysis of aftershocks as well as teleseismic inversion. Therefore, we suggest that the 2003 Bam earthquake occurred on the Bam fault, and that the surface ruptures oblique to the Bam fault are caused by secondary faulting such as synthetic shears (Reidel shears). Our fault model for the Bam earthquake provides a new tectonic scenario for explaining complex surface deformations associated with the Bam earthquake.  相似文献   

5.
A destructive earthquake of magnitude Mw = 6.8 hit the region of Boumerdes and Algiers (Algeria) on May 21, 2003. This is among the strongest seismic events of the mediterranean region and the most important event in the capital Algiers since 1716. It caused a widespread damage in the epicentral region, claimed 2271 human lives, injured 10000, about 20000 housing units affected and left about 160000 homeless. The main shock was felt about 250 km far from the epicenter and triggered sea waves of 1–3 m in amplitude in Balearic islands (Spain). Based on field observations and press report an intensity IX (MSK scale) is attributed to the epicentral area. The main shock was followed by many aftershocks among them several are of magnitude greater than 5.0, which added panic to inhabitants. The main shock triggered ground deformation, particularly liquefaction whose features are in different forms and sizes and caused damage and collapse of roads. The focal mechanism determined by worldwide institutions yield a pure reverse faulting with a compressional axis striking NE-SW. The epicenter is located offshore about 7 km from the Boumerdes-Dellys coast. Field observations show 0.7 m of coseismic uplift of shoreline between Boudouaou and Dellys. This uplift is about a half of the extracted coseismic slip from the seismic moment. On the other hand there is no clear surface break onshore, confirming hence, that the causative active fault is offshore. However, the rupture may propagate onshore to the SE near the Boudouaou region where ground cracks showing reverse faulting are observed a long a corridor of about 1 km wide. These fissures may correspond to a diffuse coseismic deformation.  相似文献   

6.
The Xiadian Fault is a very important concealed active fault in the Beijing Plain. It is the seismogenic fault of the Sanhe-Pinggu MS8.0 earthquake in 1679. The ancient earthquake sequence in the long historical period is of great significance to understand accurately the activity characteristics of the fault and effectively reduce the earthquake disaster risk in Beijing. We have re-interpreted the Dahuzhuang trench, and identified three layers of buried paleosol, six collapsed wedges and one sand liquefaction event. Further, through the comparison with the landmark strata and paleo-earthquake events revealed by other trenches on the fault, an ancient earthquake sequence with a long historical period of the Xiadian Fault was established:since the 31ka, the Xiadian Fault has 11 occurrences of earthquake events (including the 1679 earthquake), and the average recurrence interval is about 2.8ka. The paleo-seismic sequence also shows that there is an ancient earthquake cluster period from 25ka to 15ka, and there are 5 strong earthquakes in the cluster period. The average recurrence interval is about 2.0ka, which reflects the phase difference of the Xiadian Fault activity.  相似文献   

7.
The characteristics of spatio-temporal seismicity evolution before the Wenchuan earthquake are studied. The results mainly involve in the trend abnormal features and its relation to the Wenchuan earthquake. The western Chinese mainland and its adjacent area has been in the seismically active period since 2001, while the seismic activity shows the obvious quiescence of M≥?7.0, M≥?6.0 and M?≥5.0 earthquakes in Chinese mainland. A quiescence area with M?≥7.0 has been formed in the middle of the North-South seismic zone since 1988, and the Wenchuan earthquake occurred just within this area. There are a background seismicity gap of M?≥5.0 earthquakes and a seismogenic gap of ML?≥4.0 earthquakes in the area of Longmenshan fault zone and its vicinity prior to the Wenchuan earthquake. The seismic activity obviously strengthened and a doughnut-shape pattern of M?≥4.6 earthquakes is formed in the middle and southern part of the North-South seismic zone after the 2003 Dayao, Yunnan, earthquake. Sichuan and its vicinity in the middle of the doughnut-shape pattern show abnormal quiescence. At the same time, the seismicity of earthquake swarms is significant and shows heterogeneity in the temporal and spatial process. A swarm gap appears in the M4.6 seismically quiet area, and the Wenchuan earthquake occurred just on the margin of the gap. In addition, in the short term before the Wenchuan earthquake, the quiescence of earthquake with ML≥?4.0 appears in Qinghai-Tibet block and a seismic belt of ML?≥3.0 earthquakes, with NW striking and oblique with Longmenshan fault zone, is formed.  相似文献   

