首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 155 毫秒
1.
This article focuses on the reinterpretation of well, seismic reflection, magnetic, gravimetric, surface wave and geological surface data, together with the acquisition of seismic noise data to study the Lower Tagus Cenozoic Basin tectono‐sedimentary evolution. For the first time, the structure of the base of the basin in its distal and intermediate sectors is unravelled, which was previously only known in the areas covered by seismic reflection data (distal and small part of intermediate sectors). A complex geometry was found, with three subbasins delimited by NNE‐SSW faults and separated by WNW‐ESE to NW‐SE oriented horsts. In the area covered by seismic reflection data, four horizons were studied: top of the Upper Miocene, Lower to Middle Miocene top, the top of the Palaeogene and the base of Cenozoic. Seismic data show that the major filling of the basin occurred during Upper Miocene. The fault pattern affecting Neogene and Palaeogene units derived here points to that of a polyphasic basin. In the Palaeogene, the Vila Franca de Xira (VFX) and a NNE‐SSW trending previously unknown structure (ABC fault zone) probably acted as the major strike‐slip fault zones of the releasing bend of a pull‐apart basin, which produced a WNW‐ESE to NW‐SE fault system with transtensional kinematic. During the Neogene, as the stress regime rotated anticlockwise to the present NW‐SE to WNW‐ESE orientation, the VFX and Azambuja fault zones acted as the major transpressive fault zones and Mesozoic rocks overthrusted Miocene sediments. The reactivation of WNW‐ESE to NW‐SE fault systems with a dextral strike‐slip component generated a series of horsts and grabens and the partitioning of the basin into several subbasins. Therefore, we propose a polyphasic model for the area, with the formation of an early pull‐apart basin during the Palaeogene caused by an Iberia–Eurasia plates collision that later evolved into an incipient foreland basin along the Neogene due to a NW‐SE to WNE‐ESE oriented Iberia–Nubia convergence. This convergence is producing uplift in the area since the Quaternary except for the Tagus estuary subbasin around the VFX fault, where subsidence is observed. This may be due to the locking or the development of a larger component of strike‐slip movement of the NNE‐SSW to N‐S thrust fault system with the exception of the VFX fault, which is more favourably oriented to the maximum compressive stress.  相似文献   

2.
《Basin Research》2018,30(1):97-131
The Danube Basin is situated between the Eastern Alps, Western Carpathians and Transdanubian mountain ranges and represents a classic petroleum prospection site. The basin fill is known from many 2D reflection seismic lines and deep wells with measured e‐logs which provided a good opportunity for theories about its evolution. New analyses of deep wells situated in the Danube Basin northeastern margin allowed us to refine stratigraphy and to interpret various depositional systems. This also allowed us to outline changes in provenance of sediment during the Cenozoic. The performed interpretation of the Palaeogene and Neogene depositional systems also confirmed the Oligocene–Early Miocene exhumation of the basin pre‐Neogene basement. Opening and development of the Middle to Late Miocene basin depocentres above the boundary between the Western Carpathians and Northern Pannonian domain was recognized. Our analysis contributed to a better understanding of the Hurbanovo–Diösjenő fault which acts as an inherited weakness zone along the boundary of two crustal fragments with different provenance. We document various basin types stacked one on another (retro‐arc, back‐arc and extensional hinterland basin). The analysis of sediment sources reveals intricate geodynamic processes during the Eastern Alpine–Western Carpathian orogenic system collision with European platform (formation of ALCAPA microplate) and its successive tectonics escape during the Pannonian Basin System origination.  相似文献   

3.
Detailed interpretation of marine seismic data shows the presence of an extending, active, dextral strike-slip fault zone at the south edge of the Mount Athos Peninsula. The zone is over 100 km long and has both transtensional and transpressive features observable on the seismic lines. We suggest that dextral strike-slip displacement along the zone is on the order of 5–7 km. The structure and fault patterns of Recent deformation in the Central North Aegean Trough is typical of strike-slip tectonism.  相似文献   

