首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The Early Jurassic dolomitized carbonates are a hydrocarbon exploration target in Northern Italy. Of these carbonates, the Liassic Albenza Formation platform and the overlying Sedrina Formation shelf were studied to define a pervasive dolomitization model and to shed light on dolomite distribution in the sub‐surface. Field work, as well as analyses of well cores, stable isotopes, trace elements and fluid inclusions, was carried out on the outcropping thrust belt and sub‐surface deformed foreland of the Southern Alps. Petrographic analyses showed a first, pervasive, replacement dolomitization phase (D1) followed by volumetrically less important dolomite cement precipitation phases (D2, D3 and D4). The δ18O values fall between ?8·2‰ and 0·1‰ Vienna‐Pee Dee Belemnite with the more depleted samples belonging to dolomite cement‐rich dolostones; the δ13C ranges from 2·6‰ to 3·7‰ Vienna‐Pee Dee Belemnite. Analysis of trace elements showed different Fe and Mn contents in the sub‐surface and outcropping dolostones, and a higher Fe in the younger dolomite cements. An increase in the precipitation temperature (up to 130 °C from fluid inclusion data) and a decrease in diagenetic fluid salinity (from sea water to brackish) are observed from the first pervasive replacement dolomite to the dolomite cement phases. Field observations indicate that, in the Albenza Formation, dolomitization was limited to palaeohighs or faulted platform margins in the Early Jurassic carbonates. The pervasive replacement phase is interpreted based on a ‘compaction model’; the formation fluids expelled from compacting basinal carbonates could have funnelled along faults into permeable palaeohighs. The high homogenization temperature of the dolomite cements and decreased salinities indicate precipitation at great depth with an influx of meteoric water. These data, along with the thermal history, suggest that the dolomite cements precipitated according to the ‘tectonic squeegee’ dolomitization model. The dolomite precipitation temperature was set against the thermal history of the carbonate platform to interpret the timing of dolomite precipitation. The dolomite precipitation temperatures (90 to 100 °C) were reached in the studied formations first in the thrust fold belt (Early Tertiary, 60 Ma), and then in the foreland succession during the Late Tertiary (10 Ma). This observation suggests that the dolomite precipitation fronts moved southwards over time, recording a ‘diagenetic wave’ linked to the migration of the orogenic system. Observations suggest that the porosity increased during the first phase of replacement dolomitization while the dolomite cementation phases partially occluded the pores. The distribution of porous dolomitized bodies is therefore linked to the ‘compaction dolomitization’ model.  相似文献   

2.
Partially dolomitized carbonate successions provide a good opportunity to understand the commonly multistage process of dolomitization. Petrographic methods, fluid inclusion microthermometry and stable isotope measurements were applied to reconstruct the diagenetic evolution and dolomitization of a partially dolomitized Carnian reef limestone from the Transdanubian Range, Hungary. The diagenetic history began with reef diagenesis and formation of dolomite micro‐aggregates in microbial fabric elements; this was followed by the development of euhedral porphyrotopic dolomite crystals through overgrowths around the previously formed dolomite micro‐aggregates during the earliest burial stage. Increasing burial resulted in the extension of the dolomite patches via formation of finely crystalline replacement dolomite. From the Late Norian, when the Carnian reef carbonates reached the depth of 1·0 to 1·8 km, the diagenetic evolution continued in an intermediate to deep‐burial setting. Contemporaneously, an extensional regime was established, leading to fracturing. The progressive burial resulted in the recrystallization of the pre‐existing dolomite with increasing temperature, while saddle dolomite cement was precipitated in fractures. In connection with the Alpine Orogeny, intense denudation took place during the Late Cretaceous, accompanied by fracturing. Similar tectonically controlled denudation and fracturing occurred in several stages during the Cenozoic. As a result of these processes, the studied Carnian carbonates were raised to a near‐surface position or became subaerially exposed, leading to dedolomitization of the last dolomite phase and precipitation of calcite cement in cavities and fractures. This study revealed that by investigating partially and selectively dolomitized rock types, it is possible to document and understand those stages of the multiple dolomitization process which can barely be detected in the completely dolomitized rock bodies. Recognition of the dolomitization phases could provide the basis for the analysis of their relations with the depositional, diagenetic and tectonic processes, and stages of basin evolution.  相似文献   

3.
Limestone consisting of finely to medium crystalline calcite mosaics is present in the upper part of the Winnipegosis Formation on the east‐central margin of the Elk Point Basin where the overlying Prairie Evaporite deposits have been removed. This type of crystalline limestone is interpreted as dedolomite, based on petrographic observations. The δ18O and δ13C values of the Winnipegosis dedolomite vary from ?12·8‰ to ?11·9‰ VPDB (Vienna Pee Dee Belemnite) and from ?0·5‰ to +1·7‰ VPDB, respectively; both values are significantly lower than those for the corresponding dolomite. The 87Sr/86Sr ratios of the dedolomite are significantly higher, between 0·7082 and 0·7087. The spatial distribution and geochemical data of the Winnipegosis dedolomite suggest that dedolomitization was related to an influx of fresh groundwater and dissolution of the Prairie Evaporite anhydrite during the latest Mississippian to the Early Cretaceous when the basin was subjected to uplift and erosion. The Winnipegosis dedolomite displays a series of replacement fabrics showing progressive calcitization of dolomite, including the occurrence of dedolomite restricted along fractures and adjacent areas, dolomite patches ‘floating’ in the dedolomite masses and massive dedolomite with sparsely scattered dolomite relicts. However, the characteristic fabrics resulting from dedolomitization documented in the literature have not been observed in the Winnipegosis dedolomite. Coarsely to very coarsely crystalline, subhedral to euhedral calcite cement is restricted in the dedolomite. The petrographic features, isotopic compositions and homogenization temperatures, coupled with the burial history of the Winnipegosis Formation, constrain the precipitation of the calcite cement from a mixing of basinal brines and fresh groundwater during Late Cretaceous to Neogene time. The more negative C‐isotopic signatures of the calcite cement (?5·3‰ to ?2·3‰ VPDB) probably reflect a hydrocarbon‐derived carbon.  相似文献   