8.
The feasibility of using the optimum seeking method to assess the seismic liquefaction potential of sands has been investigated. Optimization theory is a very important branch of applied mathematics and has a wide application in the practical world. Using the available field sand liquefaction data, the influence of various factors is quantified using the optimum seeking method. The factors considered are: the earthquake magnitude M, the distance of the site from the source of the earthquake L, the depth of the water table Dw, the depth of the sand deposit Ds, and the standard penetration test (SPT) blow count N. The most important factors have been identified as the earthquake magnitude and the SPT blow count. Prediction results show that the proposed method is effective and feasible. Since neither normalization of the SPT blow count nor calculation of the seismic shear-stress ratio are required, the proposed method is simpler and more direct than the conventional methods of evaluating liquefaction potential.  相似文献   

9.
含弱渗透性覆盖层饱和砂土地震液化特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
针对含弱渗透性覆盖层的饱和砂土地基进行一组离心机振动台试验,并采用OpenSees对试验模型进行数值模拟。通过模型试验与数值模拟结果对比讨论OpenSees对于饱和砂土地基地震液化模拟的精度;采用水平方向的Arias强度表示传入某一位置的地震动强度,并以液化时水平方向Arias强度作为该土层的抗液化强度;采用OpenSees计算不同地震动输入时饱和砂土的反应,以此检验Arias强度作为抗液化强度的准确性。结果表明,引起饱和砂土液化所需要的地震动强度随深度增加而增加;当传入的地震强度达到砂土发生液化所需要的地震强度时,该层砂土将会发生液化。  相似文献   

10.
On April 21, 2006 an earthquake with a magnitude of M s = 7.7 named Olyutor struck the Koryak Autonomous Region. It was the strongest earthquake for the entire period of historical and instrumental observations. The coordinates of the epicenter were 60.91° N, 166.98° E; the hypocenter’s depth was 12 km. For the efficient study of the earthquake, a team of scientists of the Institute of Volcanology and Seismology of the Far Eastern Branch of the Russian Academy of Sciences (RAS) was sent to the epicentral area. The article presents the results of studies of soil liquefaction in the settlement of Korf, which was the most affected during the Olyutor earthquake. The intensity of the earthquake in the settlement was 9 points. Numerous cracks in the soil were observed, sand volcanoes were formed, and there were numerous cases of sand and silt eruptions, subsidence, and flooding in the settlement. It was decided that the settlement was unfit for human habitation.  相似文献   

11.
The destructive 1999 Chi–Chi earthquake (Mw 7.5) was the largest inland earthquake in Taiwan in the 20th century. Several observations witness the non-linear seismic soil response in sediments during the earthquake. In fact, large settlements as well as evidence of liquefaction attested by sand boils and unusual wet ground surface were observed at some sites. In this paper, we present a seismic response simulation performed with CyberQuake software on a site located within the Chang-Hwa Coastal Industrial Park during the 1999 Chi–Chi earthquake in Taiwan. A non-linear multi-kinematic dynamic constitutive model is implemented in the software. Computed NS, EW and UP ground accelerations obtained with this model under undrained and two-phase assumptions, are in good agreement with the corresponding accelerations recorded at seismic station TCU117, either for peak location, amplitudes or frequency content. In these simulations, liquefaction occurs between depths 1.3 and 11.3 m, which correspond to the observed range attested by in place penetration tests and other liquefaction analyses. Moreover, the computed shear wave velocity profile is very close to post-earthquake shear wave velocity profile derived from correlations with CPT and SPT data. Finally, it is shown that in non-linear computations, even though a 1D geometry is considered, it is necessary to take into account the three components of the input motion.  相似文献   

12.
The 23 October 2011 Van earthquake took place in the NE part of Lake Van area, surprisingly on a fault (the Van fault) that is not present in the current active fault map of Turkey. However, occurrence of such a large magnitude earthquake in the area is not surprising regarding the historical seismicity of the region. The comparison of the damage patterns suggests that the earthquake is much likely a recurrence of the 1715 Van earthquake. The finite fault modelling of the earthquake using teleseismic broadband body waveforms has shown that the earthquake rupture was unilateral toward SW, was mostly reverse faulting, confined to below the depth of 5 km, did not propagate offshore, and was dominated by a failure of a single asperity with a peak slip of about 5.5 m. The total seismic moment calculated for the model is 4.6?×?1019 Nm (M W ?≈?7.1). The finite fault model coincides with the field observations indicating blind faulting and the vertical displacements over the free surface estimated from it correlate well with the maximum reported uplift along the coast of Lake Van above the hanging wall. The possible offshore continuations of the Van fault and some other faults lying its south are also discussed by assessing a previous offshore seismic reflection study and the earthquake epicentres and focal mechanisms.  相似文献   