4.
The East African Rift System (EARS) exerted a major influence on river drainage basins and regional climate of east Africa during the Cenozoic. Recent studies have highlighted an offshore branch of the EARS in the western Indian Ocean, where the Kerimbas Graben and the Davie Ridge represent its sea floor expression. To date, a clear picture of the impact and timing of this EARS offshore branch on the continental margin of the western Indian Ocean, and associated sediment dispersal pathways, is still missing. This study presents new evidence for four giant canyons along the northern portion of the Davie Ridge offshore Tanzania. Seismic and multibeam bathymetric data highlight that the southernmost three canyons are now inactive, supra-elevated relative to the adjacent sea floor of the Kerimbas Graben and disconnected from the modern slope systems offshore the Rovuma and Rufiji River deltas. Regional correlation of dated seismic horizons, integrated with well data and sediment samples, proves that the tectonic activity driving the uplift of the Davie Ridge in this area has started during the middle-upper Miocene and is still ongoing, as suggested by the presence of fault escarpments at the sea floor and by the location and magnitude of recent earthquakes. Our findings contribute to placing the Kerimbas Graben and the Davie Ridge offshore Tanzania in the regional geodynamic context of the western Indian Ocean and show how the tectonics of the offshore branch of the EARS modified the physiography of the margin, re-routing the deep-water drainage network since the middle Miocene. Future studies are needed to understand the influence of changing sea floor topography on the western Indian Ocean circulation and to evaluate the potential of the EARS offshore tectonics in generating tsunamigenic events.  相似文献   

5.
The Miocene sedimentary succession of the southern Browse Basin records the response of a tropical reef system to long‐term, strong subsidence on a passive continental margin. Geological interpretation of a comprehensive two‐dimensional (2D) seismic reflectivity data set documents for the first time the development of a continuous Miocene barrier reef on the Australian North West Shelf. With a length of over 250 km, this barrier reef is among the Earth's largest in the Neogene record. A sequence stratigraphic analysis tied to well data shows that the main controls for the evolution, growth and demise of the reef system were subsidence, third‐order global‐scale eustatic variations and antecedent topography. The generally very high Miocene subsidence rates estimated for the study area cannot be explained by typical passive‐margin subsidence controlled by lithospheric cooling and sedimentary loading alone. Additional dynamic subsidence induced by mantle convection, though documented as unusually large on the northern margin of Australia during the Neogene, can be also regarded as being of only minor importance. Therefore, accelerated tectonic subsidence related to the collision of the Australian and Eurasian Plates 250–500 km north of the study area seems to exert an important influence on reef development and demise, complicated by local tectonic inversion. The Miocene tectonic reactivation and inversion of an older structural grain is interpreted to have controlled the reef development considerably by providing localized topographic highs along transpressional anticlines above basement‐rooted faults that served as preferential sites for reef growth and retreat during times of rapidly rising sea level. This exemplarily shows that the far‐field effects of collision‐induced tectonic subsidence can significantly influence carbonate systems on passive margins.  相似文献   

6.
Seismic reflection profiles from the Murray Ridge in the Gulf of Oman, northwest Indian Ocean, show a significant component of extension across the predominantly strike-slip Indian–Arabian plate boundary. The Murray Ridge lies along the northern section of the plate boundary, where its trend becomes more easterly and thus allows a component of extension. The Dalrymple Trough is a 25 km wide, steep-sided half-graben, bounded by large faults with components of both strike-slip and normal motion. The throw at the seabed of the main fault on the southeastern side of the half-graben reaches 1800 m. The northwest side of the trough is delineated by a series of smaller antithetic normal faults. Wide-angle seismic, gravity and magnetic models show that the Murray Ridge and Dalrymple Trough are underlain by a crystalline crust up to 17 km thick, which may be continental in origin. Any crustal thinning due to extension is limited, and no new crust has been formed.
We favour a plate model in which the Indian–Arabian plate boundary was initially located further west than the Owen Fracture Zone, possibly along the Oman continental margin, and suggest that during the Oligocene–Early Miocene Indian Ocean plate reorganization, the plate boundary moved to the site of the present Owen Fracture Zone and that motion further west ceased. At this time, deformation began along the Murray Ridge, with both the uplift of basement highs, and subsidence in the troughs tilting the lowest sedimentary unit. Qalhat Seamount was formed at this time. Subsequent sediments were deposited unconformably on the tilted lower unit and then faulted to produce the present basement topography. The normal faulting was accompanied by hanging-wall subsidence, footwall uplift, and erosion. Flat-lying recent sediments show that the major vertical movements have ceased, although continuing earthquakes show that some faulting is still active along the plate boundary.  相似文献   

