首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The seaward end of modern rivers is characterized by the interactions of marine and fluvial processes, a tract known as the fluvial to marine transition zone, which varies between systems due to the relative strength of these processes. To understand how fluvial and tidal process interactions and the fluvial to marine transition zone are preserved in the rock record, large‐scale outcrops of deltaic deposits of the Middle Jurassic Lajas Formation (Neuquén Basin, Argentina) have been investigated. Fluvial–tidal indicators consist of cyclically distributed carbonaceous drapes in unidirectional, seaward‐oriented cross‐stratifications, which are interpreted as the result of tidal modulation of the fluvial current in the inner part of the fluvial to marine transition zone. Heterolithic deposits with decimetre‐scale interbedding of coarser‐grained and finer‐grained facies with mixed fluvial and tidal affinities are interpreted to indicate fluvial discharge fluctuations (seasonality) and subordinate tidal influence. Many other potential tidal indicators are argued to be the result of fluvial–tidal interactions with overall fluvial dominance or of purely fluvial processes. No purely tidal or tide‐dominated facies were recognized in the studied deposits. Moreover, fluvial–tidal features are found mainly in deposits interpreted as interflood (forming during low river stage) in distal (delta front) or off‐axis (interdistributary) parts of the system. Along major channel axes, the interpreted fluvial to marine transition zone is mainly represented by the fluvial‐dominated section, whereas little or no tide‐dominated section is identified. The system is interpreted to have been hyposynchronous with a poorly developed turbidity maximum. These conditions and the architectural elements described, including major and minor distributary channels, terminal distributary channels, mouth bars and crevasse mouth bars, are consistent with an interpretation of a fluvial‐dominated, tide‐influenced delta system and with an estimated short backwater length and inferred microtidal conditions. The improved identification of process interactions, and their preservation in ancient fluvial to marine transition zones, is fundamental to refining interpretations of ancient deltaic successions.  相似文献   

2.
Sandstone bodies in the Sunnyside Delta Interval of the Eocene Green River Formation, Uinta Basin, previously considered as point bars formed in meandering rivers and other types of fluvial bars, are herein interpreted as delta mouth‐bar deposits. The sandstone bodies have been examined in a 2300 m long cliff section along the Argyle and Nine Mile Canyons at the southern margin of the Uinta lake basin. The sandstone bodies occur in three stratigraphic intervals, separated by lacustrine mudstone and limestone. Together these stratigraphic intervals form a regressive‐transgressive sequence. Individual sandstone bodies are texturally sharp‐based towards mudstone substratum. In proximal parts, the mouth‐bar deposits only contain sandstone, whereas in frontal and lateral positions mudstone drapes separate mouth‐bar clinothems. The clinothems pass gradually into greenish‐grey lacustrine mudstone at their toes. Horizontally bedded or laminated lacustrine mudstone onlaps the convex‐upward sandstone bars. The mouth‐bar deposits are connected to terminal distributary channel deposits. Together, these mouth‐bar/channel sandstone bodies accumulated from unidirectional jet flow during three stages of delta advance, separated by lacustrine flooding intervals. Key criteria to distinguish the mouth‐bar deposits from fluvial point bar deposits are: (i) geometry; (ii) bounding contacts; (iii) internal structure; (iv) palaeocurrent orientations; and (v) the genetic association of the deposits with lacustrine mudstone and limestone.  相似文献   