4.
Magnesite forms a series of 1‐ to 15‐m‐thick beds within the ≈2·0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680‐m‐thick formation is composed of a stromatolite–dolomite–‘red bed’ sequence formed in a complex combination of shallow‐marine and non‐marine, evaporitic environments. Dolomite‐collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by δ13C values from +7·1‰ to +11·6‰ (V‐PDB) and δ18O ranging from 17·4‰ to 26·3‰ (V‐SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high δ13C values ranging from +9·0‰ to +11·6‰ and δ18O values of 20·0–25·7‰. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water‐derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high δ13C values reflect a combined contribution from both global and local carbon reservoirs. A 13C‐rich global carbon reservoir (δ13C at around +5‰) is related to the perturbation of the carbon cycle at 2·0 Ga, whereas the local enhancement in 13C (up to +12‰) is associated with evaporative and restricted environments with high bioproductivity.  相似文献   

5.
《Sedimentology》2018,65(6):1827-1858
Dedolomitization is a common diagenetic process in shallow burial environments and is often associated with sulphates in mixed carbonate‐evaporite successions. In these settings, elevated Ca2+/Mg2+ ratios necessary for dedolomitization result from the dissolution of sulphate phases by the incursion of undersaturated groundwater. Reported dedolomite textures from other studies are varied, but the most prevalent is a rhombic texture interpreted to result from the partial to complete pseudomorphic replacement of secondary dolomite rhombs formed in the burial diagenetic realm. In this study of primary cryptocrystalline to finely crystalline dolomicrites in the Prairie Evaporite Formation of north‐eastern Alberta, dedolomitization has resulted in sutured to loosely packed mosaics of dedolomite that range from subhedral to distinctly euhedral (rhombic) crystal fabrics; however, no prior aggrading neomorphism producing dolomite rhombs is evident in the precursor dolomicrites. Non‐pseudomorphic dedolomitization of the dolomicrites results in textures that include rhombic dedolomite crystals with cloudy cores comprising remnant dolomicrite and clear rims. These textures are similar to those observed in the pseudomorphic dedolomitization of secondary dolomite rhombs. The Prairie Evaporite Formation of north‐eastern Alberta has experienced extensive karstification near the erosional margin of the sedimentary succession. Dedolomitization of dolomicrites occurs in marker beds within the Prairie Evaporite succession associated with evaporite karstification. Along with stratigraphic and petrographic considerations, stable isotope results support the interpretation of a shallow dedolomitization event influenced by meteoric waters derived from the basin margin. Negative δ 18O and low δ 13C values (averages of −13·6‰VPDB and 0·5‰VPDB, respectively) of the dedolomite, compared with those of the primary dolomicrite (averages of −6·0‰VPDB and 1·2‰VPDB, respectively), point to isotopically light diagenetic fluids. These results show that rhombic dedolomite textures can form through shallow, non‐pseudomorphic dedolomitization of dolomicrites by meteoric fluids in the presence of sulphates, with resulting textures that are similar to the pseudomorphic dedolomitization of secondary dolomite rhombs.  相似文献   

6.
Abstract Interpretation of seepage reflux dolomitization is commonly restricted to intervals containing evaporites even though several workers have modelled reflux of mesosaline brines. This study looked at the partially dolomitized forereef facies of the Capitan Formation to test the extent of reflux dolomitization and evaluate the possible role of the near‐backreef mesosaline carbonate lagoon as an alternative source of dolomitizing fluids. The Capitan Formation forereef facies ranges from 10% to 90% dolomite. Most of the dolomite is fabric preserving and formed during early burial after marine cementation, before and/or during evaporite cementation and before stylolitization. Within the forereef facies, dolomite follows depositional units, with debris‐flow and grain‐flow deposits the most dolomitized and turbidity‐current deposits the least. The amount of dolomite increases with stratigraphic age and decreases downslope. Within the reef facies, dolomite is restricted to haloes around fractures and primary cavities except where the reef facies lacks marine cements and, in contrast, is completely dolomitized. This dolomite distribution supports dolomitization by sinking fluids. Oxygen isotopic values for fabric‐preserving dolomite (δ18O = 0·9 ± 1·0‰, N = 101) support dolomitization by sea water to isotopically enriched sea water. These values are closer to the near‐backreef dolomite (δ18O = 2·1 ± 0·7‰, N = 48) than the hypersaline backreef dolomite (δ18O = 3·6 ± 0·9‰, N = 11). Therefore, the fabric‐preserving dolomite is consistent with dolomitization during seepage reflux of mainly mesosaline brines derived from the near‐backreef carbonate lagoon. The occurrence of mesosaline brine reflux in the Capitan Formation has important implications for dolomitization in forereef facies and elsewhere. First, any area with a restricted carbonate lagoon may be dolomitized by refluxing brines even if there are no evaporite facies present. Secondly, such brines may travel significant distances vertically provided permeable pathways (such as fractures) are present. Therefore, the absence of immediately overlying evaporite or restricted facies is not sufficient cause to eliminate reflux dolomitization from consideration.  相似文献   