7.
The Celtic Sea basins lie on the continental shelf between Ireland and northwest France and consist of a series of ENE–WSW trending elongate basins that extend from St George’s Channel Basin in the east to the Fastnet Basin in the west. The basins, which contain Triassic to Neogene stratigraphic sequences, evolved through a complex geological history that includes multiple Mesozoic rift stages and later Cenozoic inversion. The Mizen Basin represents the NW termination of the Celtic Sea basins and consists of two NE–SW-trending half-grabens developed as a result of the reactivation of Palaeozoic (Caledonian, Lower Carboniferous and Variscan) faults. The faults bounding the Mizen Basin were active as normal faults from Early Triassic to Late Cretaceous times. Most of the fault displacement took place during Berriasian to Hauterivian (Early Cretaceous) times, with a NW–SE direction of extension. A later phase of Aptian to Cenomanian (Early to Late Cretaceous) N–S-oriented extension gave rise to E–W-striking minor normal faults and reactivation of the pre-existing basin bounding faults that propagated upwards as left-stepping arrays of segmented normal faults. In common with most of the Celtic Sea basins, the Mizen Basin experienced a period of major erosion, attributed to tectonic uplift, during the Paleocene. Approximately N–S Alpine regional compression-causing basin inversion is dated as Middle Eocene to Miocene by a well-preserved syn-inversion stratigraphy. Reverse reactivation of the basin bounding faults was broadly synchronous with the formation of a set of near-orthogonal NW–SE dextral strike-slip faults so that compression was partitioned onto two fault sets, the geometrical configuration of which is partly inherited from Palaeozoic basement structure. The segmented character of the fault forming the southern boundary of the Mizen Basin was preserved during Alpine inversion so that Cenozoic reverse displacement distribution on syn-inversion horizons mirrors the earlier extensional displacements. Segmentation of normal faults therefore controls the geometry and location of inversion structures, including inversion anticlines and the back rotation of earlier relay ramps.  相似文献   

8.
The Ulleung Basin, East Sea/Japan Sea, is a Neogene back-arc basin and occupies a tectonically crucial zone under the influence of relative motions between Eurasian, Pacific and Philippine Sea plates. However, the link between tectonics and sedimentation remains poorly understood in the back-arc Ulleung Basin, as it does in many other back-arc basins as well, because of a paucity of seismic data and controversy over the tectonic history of the basin. This paper presents an integrated tectonostratigraphic and sedimentary evolution in the deepwater Ulleung Basin using 2D multichannel seismic reflection data. The sedimentary succession within the deepwater Ulleung Basin is divided into four second-order seismic megasequences (MS1 to MS4). Detailed seismic stratigraphy interpretation of the four megasequences suggests the depositional history of the deepwater Ulleung Basin occurred in four stages, controlled by tectonic movement, volcanism, and sea-level fluctuations. In Stage 1 (late Oligocene through early Miocene), syn-rift sediment supplied to the basin was restricted to the southern base-of-slope, whereas the northern distal part of the basin was dominated by volcanic sills and lava flows derived from initial rifting-related volcanism. In Stage 2 (late early Miocene through middle Miocene), volcanic extrusion occurred through post-rift, chain volcanism in the earliest time, followed by hemipelagic and turbidite sedimentation in a quiescent open marine setting. In Stage 3 (late middle Miocene through late Miocene), compressional activity was predominant throughout the Ulleung Basin, resulting in regional uplift and sub-aerial erosion/denudation of the southern shelf of the basin, which provided enormous volumes of sediment into the basin through mass transport processes. In Stage 4 (early Pliocene through present), although the degree of tectonic stress decreased significantly, mass movement was still generated by sea-level fluctuations as well as compressional tectonic movement, resulting in stacked mass transport deposits along the southern basin margin. We propose a new depositional history model for the deepwater Ulleung Basin and provide a window into understanding how tectonic, volcanic and eustatic interactions control sedimentation in back-arc basins.  相似文献   