3.
The Magallanes‐Austral Basin of Patagonian Chile and Argentina is a retroforeland basin associated with Late Cretaceous–Neogene uplift of the southern Andes. The Upper Cretaceous Dorotea Formation records the final phase of deposition in the Late Cretaceous foredeep, marked by southward progradation of a shelf‐edge delta and slope. In the Ultima Esperanza district of Chile, laterally extensive, depositional dip‐oriented exposures of the Dorotea Formation contain upper slope, delta‐front and delta plain facies. Marginal and shallow marine deposits include abundant indicators of tidal activity including inclined heterolithic stratification, heterolithic to sandy tidal bundles, bidirectional palaeocurrent indicators, flaser/wavy/lenticular bedding, heterolithic tidal flat deposits and a relatively low‐diversity Skolithos ichnofacies assemblage in delta plain facies. This work documents the stratigraphic architecture and evolution of the shelf‐edge delta that was significantly influenced by strong tidal activity. Sediment was delivered to a large slump scar on the shelf‐edge by a basin‐axial fluvial system, where it was significantly reworked and redistributed by tides. A network of tidally modified mouth bars and tidal channels comprised the outermost reaches of the delta complex, which constituted the staging area and initiation point for gravity flows that dominated the slope and deeper basin. The extent of tidal influence on the Dorotea delta also has important implications for Magallanes‐Austral Basin palaeogeography. Prior studies establish axial foreland palaeodrainage, long‐term southward palaeotransport directions and large‐scale topographic confinement within the foredeep throughout Late Cretaceous time. Abundant tidal features in Dorotea Formation strata further suggest that the Magallanes‐Austral Basin was significantly embayed. This ‘Magallanes embayment’ was formed by an impinging fold–thrust belt to the west and a broad forebulge region to the east.  相似文献   

4.
Well‐exposed Triassic rift strata from the Ischigualasto–Villa Unión Basin (NW Argentina) include a 80 to ca 515 m thick lacustrine‐dominated package that can be correlated across a half‐graben using key stratigraphic surfaces (sequence boundaries, lacustrine flooding surfaces and forced regressive surfaces). The characteristics of the synrift lacustrine fill in different parts of the half‐graben have been examined and the mechanisms controlling sedimentation inferred. A variety of sedimentary environments are recognized including; volcaniclastic floodplain, mildly saline lake and playa lake, offshore lacustrine, delta front to fluvial‐dominated and wave‐dominated deltas, distributary and fluvial channel, and interdistributary bay. The succession can be divided into four stratigraphic sequences (SS1 to SS4), the oldest of which (SS1) contains volcaniclastic, fluvial and saline lake deposits; it is thickest close to the western border fault zone, reflecting more rapid subsidence here. Accommodation exceeded sediment and water input during SS1. The second and third sequences (SS2 and SS3) mark the onset of widespread lacustrine sedimentation, reflecting a balance between accommodation creation and water and sediment fluxes. Sequences SS2 and SS3 are represented by offshore meromictic lacustrine and deltaic deposits, the latter mostly sourced from the flexural and southern axial margins of the half‐graben. The presence of stacked parasequences bound by lacustrine flooding surfaces is related to climatically induced lake‐level fluctuations superimposed on variable rates of subsidence on the controlling rift border fault zone. The youngest sequence (SS4) is represented by the deposits of littoral lacustrine and shallow shelf deltas distinguished by a change in lithofacies, palaeocurrents and sandstone composition, suggesting a switch in sediment supply to the footwall margin to the NW. The change in the sediment source is related to reduced footwall uplift, the possible presence of a relay ramp and/or supply from a captured antecedent drainage network. During SS4, the rate of creation of accommodation was exceeded by the sediment and water discharge. The stratigraphic evolution of lacustrine strata in the half‐graben was mainly controlled by tectonic processes, including subsidence rate and the growth and evolution of the border fault zone, but changing climate (inducing changes in water balance and lake level) and autocyclic processes (delta lobe switching) were also important.  相似文献   

