首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Middle Devonian Gauja Formation in the Devonian Baltic Basin preserves tide‐influenced delta plain and delta front deposits associated with a large southward prograding delta complex. The outcrops extend over 250 km from southern Estonia to southern Lithuania. The succession can be divided into 10 facies associations recording distributary channel belts that became progressively more tide influenced when traced southwards towards the palaeo‐shoreline, separated by muddy intra‐channel areas where deposition was characterized by crevasse splays, delta plain lakes, abandoned channel deposits and tidal gullies. Tidal currents influenced deposition over the entire delta plain, extending up to 250 km from the contemporary shoreline. Tidal facies on the upper delta plain differ from those on the lower delta plain and delta front. In the former case, deposition from river currents was only occasionally interrupted by tidal currents, e.g. during spring tides, resulting in mica and mudstone drapes, and distinctive graded cross‐stratification. The lower delta plain was dominated by tidal facies and tidal currents regularly influenced deposition. There was a change from progradation to aggradation from the lower to the upper part of the Gauja Formation coupled with a vertical decrease in tidal influence and a decrease in coarse‐grained sediment input. The Gauja Formation contrasts with established models for tide‐influenced deltas as the active delta plain was not restricted by topography. The shape of the delta plain, the predominant southward (basinward)‐directed palaeocurrents, and the thick sandstone succession, show that although tidal currents strongly influenced deposition at bed scale, rivers still controlled the overall morphology of the delta and the larger‐scale bedforms. In addition, there are no signs of wave influence, indicating very low wave energy in the basin. The widespread tidal influence in the Devonian Baltic Basin is explained by changes in the wider basin geometry and by local bathymetrical differences in the basin during progradation and aggradation of the delta plain, with changes in tidal efficiency accompanying the change in basin geometry produced by shoreline progradation.  相似文献   

2.
Shelf‐edge deltas record the potential magnitude of sediment delivery from shallow water shelf into deep water slope and basin floor and, if un‐incised, represent the main increment of shelf‐margin growth into the basin, for that period. The three‐dimensional complexity of shelf‐edge delta systems and along‐strike variability at the shelf edge in particular, remains understudied. The Permian–Triassic Kookfontein Formation of the Tanqua Karoo Basin, South Africa, offers extensive three‐dimensional exposure (>100 km2) and therefore a unique opportunity to evaluate shelf‐edge strata from an outcrop perspective. Analysis of stratal geometry and facies distribution from 52 measured and correlated stratigraphic sections show the following: (i) In outer‐shelf areas, parasequences are characterized by undeformed, river‐dominated, storm‐wave influenced delta mouth‐bar sandstones interbedded with packages showing evidence of syn‐depositional deformation. The amount and intensity of soft‐sediment deformation increases significantly towards the shelf edge where slump units and debris flows sourced from collapsed mouth‐bar packages transport material down slope. (ii) On the upper slope, mouth‐bar and delta‐front sandstones pinch out within 2 km of the shelf break and most slump and debris flow units pinch out within 4 km of the shelf break. (iii) Further down the slope, parasequences consist of finer‐grained turbidites, characterized by interbedded, thin tabular siltstones and sandstones. The results highlight that river‐dominated, shelf‐edge deltas transport large volumes of sand to the upper slope, even when major shelf‐edge incisions are absent. In this case, transport to the upper slope through slumping, debris flows and un‐channellized low density turbidites is distributed evenly along strike.  相似文献   

3.
The Hazad Member (Middle Eocene) of the Ankleswar Formation in Cambay Basin, India, is traditionally reported as deltaic system. Present work documents three major facies associations, namely, (i) sandstone-rich upper delta plain (FA-1) deposits, (ii) sandstone-mudstone heterolithic lower delta plain–delta front (FA-2) deposits, and (iii) shale-dominated prodelta (FA-3) deposits, in an overall coarsening-up to fining-up succession. Tidalites are well preserved in FA-2 and are represented by laterally accreted tidal bundles, tidal beddings and vertically accreted tidal rhythmites, described from drill core samples in this communication. Laterally accreted tidal bundles with reactivation surfaces in sand-dominated heterolithic units indicate time-velocity asymmetry in subtidal condition. Tidal beddings and tidal rhythmites in mud-dominated heterolithic units, associated with asymmetric/symmetric ripple forms and desiccation cracks, indicate periodic subaerial emergence in intertidal flat depositional setting. Systematic analysis of the architecture of the tidalites in different parts of the basin signifies rapid shift in sedimentation from subtidal to intertidal flat within the lower delta plain. Transitions from prodeltaic to tidally (subtidal-intertidal) affected delta front to lower delta plain and fluvial-dominated upper delta plain depositional systems attest to high frequency transgressive-regressive cycles in response to changing accommodation, as a result of sea level fluctuations and basinal tectonisms in the Cambay Basin.  相似文献   