9.
Tectonic evolution of the Alboran Sea basin   总被引:6,自引:0,他引:6  
The Alboran Sea is an extensional basin of Neogene age that is surrounded by highly arcuate thrust belts. Multichannel seismic (MCS) reflection profile data suggest the basin has a complex tectonic fabric that includes extensional, compressional and strike-slip structures. The early Miocene history appears to be dominated by graben formation with border faults that are in large part contemporaneous with thrust movements in the external zones of the Betic and Rif mountains. Extension appears to have continued into the late Miocene although the main movements were probably completed by the time of the Messinian ‘salinity crisis’. The Pliocene and younger history of the basin is dominated by infilling of the Messinian topography, gentle subsidence, and extensional, compressional and strike-slip movements. There is evidence from the sea-floor morphology and seismicity patterns that the basin is actively deforming in response to present-day plate motions. Backstripping of well data in the basin margin suggests that the initial extensional event was accompanied by crustal and lithospheric thinning. The depth to Moho inferred from backstripping is greater than the depth expected based on seismic and gravity modelling, suggesting that backstripping underestimates the true amount of thinning. One explanation is that some of the thinning occurred while the crust was above sea level, perhaps as a result of either crustal thickening, or a period of lithospheric heating and thinning, prior to rifting. We found that a model with a ‘normal’ crustal thickness of 31.2 km, a lithospheric thickness of 50 km, and β= 1.4 predicts 0.8 km of initial uplift. These parameters fit the well subsidence data and bring the backstripped Moho into better agreement with the seismic and gravity Moho. The origin of such a thin lithosphere is not constrained by the data, but we believe that it may be a result of the detachment of a cold lithospheric ‘root’ that formed during pre-Neogene collisional orogeny in the region.  相似文献   

10.
The development of high‐resolution 3D seismic cubes has permitted recognition of variable subvolcanic features mostly located in passive continental margins. Our study area is situated in a different tectonic setting, in the extensional Pannonian Basin system (central Europe) where the lithospheric extension was associated with a wide variety of magmatic suites during the Miocene. Our primary objective is to map the buried magmatic bodies, to better understand the temporal and spatial variation in the style of magmatism and emplacement mechanism within the first order Mid‐Hungarian Fault Zone (MHFZ) along which the substantial Miocene displacement took place. The combination of seismic, borehole and log data interpretation enabled us to delineate various previously unknown subvolcanic‐volcanic features. In addition, a new approach of neural network analysis on log data was applied to detect and quantitatively characterise hydrothermal mounds that are hard to interpret solely from seismic data. The volcanic activity started in the Middle Miocene and induced the development of extrusive volcanic mounds south of the NE‐SW trending, continuous strike‐slip fault zone (Hajdú Fault Zone). In the earliest Late Miocene (11.6–9.78 Ma), the style of magmatic activity changed resulting in emplacement of intrusions and development of hydrothermal mounds. Sill emplacement occurred from south‐east to north‐west based on primary flow‐emplacement structures. The time of sill emplacement and the development of hydrothermal mounds can be bracketed by onlapped forced folds and mounds. This time coincided with the acceleration of sedimentation producing poorly consolidated, water‐saturated sediments preventing magma from flowing to the paleosurface. The change in extensional direction resulted in change in fault pattern, thus the formerly continuous basin‐bounding strike‐slip fault became segmented which could facilitate the magma flow toward the basin centre.  相似文献   