7.
This paper describes and interprets the mineral and facies assemblages that occur in carbonate–evaporite shallow lacustrine deposits, considering the importance of the processes pathway (i.e. dolomitization, gypsum calcitization and silicification). The Palaeogene deposits of the Deza Formation (Almazán Basin, central‐northern Spain) are selected as a case study to determine the variety of physicochemical processes taking place in carbonate–evaporite shallow lakes and their resulting diagenetic features. Dolostones are the predominant lithology and are composed mainly of dolomite with variable amounts of secondary calcite (5 to 50%), which mainly mimic lenticular gypsum (pseudomorphs). Five morphological types of dolomite crystal were identified as follows: dolomite tubes, dolomite cylinders, rhombohedral dolomite, spheroidal and quasi‐rhombohedral dolomite, and cocoon‐shaped dolomite. The dolomite cylinders and tubes are interpreted as the dolomitized cells of a widespread microbial community. The sequence of diagenetic processes started with growth of microlenticular interstitial gypsum in a calcareous mud deposited on the playa margin mudflats, and that sometimes included microbial sediments. Immediately following growth of gypsum, dolomite replaced the original calcite (or possibly aragonite) muds, the microbial community and the gypsum. Partial or total replacement of gypsum by dolomite was related mainly to the biomineralization of endolithic microbial communities on gypsum crystals. Later calcitization took place under vadose, subaerial exposure conditions. The development of calcrete in distal alluvial settings favoured the release of silica and subsequent silicification on the playa margin mudflats. Stable isotope compositions of calcite range from ?9·02 to ?5·83‰ δ13CPDB and ?7·10 to 1·22‰ δ18OPDB; for the dolomite, these values vary from ?8·93 to ?3·96‰ δ13CPDB and ?5·53 to 2·4‰ δ18OPDB. Quartz from the cherts has δ18OSMOW values ranging from 27·1 to 31·1‰. Wide variation and relatively high δ18OSMOW values for dolomite indicate evaporitic and closed hydrological conditions; increased influx of meteoric waters reigned during the formation of secondary calcite spar.  相似文献   

8.
The Middle Devonian Winnipegosis carbonate unit in south‐central Saskatchewan is partially to completely dolomitized. Two major types of replacive dolomite are distinguished. Microcrystalline to finely crystalline dolomite (type 1) displays nonplanar‐a to planar‐s textures, mimetically replaces the precursor limestone, accounts for about four‐fifths of dolomite phases volumetrically, and mainly occurs in the Winnipegosis mounds and the Lower Winnipegosis Member directly underlying the mounds. Medium crystalline dolomite (type 2) shows planar‐s to planar‐e textures, commonly occurs in the Lower Winnipegosis and Brightholme members, and decreases upward in abundance. The 87Sr/86Sr ratios of type 1 dolomite (0·70795 to 0·70807) fall within the estimated Sr‐isotopic range for Middle Devonian marine carbonates. Stratigraphic, petrographic and geochemical data constrain the formation of type 1 dolomite to hypersaline sea water in a near‐surface environment, after marine cementation and sub‐aerial diagenesis and prior to precipitation of the Middle Devonian Leofnard salts. Movement of dolomitizing fluids could be driven by density differences and elevation head. The shift to lower δ18O values of type 1 dolomite [?7·4 to ?5·1‰ Vienna Pee Dee Belemnite (VPDB)] is interpreted as the result of recrystallization at elevated temperatures during burial. Type 2 dolomite has higher 87Sr/86Sr ratios (0·70809–0·70928), suggesting that the dolomite probably formed from basinal fluids with an increased richness in the radiogenic Sr isotope. In type 2 dolomite, Sr2+ concentrations are lower, and Fe2+ and Mn2+ concentrations are higher, compared with the associated limestone and type 1 dolomite. Type 2 dolomite is interpreted as having been formed from upward‐migrating basinal fluids during latest Devonian and Carboniferous period.  相似文献   

9.
The Upper Jurassic to Lower Cretaceous platform‐slope to basinal carbonate strata cropping out in Gargano Promontory (southern Italy) are partly dolomitized. Fieldwork and laboratory analyses (petrographic, petrophysical and geochemical) allowed the characterization of the dolomite bodies with respect to their distribution within the carbonate succession, their dimensions, geometries, textural variability, chemical stability, age, porosity, genetic mechanisms and relation with tectonics. The dolomite bodies range from metres to kilometres in size, are fault‐related and fracture‐related, and probably formed during the Early Cretaceous at <500 m burial depths and temperatures <50°C. The proposed dolomitization model relies on mobilization of Early Cretaceous seawater that flowed, downward and then upward, along faults and fractures and was modified in its isotopic composition moving through Triassic and Jurassic strata that underlie the studied dolomitized succession. Despite the numerous cases reported in literature, this study demonstrates that hydrothermal and/or high‐temperature fluids are not necessarily required for fault‐controlled dolomitization. Distribution and geometries of dolomite bodies can be used for palaeotectonic reconstructions, as they partly record the characteristics (size, attitude and kinematics) of the palaeo‐faults, even if not preserved, that controlled dolomitization. In Gargano Promontory, dolomites record Early Cretaceous palaeo‐faults from metres to kilometres long, striking north‐west/south‐east to east/west and characterized by normal to strike‐slip kinematics. Dolomitization increases the matrix porosity by up to 7% and, therefore, can improve the geofluid storage capacity of tight, platform‐slope to basinal limestones. The results have a great significance for characterization of geofluid (for example, hydrocarbons) reservoirs hosted in similar dolomitized carbonate successions. Distribution, size and shapes of reservoir rocks (i.e. dolomite bodies) could be broadly predictable if the characteristics of the palaeo‐fault system present at the time of dolomitization are known.  相似文献   