5.
Two Palaeogene fluvial fan systems linked to the south‐Pyrenean margin are recognized in the eastern Ebro Basin: the Cardona–Súria and Solsona–Sanaüja fans. These had radii of 40 and 35 km and were 800 and 600 km2 in area respectively. During the Priabonian to the Middle Rupelian, the fluvial fans built into a hydrologically closed foreland basin, and shallow lacustrine systems persisted in the basin centre. In the studied area, both fans are part of the same upward‐coarsening megasequence (up to 800 m thick), driven by hinterland drainage expansion and foreland propagation of Pyrenean thrusts. Fourteen sedimentary facies have been grouped into seven facies associations corresponding to medial fluvial fan, channelized terminal lobe, non‐channelized terminal lobe, mudflat, deltaic, evaporitic playa‐lake and carbonate‐rich, shallow lacustrine environments. Lateral correlations define two styles of alluvial‐lacustrine transition. During low lake‐level stages, terminal lobes developed, whereas during lake highstands, fluvial‐dominated deltas and interdistributary bays were formed. Terminal lobe deposits are characterized by extensive (100–600 m wide) sheet‐like fine sandstone beds formed by sub‐aqueous, quasi‐steady, hyperpycnal turbidity currents. Sedimentary structures and trace fossils indicate rapid desiccation and sub‐aerial exposure of the lobe deposits. These deposits are arranged in coarsening–fining sequences (metres to tens of metres in thickness) controlled by a combination of tectonics, climatic oscillations and autocyclic sedimentary processes. The presence of anomalously deeply incised distributary channels associated with distal terminal lobe or mudflat deposits indicates rapid lake‐level falls. Deltaic deposits form progradational coarsening‐upward sequences (several metres thick) characterized by channel and friction‐dominated mouth‐bar facies overlying white‐grey offshore lacustrine facies. Deltaic bar deposits are less extensive (50–300 m wide) than the terminal lobes and were also deposited by hyperpycnal currents, although they lack evidence of emergence. Sandy deltaic deposits accumulated locally at the mouths of main feeder distal fan streams and were separated by muddy interdistributary bays; whereas the terminal lobe sheets expand from a series of mid‐fan intersection points and coalesced to form a more continuous sandy fan fringe.  相似文献   

6.
Facies models for regressive, tide‐influenced deltaic systems are under‐represented in the literature compared with their fluvial‐dominated and wave‐dominated counterparts. Here, a facies model is presented of the mixed, tide‐influenced and wave‐influenced deltaic strata of the Sego Sandstone, which was deposited in the Western Interior Seaway of North America during the Late Cretaceous. Previous work on the Sego Sandstone has focused on the medial to distal parts of the outcrop belt where tides and waves interact. This study focuses on the proximal outcrop belt, in which fluvial and tidal processes interact. Five facies associations are recognized. Bioturbated mudstones (Facies Association 1) were deposited in an offshore environment and are gradationally overlain by hummocky cross‐stratified sandstones (Facies Association 2) deposited in a wave‐dominated lower shoreface environment. These facies associations are erosionally overlain by tide‐dominated cross‐bedded sandstones (Facies Association 4) interbedded with ripple cross‐laminated heterolithic sandstones (Facies Association 3) and channelized mudstones (Facies Association 5). Palaeocurrent directions derived from cross‐bedding indicate bidirectional currents which are flood‐dominated in the lower part of the studied interval and become increasingly ebb‐directed/fluvial‐directed upward. At the top of the succession, ebb‐dominated/fluvial‐dominated, high relief, narrow channel forms are present, which are interpreted as distributary channels. When distributary channels are abandoned they effectively become estuaries with landward sediment transport and fining trends. These estuaries have sandstones of Facies Association 4 at their mouth and fine landward through heterolithic sandstones of Facies Association 3 to channelized mudstones of Facies Association 5. Therefore, the complex distribution of relatively mud‐rich and sand‐rich deposits in the tide‐dominated part of the lower Sego Sandstone is attributed to the avulsion history of active fluvial distributaries, in response to a subtly expressed allogenic change in sediment supply and relative sea‐level controls and autocyclic delta lobe abandonment.  相似文献   