11.
Summary. In this study a locally recorded aftershock sequence of the 1978 Tabas-e-Golshan earthquake ( Ms = 7.4) was accurately located. Out of 1560 located events, 329 best-located aftershocks passed a strict quality criterion. These well-located aftershocks, which have uncertainties in epicentre and in focal depth of about 1 and 2 km respectively, together with the well-constrained focal mechanisms, provided a detailed picture of active continental deformation during an aftershock sequence.
Almost all aftershocks follow very closely the pattern of the earthquake faults at the surface and lie in the hanging-wall block of the active fault. The hypocentres occurred mainly at depths less than 23 km with a high concentration of seismic activity between 8–14 km depth. The aftershocks clearly demonstrate an active imbricate listric thrust system with fault planes flattening into a basement decollement zone, and the reactivation of different basement reverse faults in response to a considerable amount of shortening of the top sedimentary cover. The sense of motion was almost universally thrusting and the aftershocks shared the same tectonic causes as the main shock.
The study indicates that the development of the young fold-thrust mountain belts necessarily involves basement shortening (thin-and thick-skinned tectonics) and that the 'frontal reverse faults' in young active fold-thrust mountain belts are the most seismically active faults. Geological and seismic data propose that the active frontal reverse fault systems are possibly reactivated old normal faults and may add support to the contention of reversal of fault motion during re thickening of continental crust. The active 'thin-and thick-skinned tectonics' documented in this study may prevail in other young and active fold-thrust mountain belts which are characterized by a thick sequence of telescoped top sedimentary cover over a decollement detachment zone.  相似文献   

12.
Summary. A 12 s two-way time seismic reflection profile, 46 km in length and straddling the Cape Seal Arch, was surveyed on the Agulhas Bank during 1985. The contact between the marine sediments and the pre-Mesozoic basement produces a strong reflection at 2 s. The folded Cape and Kaaimans sediments give rise to occasional strong reflections from 2-6 s. Strongly reflecting segments occur between 9 and 10 s, and with a time-to-depth conversion made using refraction velocities, this zone of occasional strong reflections is identified as the Moho. The section from 6–9 s does not give rise to significant coherent reflections, and is considered to represent the Archaean crust. An analysis of the faults active during Gondwana break-up, revealed by reflection seismology, show the Agulhas Fracture Zone to be a divergent wrench fault system.  相似文献   

13.
Located off the Pacific coast of central Tohoku (NE Japan), the Ishinomaki slope channel (ISC) provides an excellent opportunity to study a structure-controlled intraslope channel and downslope sedimentation along the active margin. The seismic reflection data across ISC show an extensive basal surface and overlying channel complexes between the basement structures of the Abukuma ridge to the south and Kitakami massif to the north, indicating that the formation of the intraslope basin, channelization of ISC and sedimentation of the downstream channel-lobe transition zone (CLTZ) are very likely to be structure-controlled. The oblique channel stacking pattern, faulting of the seafloor and subsurface Abukuma ridge in the upper and lower domains of ISC, collectively suggest that ISC has migrated northward and is currently under the influence of active compression. Differences in styles of accommodation space between the upper and lower domains of ISC suggest that differential subsidence occurred along the strike-slip tectonic line. Based on the regional strike-slip tectonic line, we propose that a Kitakami-Abukuma ridge existed before the formation of ISC. The strike-slip faulting divided the Kitakami-Abukuma ridge into the Kitakami massif to the north and the Abukuma ridge to the south, and an intervening fault trough as the precursor of the intraslope basin and ISC. As the subduction of the Pacific Plate and associated compressional events continued, the Abukuma ridge was reactivated to narrow the intraslope basin into a confined channel. Located near the epicentre of the devastating 2011 Tohoku earthquake event, the ISC, downstream CLTZ and underlying intraslope basin provide information on active basement structure and the evolving sediment routing system on the tectonically active margin.  相似文献   

14.
Interpretation of seismic reflection data have led to a new model of the development of the Queen Charlotte Basin. New multi-channel data collected in 1988 and an extensive network of unpublished older single- and multi-channel profiles from industry image a complex network of sub-basins. Structural styles vary along the axis of the basin from broadly spaced mainly N-trending sub-basins in Queen Charlotte Sound, to closely spaced NW-trending sub-basins in Hecate Strait, to an E-W en echelon belt of sub-basins in Dixon Entrance. Transtensional tectonics dominated in the Miocene and transpression dominated in the Pliocene except in Queen Charlotte Sound. The data we present prove that the origin of the basin is extensional and its most recent deformation is compressive. Evidence for the strike-slip origin of tectonism includes along-axis variations in structures, simultaneous extension and compression in adjacent sub-basins, lack of correlations across faults, and mixed normal and reverse faults within structures. We infer that the Pacific-North America plate boundary has been west of the Queen Charlotte Islands since the Miocene when relative plate motions have been dominantly strike-slip. The formation and development of the Queen Charlotte Basin is the result of distributed shear; by which a small percentage of the plate motion has been taken up in a network of faults across the continental margin. As this region of crust deforms it interacts with neighbouring rigid crust resulting in extension dominating in the south of the basin and compression in the north. Continental crust adjacent to some transform plate boundaries can be sheared over a wide region; the network of basins in southwestern California is a good analogue for the Queen Charlotte Basin.  相似文献   