10.
ABSTRACT This paper examines the diagenetic history of dual (i.e. matrix and fracture) porosity reservoir lithologies in Cretaceous to Eocene carbonate turbidites of the Ionian fold and thrust belt, close to the oil‐producing centre of Fier–Ballsh (central Albania). The first major diagenetic event controlling reservoir quality was early cementation by isopachous and syntaxial low‐Mg calcite. These cements formed primarily around crinoid and rudist fragments, which acted as nucleation sites. In sediments in which these bioclasts are the major rock constituent, this cement can make up 30% of the rock volume, resulting in low effective porosity. In strata in which these bioclasts are mixed with reworkedmicrite, isopachous/syntaxial cements stabilized the framework, and matrixporosity is around 15%. The volumetric importance of these cements, their optical and luminescence character (distribution and dull orange luminescence) and stable isotopic signal (δ18O and δ13C averaging respectively; ?0·5‰ VPDB and +2‰ VPDB) all support a marine phreatic origin. Within these turbidites and debris flows, several generations of fractures alternated with episodes of cementation. A detailed reconstruction of this history was based on cross‐cutting relationships of fractures and compactional and layer‐parallel shortening (LPS) stylolites. The prefolding calcite veins possess orange cathodoluminescence similar to that of the host rock. Their stable isotope signatures (δ18O of ?3·86 to ?0·85‰ VPDB and δ13C of – 0·14 to + 2·98‰ VPDB) support a closed diagenetic rock‐buffered system. A similar closed system accounts for the selectively reopened and subsequently calcite‐cemented LPS stylolites (δ18O of ?1·81 to ?1·14‰ VPDB and δ13C of +1·52 to +2·56‰ VPDB). Within the prefolding veins, brecciated host rock fragments and complex textures such as crack and seal features resulted from hydraulic fracturing. They reflect expulsion of overpressured fluids within the footwall of the frontal thrusts. After folding and thrust sheet emplacement, some calcite veins are still rock buffered (δ18O of ?0·96 to +0·2‰ VPDB and δ13C of +0·79 to +1·37‰ VPDB), whereas others reflect external (i.e. extraformational) and thus large‐scale fluid fluxes. Some of these veins are linked to basement‐derived fluid circulation or originated from fluid flow along evaporitic décollement horizons (δ18O around +3·0‰ VPDB and δ13C around +1·5‰ VPDB). Others are related to the maturation of hydrocarbons in the system (δ18O around ?7·1‰ VPDB and δ13C around +9·3‰ VPDB). An open joint system reflecting an extensional stress regime developed during or after the final folding stage. This joint system enhanced vertical connectivity. This open joint network can be explained by the high palaeotopographical position and the folding of the reservoir analogue within the deformational front. The joint system is pre‐Burdigalian in age based upon a dated karstified discordance contact. Sediment‐filled karst cavity development is linked to meteoric water infiltration during emergence of some of the structures. Despite its sediment fill, the karst network is locally an important contributor to reservoir matrix porosity in otherwise tight lithologies. Development of secondary porosity along bed‐parallel and bed‐perpendicular (i.e. layer‐parallel shortening) stylolites is interpreted as a late‐stage diagenetic event associated with migration of acidic fluids during hydrocarbon maturation. Development of porosity along the LPS system enhanced the vertical reservoir connectivity.  相似文献   