7.
Existing facies models of tide‐dominated deltas largely omit fine‐grained, mud‐rich successions. Sedimentary facies and sequence stratigraphic analysis of the exceptionally well‐preserved Late Eocene Dir Abu Lifa Member (Western Desert, Egypt) aims to bridge this gap. The succession was deposited in a structurally controlled, shallow, macrotidal embayment and deposition was supplemented by fluvial processes but lacked wave influence. The succession contains two stacked, progradational parasequence sets bounded by regionally extensive flooding surfaces. Within this succession two main genetic elements are identified: non‐channelized tidal bars and tidal channels. Non‐channelized tidal bars comprise coarsening‐upward sandbodies, including large, downcurrent‐dipping accretion surfaces, sometimes capped by palaeosols indicating emergence. Tidal channels are preserved as single‐storey and multilateral bodies filled by: (i) laterally migrating, elongate tidal bars (inclined heterolithic strata, 5 to 25 m thick); (ii) forward‐facing lobate bars (sigmoidal heterolithic strata, up to 10 m thick); (iii) side bars displaying oblique to vertical accretion (4 to 7 m thick); or (iv) vertically‐accreting mud (1 to 4 m thick). Palaeocurrent data show that channels were swept by bidirectional tidal currents and typically were mutually evasive. Along‐strike variability defines a similar large‐scale architecture in both parasequence sets: a deeply scoured channel belt characterized by widespread inclined heterolithic strata is eroded from the parasequence‐set top, and flanked by stacked, non‐channelized tidal bars and smaller channelized bodies. The tide‐dominated delta is characterized by: (i) the regressive stratigraphic context; (ii) net‐progradational stratigraphic architecture within the succession; (iii) the absence of upward deepening trends and tidal ravinement surfaces; and (iv) architectural relations that demonstrate contemporaneous tidal distributary channel infill and tidal bar accretion at the delta front. The detailed facies analysis of this fine‐grained, tide‐dominated deltaic succession expands the range of depositional models available for the evaluation of ancient tidal successions, which are currently biased towards transgressive, valley‐confined estuarine and coarser grained deltaic depositional systems.  相似文献   

8.
Precambrian fluvial deposits have been traditionally described as architecturally simple, forming shallow and wide braidplains with sheet‐like geometry. The varied architecture and morphodynamics of the 1·6 Ga Ellice Formation of Elu Basin, Nunavut, Canada, are examined from detailed studies of section and planform exposures along coastal platforms and stepped cliffs. The Ellice Formation overlies older Proterozoic sandstones and Archean crystalline rocks, recording sedimentation in fluvial, aeolian, coastal and nearshore‐marine environments. The fluvial deposits display palaeoflow towards the west/north‐west, while overlying shallow‐marine deposits record transgression towards the east/south‐east. The Ellice Formation displays dispersed palaeoflow at its base, and also at higher stratigraphic levels, where fluvial and aeolian deposits are associated. Elsewhere, mainly unimodal palaeoflow points to extensive low‐sinuosity fluvial deposition. Within the terrestrial deposits, fluvial, fluvial–aeolian and coastal architectural elements are recognized. Fluvial elements comprise cross‐bedded sandstone and minor conglomerate, exhibiting an overall fining‐upward trend with associated decrease in preservation, dimension and amalgamation of channel bodies. These motifs are interpreted to portray a shift in depositional environment from proximal trunk rivers to distal alluvial plains. Low‐sinuosity fluvial elements are the most common, and include major channel bodies, elongate side bars and mid‐channel bars with well‐developed scroll topography. High‐sinuosity channel‐bar complexes exhibit upbar‐flow rotation and yield evidence of bar expansion coupled with rotation and translation. Fluvial–aeolian elements are composed of aeolian dunes juxtaposed with isolated channel bodies and bank‐attached bars. Minor mixed fluvial–aeolian sheets record local deposition in unconfined settings (possibly floodbasins) or inter‐distributary highlands. Finally, coastal elements comprise small deltaic complexes composed of sand‐rich distributary‐channel bodies feeding heterolithic mouth bars. Overall, the sedimentary record of the Ellice Formation demonstrates an example from the Precambrian where alluvium was locally characterized by a higher geomorphic variability than previously recognized.  相似文献   