15.
Extensional tectonic regimes in the Aegean basins during the Cenozoic   总被引:4,自引:0,他引:4  
Abstract Kinematics of faults in the Northern Aegean show three extensional tectonic regimes the tensional directions of which trend (1) WNW-ESE, (2) NE-SW and (3) N-S. These were active during the Upper Miocene, Pliocene-Lower Pleistocene and Mid Pleistocene-Present day, respectively. The main characteristics of the stress patterns (1) and (2) on the overall Aegean is tentatively explained by variations of the horizontal lithospheric stress value σzz due to the slab push and of the vertical lithospheric stress value σzz due to mass heterogeneities. During the Mid Pleistocene-Present, due to the slab push, tectonics were compressional along the arc boundary: σzz was σ1. In the Aegean basins, tectonics were extensional, c2Z was σ1 as a consequence of the thickness of the continental crust and, possibly of an updoming asthenosphere; thus σzz became σ2, allowing tension σ3 to be orthogonal to the compression along the arc, i.e. to be roughly parallel to the arc trend. During the Pliocene-Lower Pleistocene, the extensional regime was distinctly different. The tensional directions were roughly radial to the arc. It is suggested that σzz was weakly compressional, or eventually tensional, due a seaward migration of the slab so that σzz became σ3. In the Northern Aegean, the stress pattern has been also controlled by the westward push of the Anatolian landmass. During the Mid Pleistocene-Present day, this was typically extensional (al was vertical) and the right lateral strike-slip motion on the North Anatolian Fault transformed into a N-S-stretching, E-W-shortening of the Northern Aegean. Dextral strike-slip motions along the North Aegean Trough fault zone were possible on NE-SW-striking faults. During the Pliocene-Lower Pleistocene, normal fault components were higher; however, because the angle between the NE-SW trend of the tensional axis and the strike of the fault zone was acute, dextral strike-slip components were possible on all the faults striking NE-SW to E-W. A clockwise 15o rotation of Limnos with respect to Samothraki, Thraki and Thassos, suggested by structural data, was probably associated with these dextral motions. The WNW-ESE trending tension during the Upper Miocene indicates that the dextral North Anatolian Fault had not yet merged into the North Aegean Trough fault zone at that time. We propose that the formation of Aegean basins during the Cenozoic was related to the activity of two major Hellenic arcs. The ‘Pelagonian-Pindic Arc’ resulted in the formation of the subsident Aegean basins of Middle Eocene-Lower Miocene age and of the older Northern Aegean orogenic volcanism. The ‘Aegean Arc’ resulted in the formation of the subsident Aegean basins of Middle Miocene to Present day age and of the Southern Aegean orogenic volcanism. Were these arcs associated with a unique subduction zone or with two such zones ? In the first case, the slab is no more than 16 Myr old, in the second it may be as old as 45–50 Myr. The answer depends on the accuracy of the seismic tomography profiles.  相似文献   

16.
Summary. A tripartite ocean-bottom seismograph array at the junction of the East Pacific Rise and Rivera Fracture Zone recorded an eathquake sequence, consisting of three main shocks ( m B= 4.3, 4.3 and 4.8) and numerous aftershocks from the fracture zone, in the distance range 35–50 km. Delineation of the rupture zones by aftershocks indicates that the first two main shocks took place on overlapping fault areas, while the third occurred over a fault area separated from the first by several kilometres. Both rupture zones were about 4 km long. Surface wave spectra indicate a shallow (about 3 km below the sea floor) source, as does OBS array phase velocity data. The seismic moments, obtained from teleseismic surface wave data, of 1.3, 2.1 and 2.8 × 1023 dyn cm, with the fault areas as delineated by aftershocks, imply a stress drop of about 8 bars for the main shocks. Aftershock sequences of each of the main shocks are similar, with a b -value of about 0.65. Teleseismic P travel times are similar to those from near-surface sources in Nevada.  相似文献   