11.
The Precambrian Dengying Formation is a set of large-scale, extensively dolomitized, carbonate reservoirs occurring within the Sichuan Basin. Petrographic and geochemical studies reveal dolomitization was a direct result of precipitation by chemically distinct fluids occurring at different times and at different intensities. Based on this evidence, dolomitization and multiple fluid flow events are analyzed, and three types of fluid evolution models are proposed. Results of analysis show that Precambrian Dengying Formation carbonates were deposited in a restricted peritidal environment(630–542 Ma). A high temperature and high Mg~(2+) concentration seawater was a direct result of dolomitization for the micrite matrix, and for fibrous aragonite in primary pores. Geochemical evidence shows low δ~(18)O values of micritic dolomite varying from-1.29‰ to-4.52‰ PDB, abundant light rare earth elements(REEs), and low dolomite order degrees. Microbes and meteoric water significantly altered dolomite original chemical signatures, resulting in algal micritic dolomite and the fine-grained, granular, dolosparite dolomite having very negative δ~(18)O values. Finely crystalline cement dolomite(536.3–280 Ma) and coarsely crystalline cement dolomite have a higher crystallization degree and higher order degree. The diagenetic sequence and fluid inclusion evidence imply a linear correlation between their burial depth and homogenization temperatures, which closely resemble the temperature of generated hydrocarbon. Compared with finely crystalline dolomite, precipitation of coarsely crystalline dolomite was more affected by restricted basinal fluids. In addition, there is a trend toward a more negative δ~(18)O value, higher salinity, higher Fe and Mn concentrations, REE-rich. Two periods of hydrothermal fluids are identified, as the exceptionally high temperatures as opposed to the temperatures of burial history, in addition to the presence of high salinity fluid inclusions. The early hydrothermal fluid flow event was characterized by hot magnesium-and silicon-rich fluids, as demonstrated by the recrystallized matrix dolomite that is intimately associated with flint, opal, and microcrystalline quartz in intergranular or intercrystalline pores. This event was likely the result of a seafloor hydrothermal chimney eruption during Episode I of the Tongwan Movement(536.3±5.5 Ma). In contrast, later hydrothermal fluids, which caused precipitation of saddle dolomite, were characterized by high salinity(15–16.05 wt% NaCl equivalent) and homogenization temperatures(250 to 265°C), δ~(18)O values that were more enriched, and REE signatures. Geochemical data and the paragenetic sequence indicate that this hydrothermal fluid was related to extensive Permian large igneous province activity(360–280 Ma). This study demonstrates the presence of complicated dolomitization processes occurring during various paleoclimates, tectonic cycles, and basinal fluids flow; results are a useful reference for these dolomitized Precambrian carbonates reservoirs.  相似文献   

12.
Late Cambrian to Early Ordovician sedimentary rocks in the western Tarim Basin, Northwest China, are composed of shallow-marine platform carbonates. The Keping Uplift is located in the northwest region of this basin. On the basis of petrographic and geochemical features, four matrix replacement dolomites and one type of cement dolomite are identified. Matrix replacement dolomites include (1) micritic dolomites (MD1); (2) fine–coarse euhedral floating dolomites (MD2); (3) fine–coarse euhedral dolomites (MD3); and (4) medium–very coarse anhedral mosaic dolomites (MD4). Dolomite cement occurs in minor amounts as coarse saddle dolomite cement (CD1) that mostly fills vugs and fractures in the matrix dolomites. These matrix dolomites have δ18O values of ?9.7‰ to ?3.0‰ VPDB (Vienna Pee Dee Belemnite); δ13C values of ?0.8‰ to 3.5‰ VPDB; 87Sr/86Sr ratios of 0.708516 to 0.709643; Sr concentrations of 50 to 257 ppm; Fe contents of 425 to 16878 ppm; and Mn contents of 28 to 144 ppm. Petrographic and geochemical data suggest that the matrix replacement dolomites were likely formed by normal and evaporative seawater in early stages prior to chemical compaction at shallow burial depths. Compared with matrix dolomites, dolomite cement yields lower δ18O values (?12.9‰ to ?9.1‰ VPDB); slightly lower δ13C values (?1.6‰–0.6‰ VPDB); higher 87Sr/86Sr ratios (0.709165–0.709764); and high homogenization temperature (Th) values (98°C–225°C) and salinities (6 wt%–24 wt% NaCl equivalent). Limited data from dolomite cement shows a low Sr concentration (58.6 ppm) and high Fe and Mn contents (1233 and 1250 ppm, respectively). These data imply that the dolomite cement precipitated from higher temperature hydrothermal salinity fluids. These fluids could be related to widespread igneous activities in the Tarim Basin occurring during Permian time when the host dolostones were deeply buried. Faults likely acted as important conduits that channeled dolomitizing fluids from the underlying strata into the basal carbonates, leading to intense dolomitization. Therefore, dolomitization, in the Keping Uplift area is likely related to evaporated seawater via seepage reflux in addition to burial processes and hydrothermal fluids.  相似文献   

13.
The Jubaila Formation (Upper Jurassic) in central Saudi Arabia has been divided into lower, middle, and upper parts purely on lithologic grounds. Each part consists of a major lower unit of lime mudstone and a minor upper unit of grainstone. This persistent change in the limestone facies is interpreted as a reflection of repeated shoaling up in the depositional shelf environment. It is a normal marine carbonate sequence that varies in thickness from 85 to 126 m. In the Hanifa Formation, the lowermost brown ledges in the section comprise a series of coarsening upward sequences which generally terminate in a fossiliferous/peloidal packstone and grainstone and subordinately lime mudstone facies. The middle slope member is yellow, blocky weathered shale and marl. Above this slope member are several thick beds of brown-coated fossiliferous wackestone, packstone, and grainstone with the association of lime mudstone in certain levels. These are fairly resistant ledges due to the occurrence of stromatoporoids. Dedolomitization occurs in the Jubaila Formation in various textural forms which include composite calcite rhombohedra, zonal dedolomitization, regeneration of predolomitization fabric of the limestone, and coarsely crystalline calcite mosaics with or without ferric oxide rhombic zones. Rhombohedral pores commonly occur in intimate association with dolomite, possibly resulting from the leaching of calcitized dolomite rhombohedra. The regional dedolomitization was most likely brought about by calcium sulfate solutions reacting with dolomites. The source of sulfate solutions is the dissolved anhydrite deposits of the Arab–Hith Formations, sometime before their erosion, and it takes place at or near an exposed surface. The Hanifa Formation shows various diagenetic features. These include dolomitization, dedolomitization, micritization, cementation, and recrystallization. Most of the examined samples of the Hanifa carbonates are dolomitized and subsequently dedolomitized as evidenced by the presence of iron-coated dolomite rhombs partially or completely calcitized. Dolomite also occurs in the lime mudstone, wackestone, packstone, and grainstone facies, while leaching of wackestone and packstone and dedolomitization of dolomite and dolomitic limestone followed by recrystallization are common processes.  相似文献   