13.
The M w 6.2 Lefkada earthquake occurred on 14 August 2003 beneath the western coastline of Lefkada Island. The main shock was followed by an intense aftershock activity, which formed a narrow band extending over the western coast of the Island and the submarine area between Lefkada and Kefalonia Islands, whereas additional off fault aftershocks formed spatial clusters on the central and northwestern part of the Island. The aftershock spatial distribution revealed the activation of along-strike adjacent fault segment as well as of secondary faults close to the main rupture. The properties of the activated segments were illuminated by the precisely located aftershocks, fault plane solutions determination and the cross sections performed parallel and normal to their strike. The aftershock focal mechanisms exhibited mainly strike slip faulting throughout the activated area, although deviation of the dominant stress pattern is also observed. The results help to emphasize the importance of the identification of activated nearby fault segments possibly triggered by the main rupture. Because such segments are capable to produce moderate events causing appreciable damage, they should be viewed with caution in seismic hazard assessment in addition to the major regional faults.  相似文献   

14.
Estimating the possible region of liquefaction occurrence during a strong earthquake is highly valuable for economy loss estimation, reconnaissance efforts and site investigations after the event. This study identified and compiled a large amount of liquefaction case histories from the 2008 Wenchuan earthquake, China, to investigate the relationship between the attenuation of seismic wave energy and liquefaction distance limit during this earthquake. Firstly, we introduced the concept of energy absorption ratio, which is defined as the absorbed energy of soil divided by the imparted energy of seismic waves at a given site, and the relationship between the energy absorption ratio and the material damping ratio was established based on shear stress–strain loop of soil element and the seismic wave propagation process from the source to the site. Secondly, the threshold imparted seismic energy of liquefaction was obtained based on existing researches of absorbed energy required to trigger liquefaction of sandy soils and the ground motion attenuation characteristics of the 2008 Wenchuan earthquake, and the liquefaction distance limit of this earthquake was estimated according to the proposed magnitude–energy–distance relationship. Finally, the field liquefaction database of 209 sites of the 2008 Wenchuan earthquake was used to validate such an estimation, and the field observed threshold imparted seismic energy to cause liquefaction in recent major earthquakes worldwide was back-analyzed to check the predictability of the present method, and several possible mechanisms were discussed to explain the discrepancy between the field observations and the theoretical predictions. This study indicates that seismic energy attenuation and liquefaction distance limit are regional specific and earthquake dependent, and 382 J/m3 is the average level of threshold imparted seismic energy to cause liquefaction for loose saturated sandy soils, and the corresponding liquefaction distance limit is approximately 87.4 km in fault distance for a Mw?=?7.9 event in the Chengdu Plain. The proposed regional energy attenuation model and threshold imparted seismic energy may be considered as an approximate tool in evaluating the liquefaction hazard during potential earthquakes in this area.  相似文献   

15.
利用2010~2016年阳江地区小震资料,对围绕广东阳江6.4级地震发震构造的NEE走向平冈断层的西南段及NW走向的程村断层展布的密集地震,经双差定位方法重新进行震源位置的修定,获得了1411个精定位震源资料。依据成丛地震发生在断层附近的原则,采用模拟退火算法及高斯-牛顿算法相结合的方式,较精确地获得了2个断层面的详细参数:即平冈断层西南段走向258°、倾角85°、倾向NW,与6.4级地震的震源机制解结果十分一致,断层长度约15km并穿过了其西南端海域抵达了对岸;程村断层走向331°、倾角88°、倾向NE,长度约28km,较已有结果更长、走向也朝NE向偏转了约15°。2条陡直断层近乎垂直相交于近海,在构造应力作用下均以走滑错动为主。  相似文献   

16.
汶川大地震液化的特点及带来的新问题   总被引:1,自引:0,他引:1  
总结汶川8.0级大地震液化及其震害科学考察结果,分析此次地震液化带来的新问题.结果表明,汶川大地震中液化及其震害现象显著,是建国以来液化涉及区域最广、液化宏观现象最为丰富的一次;本次地震液化宏观现象特点为喷水高、持时短、喷砂量小但喷砂类型十分丰富;砂砾土液化、Ⅵ度区内场地液化、深层土液化、无液化减震以及液化普遍伴随地裂缝是此次地震液化5个突出特征;砂砾土液化判别技术、液化引起地表裂缝机理和预测方法、Ⅵ度区内场地液化与深层土的液化机理和预测方法、液化加减震发生条件、场地液化现场判定与识别技术等是新的课题.为解决上述问题,应优先发展岩土地震工程观测技术及建设岩土地震工程实验场.  相似文献   