17.
Studies of salt‐influenced rift basins have focused on individual or basin‐scale fault system and/or salt‐related structure. In contrast, the large‐scale rift structure, namely rift segments and rift accommodation zones and the role of pre‐rift tectonics in controlling structural style and syn‐rift basin evolution have received less attention. The Norwegian Central Graben, comprises a complex network of sub‐salt normal faults and pre‐rift salt‐related structures that together influenced the structural style and evolution of the Late Jurassic rift. Beneath the halite‐rich, Permian Zechstein Supergroup, the rift can be divided into two major rift segments, each comprising rift margin and rift axis domains, separated by a rift‐wide accommodation zone – the Steinbit Accommodation Zone. Sub‐salt normal faults in the rift segments are generally larger, in terms of fault throw, length and spacing, than those in the accommodation zone. The pre‐rift structure varies laterally from sheet‐like units, with limited salt tectonics, through domains characterised by isolated salt diapirs, to a network of elongate salt walls with intervening minibasins. Analysis of the interactions between the sub‐salt normal fault network and the pre‐rift salt‐related structures reveals six types of syn‐rift depocentres. Increasing the throw and spacing of sub‐salt normal faults from rift segment to rift accommodation zone generally leads to simpler half‐graben geometries and an increase in the size and thickness of syn‐rift depocentres. In contrast, more complex pre‐rift salt tectonics increases the mechanical heterogeneity of the pre‐rift, leading to increased complexity of structural style. Along the rift margin, syn‐rift depocentres occur as interpods above salt walls and are generally unrelated to the relatively minor sub‐salt normal faults in this structural domain. Along the rift axis, deformation associated with large sub‐salt normal faults created coupled and decoupled supra‐salt faults. Tilting of the hanging wall associated with growth of the large normal faults along the rift axis also promoted a thin‐skinned, gravity‐driven deformation leading to a range of extensional and compressional structures affecting the syn‐rift interval. The Steinbit Accommodation Zone contains rift‐related structural styles that encompass elements seen along both the rift margin and axis. The wide variability in structural style and evolution of syn‐rift depocentres recognised in this study has implications for the geomorphological evolution of rifts, sediment routing systems and stratigraphic evolution in rifts that contain pre‐rift salt units.  相似文献   

18.
The geodynamic processes in the western Mediterranean are driven by both deep (mantle) processes such as slab‐rollback or delamination, oblique plate convergence and inherited structures. The present‐day deformation of the Alboran Sea and in particular the Nekor basin area is linked to these coeval effects. The seismically active Nekor basin is an extensional basin formed in a convergent setting at the eastern part of the Rif Chain whose boundaries extend both onshore and offshore Morocco. We propose a new structural model of the Nekor basin based on high‐resolution offshore data compiled from recent seismic reflection profiles, swath bathymetry acquisitions and industrial seismic reflection profiles. The new data set shows that the northern limit of the basin is oriented N49° with right‐stepping faults from the Bousekkour–Aghbal fault to the sinistral Bokkoya fault zone. This pattern indicates the presence of an inherited left‐lateral basement fault parallel to the major inherited Nekor fault. This fault has been interpreted as a Quaternary active left‐lateral transfer fault localized on weak structural discontinuities inherited from the orogenic period. Onshore and offshore active faults enclose a rhombohedral tectonic Nekor Basin. Normal faults oriented N155° offset the most recent Quaternary deposits in the Nekor basin, and indicate the transtensional behaviour of this basin. The geometry of these faults suggests a likely rollover structure and the presence at depth of a crustal detachment. Inactive Plio‐Quaternary normal faults to the east of the Ras Tarf promontory and geometries of depocentres seem to indicate the migration of deformation from east to west. The local orientations of horizontal stress directions deduced from normal fault orientations are compatible with the extrusion of the Rifian units and coherent with the westward rollback of the Tethyan slab and the localization of the present‐day slab detachment or delamination.  相似文献   