14.
The Waulsortian Limestone (Lower Carboniferous) of the southern Irish Midlands is dolomitized pervasively over a much larger region than previous studies have documented. This study indicates a complex, multistage, multiple fluid history for regional dolomitization. Partially and completely dolomitized sections of Waulsortian Limestones are characterized by finely crystalline (0·01–0·3 mm) planar dolomite. Planar replacive dolomite is commonly followed by coarse (≥0·5 mm) nonplanar replacive dolomite, and pervasive void‐filling saddle dolomite cement is frequently associated with Zn–Pb mineralization. Planar dolomite has average δ18O and δ13C values (‰ PDB) of –4·8 and 3·9 respectively. These are lower oxygen and slightly higher carbon isotope values than averages for marine limestones in the Waulsortian (δ18O=–2·2, δ13C=3·7). Mean C and O isotope values of planar replacive dolomite are also distinct from those of nonplanar and saddle dolomite cement (–7·0 and 3·3; –7·4 and 2·4 respectively). Fluid inclusions indicate a complex history involving at least three chemically and thermally distinct fluids during dolomite cementation. The petrography and geochemistry of planar dolomites are consistent with an early diagenetic origin, possibly in equilibrium with modified Carboniferous sea water. Where the Waulsortian was exposed to hydrothermal fluids (70–280 °C), planar dolomite underwent a neomorphic recrystallization to a coarser crystalline, planar and nonplanar dolomite characterized by lower δ18O values. Void‐filling dolomite cement is isotopically similar to nonplanar, replacive dolomite and reflects a similar origin from hydrothermal fluids. This history of multiple stages of dolomitization is significantly more complex than earlier models proposed for the Irish Midlands and provides a framework upon which to test competing models of regional vs. localized fluid flow.  相似文献   

15.
Three peritidal carbonate crusts and associated intercrust sediments (total thickness of ~30cm; aged <3000 years BP) on Ambergris Cay, Belize, contain 32–100% calcian dolomite (δx=72·5% dolomite) ranging in composition from 40 to 46 mol% MgCO3x=43·3). Dolomite replaced high Mg calcite foraminiferal muds penecontemporaneously with sedimentation, forming partially dolomitized sediments and lithified crusts. Dolomitization probably occurred in normal to moderately evaporated seawater and is apparently continuing at the present. Detailed scanning electron microscope analysis shows a linear increase in mean dolomite crystal size with depth; 0·4 μm near the top of the section to 1·0 μm near the base of the dolomitized section. This size increase is not accompanied by any significant decrease in porosity. Crystal size distributions appear to be log-normal and become increasingly broad and flat with depth. Rietveld X-ray pattern-fitting structure refinements indicate increasing Ca and Mg concentrations on their respective sites (cation ordering) as a function of increasing depth. Most of the ordering occurs within the first 15 cm of the surface. Stoichiometry does not increase with depth indicating no relationship between the Ca/Mg ratio and cation ordering. Strong geochemical trends were observed down-section in the dolomite, including: (1) increasing Mn content (44 to 274 ppm), and (2) decreasing δ13C values (?0·9 to ?5·5‰ PDB). Oxygen isotope values range from δ18O = 1·3‰ PDB in the upper part of the section to 2·6‰ PDB in the lower part of the section and are interpreted to represent two distinct groups of values rather than a continuous trend. Down-section dolomite crystal size increase and shapes of crystal size distributions are consistent with recrystallization via a surface energy-driven dissolution-reprecipitation process (Ostwald ripening). The observed trends in carbon isotopes and Mn content probably result from geochemical re-equilibration during recrystallization and reflect reducing conditions and an isotopically light, organically derived, carbon source. Oxygen isotope compositions probably reflect relict original dolomite values and are a result of decreasing evaporation due to rising sea level.  相似文献   

16.
Three major types of dolomite occur in the Trenton Formation (Mid-Ordovician) of the Michigan Basin. These are: (1) ‘regional dolomite’ which is confined to the extreme western edge of the basin; (2) ‘cap dolomite’ which occurs in the upper portion of the Trenton and is confined to the basin's southern margin; and (3) ‘fracture-related’ dolomite which occurs in association with both large- and small-scale faults and fractures. These three dolomite types can be distinguished from one another by their major element chemistry, oxygen isotope ratios and rock texture. The regional dolomite is fine-grained, has <0.34 mol% FeCO3, and mean δ18O of ?6·8‰OPBD. The cap dolomite is texturally similar to regional dolomite but contains 3–13·0 mol% FeCO3 and has a mean δ18O of ?7·7‰. Fracture-related dolomites are coarse-grained, low in iron, and have the most depleted δ18O ratios (x?=–9·0%PDB). Petrographic relationships imply that the regional dolomite, formed prior to the cap dolomite probably during early diagenesis. The cap dolomite formed at relatively shallow depths as a result of the interaction of the overlying Utica Shale and the Trenton Limestone. Fracture-related dolomites post-date the cap dolomite and formed during deeper burial. A temperature of precipitation of approximately 80°C was calculated for fracture-related dolomites using oxygen isotope data. The distribution of the cap dolomite was controlled by the availability of Fe2? which was in turn controlled by the availability of S2?. In the centre of the basin Trenton-Utica deposition was continuous. The upper Trenton contained relatively high concentrations of organic matter which was used by sulphate reducing bacteria to produce H2S from seawater sulphate. The precipitation of iron sulphides (pyrite + iron monosulphide) followed and used up most of the available Fe2?. As a result only small amounts of ferroan dolomite formed. On the periphery of the basin, subaerial exposure resulted in the oxidation of most of the available organic matter. Sulphate reducing bacteria were therefore limited and produced limited amounts of H2S. As a result only a minor amount of iron sulphide (iron monosulphide) formed. The remaining Fe2- was then available for the formation of the ferroan cap dolomite. This model is supported by the following: (1) In the southern margin of the basin, the contact between Trenton cap dolomite and the overlying Utica Shale is sharp and probably unconformable. In the centre of the basin the contact is gradational. (2) In the centre of the basin, the total organic carbon content in the upper Trenton is an order of magnitude higher than in the cap dolomite. (3) The whole-rock concentration of iron is high in both the cap dolomite and in slightly dolomitized equivalent beds in the basin centre. (4) Iron sulphides are abundant in the centre of the basin and mostly in the form of pyrite. In the cap dolomite, iron sulphide is minor and primarily in the form of iron monosulphide.  相似文献   