9.
10.
Analysis of Neogene cores from the Eastern Venezuela Basin along 65 km of a west–east trending shoreline allows characterization of the sedimentological and ichnological signatures of wave, river and tidal processes. The area displays deltas prograding northward from the Guyana Shield. Twenty‐three facies are defined and grouped into four categories (wave‐influenced, river‐influenced, tide‐influenced and basinal). Wave‐dominated deltaic deposits occur mostly in the Tácata Field. The delta plain was characterized by tide‐influenced distributary channels separated by interdistributary bays. Fluvial discharge in the delta front and prodelta was repeatedly interrupted by storm‐wave reworking and suspended sediment fallout. Delta‐front and prodelta deposits contain some ichnotaxa that typically do not occur in brackish water (for example, Chondrites and Phycosiphon). Amalgamated storm deposits are unburrowed or contain vertical Ophiomorpha. Lateral (especially on the updrift side) to the river mouths, waves caused nearly continuous accretion of the associated strandplains. These deposits are the most intensely bioturbated, and are dominated by the estenohaline echinoid‐generated ichnogenus Scolicia. River‐dominated deltaic deposits are present in the Santa Bárbara, Mulata, Carito and El Furrial Fields. Low‐sinuosity rivers characterized the alluvial plain, whereas the subaerial delta plain was occupied by higher‐sinuosity rivers. The subaqueous delta plain includes distributary channels and tide‐influenced interdistributary bays. Further seaward, successions are characterized by terminal distributary‐channel and distributary mouth‐bar deposits, as well as by delta‐front and prodelta deposits showing evidence of sediment gravity‐flow and fluid‐mud emplacement. Delta‐front and prodelta deposits are unbioturbated to sparsely bioturbated, suggesting extreme stress, mostly as a result of high fluvial discharge and generation of sediment gravity flows. Tidal influence is restricted to interdistributary bays, lagoons and some distributary channels. From an ichnological perspective, and in order of decreasing stress levels, four main depositional settings are identified: river‐dominated deltas, tide‐influenced delta plains, wave‐dominated deltas and wave‐dominated strandplain–offshore complexes.  相似文献   

11.
A siliciclastic-dominated succession (~11 m thick) underlying Harrat Rahat, belonging to the Miocene–Pliocene Bathan Formation is recently exposed at Al-Rehaili area, North Jeddah, Saudi Arabia. It covers a wide spectrum of grain sizes varying from clay-rich mudstones to cobble grade conglomerate and consists of a variety of facies vary from fluvial to marginal and open lacustrine deposited in a half-graben basin formed along the eastern margin of the extensional Red Sea Basin. Field-based sedimentologic investigation enables to identify ten facies grouped into three facies associations (A–C). The depositional history is subdivided into two stages. The first stage represents deposition in gravel to sand-dominated fluvial system sourced from a southern source and grade northward into lacustrine delta and open lacustrine setting. The second stage on the other hand includes deposition of fluvial channels running in E–W direction with attached bank sand bar. Sequence stratigraphic interpretations of the lacustrine deposits enable to identify three unconformity-bounded sequences (SQ1–3). The basal sequence is incomplete, consisting of three aggradationally to progradationally stacked delta plain and delta front parasequences. The second sequence is sharply and erosively overlying a red paleosol bed that defines the upper boundary of the first sequence. It includes two system tracts; upward-fining and deepening lacustrine offshore mudstones of the transgressive system tracts unconformably overlain by red paleosol of the regressive systems tracts. The top of this sequence is delineated at the sharp transgressive surface of erosion at the base of delta mouth bar deposits of sequence 3. Changes in the accommodation and sedimentation rates by basin subsidence under the influence of tectonics and sediment compaction and loading as well as climatic oscillation between semi-arid to arid conditions were the major controls on the fluvio-lacustrine sedimentation and their facies distribution. Tectonic reorganization of the drainage system resulted in the formation of E–W flowing fluvial streams in the second stage.  相似文献   