19.
Extensive sheets of monolithological breccia (megabreccia) within detachment-fault systems of the North American Cordillera have been identified as large landslides. Although the origin of the megabreccia deposits is controversial, their spatial and temporal association with detachment-fault systems implies a causal relationship between the initiation of such landslides and motion along detachment faults. Emplacement may have been catastrophic following seismic activity, or slow, as the result of gravity gliding. Nevertheless, comprehensive analysis of these deposits provides important constraints on the evolution of supradetachment basins by detailing the unroofing history, palaeotopography and palaeoseismicity of detachment-fault systems. An extensive Miocene landslide deposit, the War Eagle landslide, in the north-eastern Whipple Mountains, provides an opportunity for such an endeavour to elucidate: (1) the cause and timing of its initiation; (2) mechanism for its emplacement; (3) nature of the apparent association of the landslide with detachment-fault development; and (4) role of the megabreccia in the development of supradetachment basins. Cross-sections were drawn through the deposit to determine the geometry and kinematic development of the landslide. Additionally, a simple mechanical model based on limit equilibrium force balance was designed to explore physical mechanisms that controlled its creation. The results of this model combined with field relationships suggest that the Whipple detachment fault was active at an angle of less than 30° with displacement most likely accompanied by the release of seismic energy. Continued extensional evolution of the Whipple detachment fault caused tilting of the upper-plate strata and the formation of numerous half and full grabens as well as roll-over structures. Rocks from the lower plate were brought to the surface during the later stages of detachment-fault activity thereby producing sufficient topographic relief for large landslides to be seismically activated. Increased pore-fluid pressure in the footwall subjacent to the Whipple detachment fault probably aided landslide initiation. The landslide was emplaced onto the upper plate of the detachment fault, providing a significant amount of material into the evolving supradetachment basin. Although the rate of emplacement of the megabreccia remains uncertain, penetrative fracturing throughout the breccia sheet is evidence that emplacement occurred catastrophically. The results of this study indicate that Tertiary megabreccias were emplaced during continued detachment-fault evolution, implying oversteepened topography and seismicity of these low-angle systems.  相似文献   

20.
ten Veen  & Postma 《Basin Research》1999,11(3):223-241
Six time-slice reconstructions in the form of palaeogeographical maps show the large-scale tectonic and sedimentary evolution of the Hellenic outer-arc basins in central and eastern Crete for the middle and late Miocene. The reconstructions are based on extensive field mapping and a detailed chronostratigraphy. Latest compressional features related to subduction and associated crustal thickening are poorly dated and assigned a middle Miocene age. These are possibly contemporaneous with widespread occurrence of breccia deposits all over Crete. The precise date for the onset of extension, possibly controlled by the roll-back of the subsiding African lithosphere, remains at this point a discussion. We present circumstantial evidence to place the beginning of the roll back in the middle Miocene, during the accumulation of an arc-parallel, westward-draining fluvial complex. The continental succession is transgressed steadily until it is interrupted by an important tectonic event at the boundary of the middle and late Miocene (normally seen as the onset of slab roll-back). In the earliest late Miocene a few large-sized fault blocks along arc-parallel normal faults subsided rapidly causing a deepening of the half-graben basins up to approximately 900 m. About 1 Myr later, a new N020E and N100E fault system developed fragmenting the existing half-grabens into orthogonal horst and graben structure. The development of the new fault system caused original continental regions to subside and original deep basins to emerge, which is not easy to reconcile with roll back controlled extensional processes alone. Underplating and inherited basement structure may have played here an additional role, although evidence for firm conclusions is lacking. In late Miocene times (late Tortonian, ≈7.2 Ma), the extensional outer arc basins become deformed by N075E-orientated strike-slip. The new tectonic regime begins with strong uplift along existing N100E fault zones, which developed about E–W-striking topographical highs (e.g. Central Iraklion Ridge and Anatoli anticline) in about 0.4 Myr. The strong uplift is contemporaneous with abundant landsliding observed along an important N075E fault zone crossing eastern Crete and with renewed volcanic activity of the arc. The origin of the ridges may be due to active folding related to the sinistral slip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号