17.
—High intensity and liquefaction phenomena are usually associated only with relatively large magnitude earthquakes. An earthquake in 1865 in the northwest of England suggests that a sufficiently shallow small event can also produce liquefaction. The effects are well-documented in historical sources and include sand fountaining. Modern investigation is confined to documentary evidence owing to the tidal environment of the area where liquefaction occurred. Analysis shows that the felt area of the earthquake was probably only about 200 km2; however, heavy damage occurred in the village of Rampside and the maximum intensity is assessed at 8. Liquefaction is not uncommon at this intensity, but such a high intensity is not usually produced by such small erathquakes. The magnitude was probably in the range 2.5–3.5 M L .  相似文献   

18.
传统的规范法在建立经验判别准则过程中存在大量不确定性因素,工程中亟需针对复杂场地液化判别方法的综合性研究。通过对上海市包头路段沉管抢修项目49组砂土土样的研究,在标准贯入试验法(SPT)定性评价的基础上采用提出的绝对差值百分比法(APD),划分出35组判别结果精确及14组存在判别误差的土样。借鉴判别分析理论思想,将平均粒径D50、不均匀系数Cu、比贯入阻力Ps、标准贯入点深度ds、地下水埋深dw和标准贯入锤击数N63.5等物理力学参数加入液化评价,利用精确土样建立适宜研究区工程地质特性的距离判别分析模型(DDA),对14组存在判别误差或失误的土层进行定量评价。研究结果表明:建立的砂土液化综合评价体系对研究区具有较强的针对性与适应性,从多角度全面、客观地评价了研究区砂土液化情况。最终通过合理的抗液化沉陷措施,保障了后续工程的稳步进行,为类似地质条件场区的砂土液化稳定性评价提供参考和借鉴。  相似文献   

19.
《Journal of Geodynamics》2008,45(3-5):160-172
The December 26, 2003 Mw 6.6 Bam earthquake is one of the most disastrous earthquakes in Iran. QuickBird panchromatic and multispectral satellite imagery with 61 cm and 2.4 m ground resolution, respectively provide new insights into the surface rupturing process associated with this earthquake. The results indicate that this earthquake produced a 2–5 km-wide surface rupture zone with a complex geometric pattern. A 10-km-long surface rupture zone developed along the pre-existing Bam fault trace. Two additional surface rupture zones, each 2–5 km long, are oblique to the pre-existing Bam fault in angles of 20–35°. An analysis of geometric and geomorphic features also shows that movement on the Bam fault is mainly right-lateral motion with some compressional component. This interpretation is consistent with field investigations, analysis of aftershocks as well as teleseismic inversion. Therefore, we suggest that the 2003 Bam earthquake occurred on the Bam fault, and that the surface ruptures oblique to the Bam fault are caused by secondary faulting such as synthetic shears (Reidel shears). Our fault model for the Bam earthquake provides a new tectonic scenario for explaining complex surface deformations associated with the Bam earthquake.  相似文献   

20.
A shallow earthquake ofM S=6.2 occurred in the southern part of the Peloponnesus, 12 km north of the port of the city of Kalamata, which caused considerable damage. The fault plane solution of the main shock, geological data and field observations, as well as the distribution of foci of aftershocks, indicate that the seismic fault is a listric normal one trending NNE-SSW and dipping to WNW. The surface ruptures caused by the earthquake coincide with the trace of a neotectonic fault, which is located 2–3 km east of the city of Kalamata and which is related to the formation of Messiniakos gulf during the Pliocene-Quaternary tectonics. Field observations indicate that the earthquake is due to the reactivation of the same fault.A three-days aftershock study in the area, with portable seismographs, recorded many aftershocks of which 39 withM S1.7 were very well located. The distribution of aftershocks forms two clusters, one near the epicenter of the main shock in the northern part of the seismogenic volume, and the other near the epicenter of the largest aftershock (M S=5.4) in the southern part of this volume. The central part of the area lacks aftershocks, which probably indicates that this is the part of the fault which slipped smoothly during the earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号