12.
Delta asymmetry occurs where there is strong wave influence and net longshore transport. Differences in the morphology and facies architecture between updrift and downdrift sides of asymmetric deltas are potentially significant for exploration and exploitation of resources in this class of reservoirs. Although delta asymmetry has been recognized widely from modern wave‐influenced deltaic shorelines, there are few documented examples in the ancient record. Based on an integrated sedimentological and ichnological study, the along‐strike variability and delta asymmetry within a single parasequence (Ps 6) is documented in continuously exposed outcrops of the Cretaceous Ferron Sandstone Member of the Mancos Shale Formation near Hanksville in southern Utah. Two intra‐parasequence discontinuity surfaces are recognized which allow subdivision of the parasequence into three bedsets, marked as Ps 6‐1 to Ps 6‐3. Four facies successions are recognized: (i) wave/storm‐dominated shoreface; (ii) river‐dominated delta front; (iii) wave/storm‐reworked delta front; and (iv) distributary channel and mouth bar. Dips of cross‐strata within distributary‐mouth bars and shorefaces show a strong downdrift (southward) component. Ps 6‐3 predominantly consists of river‐dominated delta‐front deposits, whereas Ps 6‐1 and Ps 6‐2 show an along‐strike facies change with shoreface deposits in the north, passing into heterolithic, river‐dominated delta‐front successions south to south‐eastward, and wave/storm‐reworked delta‐front deposits further to the south‐east. Trace fossil suites correspondingly show distinct along‐strike changes from robust and diverse expressions of the archetypal Cruziana Ichnofacies and Skolithos Ichnofacies, into suites characterized by horizontal, morphologically simple, facies‐crossing ichnogenera, reflecting a more stressed, river‐dominated environment. Further south‐eastward, trace fossil abundance and diversity increase, reflecting a return to archetypal ichnofacies. The overall facies integrated with palaeocurrent data indicate delta asymmetry. The asymmetric delta consists of sandier shoreface deposits on the updrift side and mixed riverine and wave/storm‐reworked deposits on the downdrift side, similar to that observed in the modern examples. However, in contrast to the recent delta asymmetry models, significant paralic, lagoonal and bay‐fill facies are not documented in the downdrift regions of the asymmetric delta. This observation is attributed to a negative palaeoshoreline trajectory during delta progradation and subsequent transgressive erosion. The asymmetric delta was induced by net longshore transport from north to south. The forced regressive nature of the delta precludes significant preservation of topset mud.  相似文献   

13.
陕西榆林延安组湖滨下三角洲平原沉积中决口扇三角洲具如下特点:(1)发育在湖滨下三角洲平原的分流间地区;(2)平面上垂直主分流河道向外呈扇形或朵叶状;(3)剖面上呈透镜状夹在两个煤分层之间;(4)前三角洲沉积的厚度小,前缘中植物碎屑含量高;(5)发育时间短,一般不超过1万年。决口扇三角洲沉积体间的排列关系受控于压实沉降作用,不同的排列形式导致煤层出现叠瓦状分叉和环状分叉。  相似文献   

14.
《Sedimentology》2018,65(4):1132-1169
Clinoform surfaces are routinely used to mark transitions from shallow waters to deep basins. This concept represents a valuable tool for screening potential reservoir intervals in frontier basins where limited data are available. Variations in the character of clinoform geometries and shoreline and shelf‐edge trajectories are indicators of a range of different factors, such as palaeobathymetry, changes in relative sea‐level and sediment supply. Applications of conceptual and generalized models might, however, lead to erroneous assumptions about the supply of coarse‐grained material to the delta front and basin when superficial similarities between clinoform geometries are not treated holistically. The present study examines the mudstone‐dominated Middle Triassic Kobbe Formation – a potential hydrocarbon reservoir interval in the Barents Sea, where prodeltaic to deltaic deposits can be examined in cores, well logs and two‐dimensional and three‐dimensional seismic data. Despite pronounced acoustic impedance contrast to the surrounding shale, channel belt networks are not observed close to the platform edge in seismic datasets, even at maximum regressive stages. However, sub‐seismic prodeltaic deposits observed on the shallow platform indicate that prodeltaic deposits were sourced directly from the delta plain. Clinoform surfaces with different geometries and scale are observed basinward of the palaeoplatform edge of underlying progradational sequences, correlative to mudstone‐dominated prodeltaic core sections. Results indicate that platform‐edge deltas developed at discrete sites in the basin due to normal regression, but the positions of these deltas are not directly relatable to variations in clinoform geometries. Transitions from third‐order to fourth‐order clinoform geometries record discrete transgressive–regressive cycles but are not necessarily good indicators of sandstone deposition. Because of prolonged periods with high accommodation, channel avulsions were frequent and only very fine‐grained sandstone was deposited in heterolithic units at the delta front. Sandstones with good reservoir properties are predominantly found along basin margins.  相似文献   