17.
Pervasive dolomites occur preferentially in the stromatoporoid biostromal (or reefal) facies in the basal Devonian (Givetian) carbonate rocks in the Guilin area, South China. The amount of dolomites, however, decreases sharply in the overlying Frasnian carbonate rocks. Dolostones are dominated by replacement dolomites with minor dolomite cements. Replacement dolomites include: (1) fine to medium, planar‐e floating dolomite rhombs (Rd1); (2) medium to coarse, planar‐s patchy/mosaic dolomites (Rd2); and (3) medium to very coarse non‐planar anhedral mosaic dolomites (Rd3). They post‐date early submarine cements and overlap with stylolites. Two types of dolomite cements were identified: planar coarse euhedral dolomite cements (Cd1) and non‐planar (saddle) dolomite cements (Cd2); they post‐date replacement dolomites and predate late‐stage calcite cements that line mouldic vugs and fractures. The replacement dolomites have δ18O values from ?13·7 to ?9·7‰ VPDB, δ13C values from ?2·7 to + 1·5‰ VPDB and 87Sr/86Sr ratios from 0·7082 to 0·7114. Fluid inclusion data of Rd3 dolomites yield homogenization temperatures (Th) of 136–149 °C and salinities of 7·2–11·2 wt% NaCl equivalent. These data suggest that the replacive dolomitization could have occurred from slightly modified sea water and/or saline basinal fluids at relatively high temperatures, probably related to hydrothermal activities during the latest Givetian–middle Fammenian and Early Carboniferous times. Compared with replacement dolomites, Cd2 cements yield lower δ18O values (?14·2 to ?9·3‰ VPDB), lower δ13C values (?3·0 to ?0·7‰ VPDB), higher 87Sr/86Sr ratios (≈ 0·7100) and higher Th values (171–209 °C), which correspond to trapping temperatures (Tr) between 260 and 300 °C after pressure corrections. These data suggest that the dolomite cements precipitated from higher temperature hydrothermal fluids, derived from underlying siliciclastic deposits, and were associated with more intense hydrothermal events during Permian–Early Triassic time, when the host dolostones were deeply buried. The petrographic similarities between some replacement dolomites and Cd2 dolomite cements and the partial overlap in 87Sr/86Sr and δ18O values suggest neomorphism of early formed replacement dolomites that were exposed to later dolomitizing fluids. However, the dolomitization was finally stopped through invasion of meteoric water as a result of basin uplift induced by the Indosinian Orogeny from the early Middle Triassic, as indicated by the decrease in salinities in the dolomite cements in veins (5·1–0·4 wt% NaCl equivalent). Calcite cements generally yield the lowest δ18O values (?18·5 to ?14·3‰ VPDB), variable δ13C values (?11·3 to ?1·2‰ VPDB) and high Th values (145–170 °C) and low salinities (0–0·2 wt% NaCl equivalent), indicating an origin of high‐temperature, dilute fluids recharged by meteoric water in the course of basin uplift during the Indosinian Orogeny. Faults were probably important conduits that channelled dolomitizing fluids from the deeply buried siliciclastic sediments into the basal carbonates, leading to intense dolomitization (i.e. Rd3, Cd1 and Cd2).  相似文献   

18.
Investigation of the palaeoclimatic conditions associated with Upper Jurassic strata in Portugal and comparison with published palaeoclimate reconstructions of the Upper Jurassic Morrison Formation in western North America provide important insights into the conditions that allowed two of the richest terrestrial faunas of this period to flourish. Geochemical analyses and observations of palaeosol morphology in the informally named Upper Jurassic Lourinhã formation of western Portugal indicate warm and wet palaeoclimatic conditions with strongly seasonal precipitation patterns. Palaeosol profiles are dominated by carbonate accumulations and abundant shrink‐swell (vertic) features that are both indicative of seasonal variation in moisture availability. The δ18OSMOW and δDSMOW values of phyllosilicates sampled from palaeosol profiles range from +22·4‰ to +22·7‰ and ?53·0‰ to ?37·3‰, respectively. These isotope values correspond to temperatures of formation between 32°C and 39°C ± 3°, with an average of 36°C, which suggest surface temperatures between 27°C and 34°C (average 31°C). On average, these surface temperature estimates are 1°C higher than the highest summer temperatures modelled for Late Jurassic Iberia using general circulation models. Elemental analysis of matrix material from palaeosol B‐horizons provides proxy (chemical index of alteration minus potassium) estimates of mean annual precipitation ranging from 766 to 1394 mm/year, with an average of approximately 1100 mm/year. Palaeoclimatic conditions during deposition of the Lourinhã formation are broadly similar to those inferred for the Morrison Formation, except somewhat wetter. Seasonal variation in moisture availability does not seem to have negatively impacted the ability of these environments to support rich and relatively abundant faunas. The similar climate between these two Late Jurassic terrestrial ecosystems is probably one of the factors which explains the similarity of their vertebrate faunas.  相似文献   