15.
Lake Hazar lies within a small pull-apart basin along the East Anatolian Transform Fault in south-eastern Turkey. Deltas are formed where streams debouch into the low-energy lacustrine environment. The facies constituting the deltas include delta plain debris flow, braided stream, and marginal lacustrine deposits; delta front foreset and mouth bar deposits; prodelta and lacustrine deposits. The facies are spatially restricted with sharp transitions. Facies sequences and relationships indicate two distinct styles of deltaic sedimentation. Fan deltas with a tripartite structure characteristic of Gilbert-type deltas comprise the marginal drainage system and form along the basin margins. Mouth bar deltas develop where the axial drainage system of the basin debouches into the lake. The distribution of the two deltaic types is thought to be a function of gradient and controlled by position relative to faults within the basin.  相似文献   

16.
The Sivas Basin, located on the Central Anatolian Plateau in Turkey, is an elongate Oligo‐Miocene basin that contains numerous salt‐walled mini‐basins. Through field analysis, including stratigraphic section logging, facies analysis and geological mapping, a detailed tectono‐stratigraphic study of the Emirhan mini‐basin and its 2·6 km thick sediment fill has been undertaken. Three main palaeoenvironments are recognized – playa‐lake, braided stream and lacustrine – each corresponds to a relatively long‐lived depositional episode within a system that was dominated overall by the development of a distributive fluvial system. At local scale, this affects the geometry of the succession and influences facies distributions within preserved sequences. Sequences affected by wedge geometries are characterized by localized channelized sandstone bodies in the area of maximum subsidence and these pass laterally to floodplain mudstone towards the diaper; several internal unconformities are recognized. By contrast, sequences affected by hook geometries display narrow and steep drape‐fold geometries with no evidence of lateral facies change and apparent conformity in the preserved succession. The sediment fill of the Emirhan mini‐basin records the remobilization of diapir‐derived detritus and the presence of evaporitic bodies interbedded within the mini‐basin, implying the growth of salt walls expressed at the surface as palaeo‐topographic highs. The mini‐basin also records the signature of a regional change in stratigraphic assemblage, passing from playa‐lake facies to large‐scale highly amalgamated fluvial facies that represent progradation of the fluvial system. The initiation and evolution of this mini‐basin involves a variety of local and regional controls. Local factors include: (i) salt withdrawal, which influenced the rate and style of subsidence and consequently temporal and spatial variation in the stratigraphic assemblage and the stratal response related to halokinesis; and (ii) salt inflation, which influenced the topographic expression of the diapirs and consequently the occurrence of diapir‐derived detritus intercalated within the otherwise clastic‐dominated succession.  相似文献   

17.
Tide‐dominated deltas have an inherently complex distribution of heterogeneities on several different scales and are less well‐understood than their wave‐dominated and river‐dominated counterparts. Depositional models of these environments are based on a small set of ancient examples and are, therefore, immature. The Early Jurassic Gule Horn Formation is particularly well‐exposed in extensive sea cliffs from which a 32 km long, 250 m high virtual outcrop model has been acquired using helicopter‐mounted light detection and ranging (LiDAR). This dataset, combined with a set of sedimentological logs, facilitates interpretation and measurement of depositional elements and tracing of stratigraphic surfaces over seismic‐scale distances. The aim of this article is to use this dataset to increase the understanding of depositional elements and lithologies in proximal, unconfined, tide‐dominated deltas from the delta plain to prodelta. Deposition occurred in a structurally controlled embayment, and immature sediments indicate proximity to the sediment source. The succession is tide dominated but contains evidence for strong fluvial influence and minor wave influence. Wave influence is more pronounced in transgressive intervals. Nine architectural elements have been identified, and their internal architecture and stratigraphical distribution has been investigated. The distal parts comprise prodelta, delta front and unconfined tidal bar deposits. The medial part is characterized by relatively narrow, amalgamated channel fills with fluid mud‐rich bases and sandier deposits upward, interpreted as distributary channels filled by tidal bars deposited near the turbidity maximum. The proximal parts of the studied system are dominated by sandy distributary channel and heterolithic tidal‐flat deposits. The sandbodies of the proximal tidal channels are several kilometres wide and wider than exposures in all cases. Parasequence boundaries are easily defined in the prodelta to delta‐front environments, but are difficult to trace into the more proximal deposits. This article illustrates the proximal to distal organization of facies in unconfined tide‐dominated deltas and shows how such environments react to relative sea‐level rise.  相似文献   

18.
The stratigraphic architecture of shoal‐water deltaic systems developed in low‐accommodation settings is relatively well‐known. In contrast, the features of shoal‐water deltas developed in high‐accommodation settings remain relatively poorly documented, especially when compared with the available data sets for Gilbert‐type deltaic systems developed in the same settings. The lacustrine Valimi Formation (Gulf of Corinth, Greece) provides an opportunity to investigate the facies assemblage and architectural style of shoal‐water deltaic systems developed in high‐accommodation settings. The studied interval accumulated during the Pliocene and Pleistocene and represents part of the early syn‐rift Gulf of Corinth succession. Six facies associations, each described in terms of depositional processes and geometries, have been identified and interpreted to represent a range of proximal to distal deltaic sub‐environments: delta plain, distributary channel, mouth‐bar, delta front, prodelta and open lake. The facies associations and their architectural elements reveal characteristics which are not common in traditionally described shoal‐water deltas. Of note, different facies arrangements are observed in the distributary channels in different sectors of the delta, passing from thick single‐storey channel fills embedded within delta‐plain fines in landward positions, to thin, amalgamated and multi‐storey channels closer to the river mouth. This study proposes a new depositional model for shoal‐water deltas in high‐accommodation settings documenting, for the first time, that shoal‐water delta deposits can form a substantial part of stratigraphic successions that accumulate in these settings. The proposed depositional model provides new criteria for the recognition and interpretation of these deposits; the results of this study have applied significance for reservoir characterization.  相似文献   

19.
20.
Inclined heterolithic stratification in the Lower Cretaceous McMurray Formation, exposed along the Steepbank River in north‐eastern Alberta, Canada, accumulated on point bars of a 30 to 40 m deep continental‐scale river in the fluvial–marine transition. This inclined heterolithic stratification consists of two alternating lithologies, sand and fine‐grained beds. Sand beds were deposited rapidly by unidirectional currents and contain little or no bioturbation. Fine‐grained beds contain rare tidal structures, and are intensely bioturbated by low‐diversity ichnofossil assemblages. The alternations between the sand and fine‐grained beds are probably caused by strong variations in fluvial discharge; that are believed to be seasonal (probably annual) in duration. The sand beds accumulated during river floods, under fluvially dominated conditions when the water was fresh, whereas the fine‐grained beds accumulated during the late stages of the river flood and deposition continued under tidally influenced brackish‐water conditions during times of low‐river flow (i.e. the interflood periods). These changes reflect the annual migration in the positions of the tidal and salinity limits within the fluvial–marine transition that result from changes in river discharge. Sand and fine‐grained beds are cyclically organized in the studied outcrops forming metre‐scale cycles. A single metre‐scale cycle is defined by a sharp base, an upward decrease in sand‐bed thickness and upward increases in the preservation of fine‐grained beds and the intensity of bioturbation. Metre‐scale cycles are interpreted to be the product of a longer term (decadal) cyclicity in fluvial discharge, probably caused by fluctuations in ocean or solar dynamics. The volumetric dominance of river‐flood deposits within the succession suggests that accumulation occurred in a relatively landward position within the fluvial–marine transition. This study shows that careful observation can reveal much about the interplay of processes within the fluvial–marine transition, which in turn provides a powerful tool for determining the palaeo‐environmental location of a deposit within the fluvial–marine transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号