19.
The study focuses on the formation of lacustrine dolomite in late Miocene lakes, located at the East Mediterranean margins (Northern Israel). These lakes deposited the sediments of the Bira (Tortonian) and Gesher (Messinian) formations that comprise sequences of dolostone and limestone. Dolostones are bedded, consist of small‐sized (<7 μm), Ca‐rich (52 to 56 mol %) crystals with relatively low ordering degrees, and present evidence for replacement of CaCO3 components. Limestones are comprised of a wackestone to mudstone matrix, freshwater macrofossils and intraclasts (mainly in the Bira Formation). Sodium concentrations and isotope compositions differ between limestones and dolostones: Na = ~100 to 150 ppm; ~1000 to 2000 ppm; δ18O = ?3·8 to ?1·6‰; ?2·0 to +4·3‰; δ13C = ?9·0 to ?3·4‰; ?7·8 to 0‰ (VPDB), respectively. These results indicate a climate‐related sedimentation during the Tortonian and early Messinian. Wet conditions and positive freshwater inflow into the carbonate lake led to calcite precipitation due to intense phytoplankton blooms (limestone formation). Dry conditions and enhanced evaporation led to precipitation of evaporitic CaCO3 in a terminal lake, which caused an increased Mg/Ca ratio in the residual waters and penecontemporaneous dolomitization (dolostone formation). The alternating lithofacies pattern reveals eleven short‐term wet–dry climate‐cycles during the Tortonian and early Messinian. A shift in the environmental conditions under which dolomite formed is indicated by a temporal decrease in δ18O of dolostones and Na content of dolomite crystals. These variations point to decreasing evaporation degrees and/or an increased mixing with meteoric waters towards the late Messinian. A temporal decrease in δ13C of dolostones and limestones and appearance of microbial structures in close association with dolomite suggest that microbial activity had an important role in allowing dolomite formation during the Messinian. Microbial mediation was apparently the main process that enabled local growth of dolomite under wet conditions during the latest Messinian.  相似文献   

20.
Upper Pliocene dolomites (‘white earth’) from La Roda, Spain, offer a good opportunity to evaluate the process of dolomite formation in lakes. The relatively young nature of the deposits could allow a link between dolomites precipitated in modern lake systems and those present in older lacustrine formations. The La Roda Mg‐carbonates (dolomite unit) occur as a 3·5‐ to 4‐m‐thick package of poorly indurated, white, massive dolomite beds with interbedded thin deposits of porous carbonate displaying root and desiccation traces as well as local lenticular gypsum moulds. The massive dolomite beds consist mainly of loosely packed 1‐ to 2‐μm‐sized aggregates of dolomite crystals exhibiting poorly developed faces, which usually results in a subrounded morphology of the crystals. Minute rhombs of dolomite are sparse within the aggregates. Both knobbly textures and clumps of spherical bodies covering the crystal surfaces indicate that bacteria were involved in the formation of the dolomites. In addition, aggregates of euhedral dolomite crystals are usually present in some more clayey (sepiolite) interbeds. The thin porous carbonate (mostly dolomite) beds exhibit both euhedral and subrounded, bacterially induced dolomite crystals. The carbonate is mainly Ca‐dolomite (51–54 mol% CaCO3), showing a low degree of ordering (degree of ordering ranges from 0·27 to 0·48). Calcite is present as a subordinate mineral in some samples. Sr, Mn and Fe contents show very low correlation coefficients with Mg/Ca ratios, whereas SiO2 and K contents are highly correlated. δ18O‐ and δ13C‐values in dolomites range from ?3·07‰ to 5·40‰ PDB (mean=0·06, σ=1·75) and from ?6·34‰ to ?0·39‰ PDB (mean=?3·55, σ=1·33) respectively. Samples containing significant amounts of both dolomite and calcite do not in general show significant enrichment or depletion in 18O and 13C between the two minerals. The correlation coefficient between δ18O and δ13C for dolomite is extremely low and negative (r=?0·05), whereas it is higher and positive (r=0·47) for calcite. The lacustrine dolomite deposit from La Roda is interpreted mainly as a result of primary precipitation of dolomite in a shallow, hydrologically closed perennial lake. The lake was supplied by highly saturated HCO3?/CO32? groundwater that leached dolomitic Mesozoic formations. Precipitation of dolomite from alkaline lake waters took place under a semi‐arid to arid climate. However, according to our isotopic data, strong evaporative conditions were not required for the formation of the La Roda dolomite. A significant contribution by bacteria to the formation of the dolomites is assumed in view of both petrographic and geochemical evidence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号