4.
Shelf‐edge deltas play a critical role in shelf‐margin accretion and deepwater sediment delivery, yet much remains to be understood about the detailed linkage between shelf edge and slope sedimentation. The shelf edge separates the flat‐lying shelf from steeper slope regions, and is observable in seismic data and continuous outcrops; however, it is commonly obscured in non‐continuous outcrops. Defining this zone is essential because it segregates areas dominated by shelf currents from those governed by gravity‐driven processes. Understanding this linkage is paramount for predicting and characterizing associated deepwater reservoirs. In the Tanqua Karoo Basin, the Permian Kookfontein Formation shelf‐slope clinothems are well‐exposed for 21 km along depositional strike and dip. Two independent methods identified the shelf‐edge position, indicating that it is defined by: (i) a transition from predominantly shelf‐current to gravitational deposits; (ii) an increase in soft‐sediment deformation; (iii) a significant gradient increase; and (iv) clinothem thickening. A quantitative approach was used to assess the impact of process‐regime variability along the shelf edge on downslope sedimentation. Facies proportions were quantified from sedimentary logs and photographic panels, and integrated with mapped key surfaces to construct a stratigraphic grid. Spatial variability in facies proportions highlights two types of shelf‐edge depositional zones within the same shelf‐edge delta. Where deposition occurred in fluvial‐dominated zones, the slope is sand rich, channelized with channels widening downslope, and rich in collapse features. Where deltaic deposits indicate considerable tidal reworking, the deposits are thin and pinch‐out close to the shelf edge, and the slope is sand poor and lacks channelization. Amplification of tidal energy, and decrease in fluvial drive on the shelf, coincides with a decrease in mouth bar and shelf‐edge collapse, and a lack of channelization on the slope. This analysis suggests that process‐regime variability along the shelf edge exercised significant control on shelf‐edge progradation, slope channelization and deepwater sediment delivery.  相似文献   

5.
通过大量的野外剖面观察和盆地内钻井岩心的详细描述,综合测井资料,从岩石类型、结构、沉积构造、古生物化石及测井曲线响应特征等方面对鄂尔多斯盆地及周缘地区下二叠统太原组和山西组沉积相特征进行了全面分析研究。结果表明,太原组主要发育陆棚、海岸、冲积扇和三角洲等沉积相,海岸沉积相包括障壁岛、潟湖和潮坪沉积,三角洲沉积相可划分为三角洲平原、三角洲前缘和前三角洲沉积。山西组主要发育冲积扇、河流、曲流河三角洲、湖泊和海岸沉积相,其中河流沉积相包括辫状河和曲流河沉积,曲流河三角洲沉积相可划分为曲流河三角洲平原、曲流河三角洲前缘和前三角洲沉积,而湖泊沉积相以浅湖沉积为主,海岸沉积主要为潟湖沉积。太原期,海相沉积占主导,主要分布于银川—榆林北部一线以南广大地区,并且从东西两侧至中部地区由浅海陆棚沉积和滨浅海过渡为潟湖沉积和潮坪沉积,其间发育障壁岛。盆地西北缘发育冲积扇和扇三角洲沉积,北部广大地区以三角洲沉积为主,自北向南依次为三角洲平原和三角洲前缘沉积。山西期,海水从盆地东南部退却,整体演变为海陆过渡相沉积,盆地北部乌达—杭锦旗—鄂尔多斯一线发育冲积扇沉积,向南至靖边一带依次发育辫状河和曲流河沉积,靖边以南至延安以北地区以三角洲平原沉积为主,向南至同心—庆阳一线发育三角洲前缘沉积,盆地南部彭阳—泾阳地区主要为浅湖沉积,再向南发育物源来自南部的三角洲沉积,在东南部武乡—义马一带为潟湖沉积。  相似文献   

6.
通过大量的野外剖面观察和盆地内钻井岩心的详细描述,综合测井资料,从岩石类型、结构、沉积构造、古生物化石及测井曲线响应特征等方面对鄂尔多斯盆地及周缘地区下二叠统太原组和山西组沉积相特征进行了全面分析研究。结果表明,太原组主要发育陆棚、海岸、冲积扇和三角洲等沉积相,海岸沉积相包括障壁岛、潟湖和潮坪沉积,三角洲沉积相可划分为三角洲平原、三角洲前缘和前三角洲沉积。山西组主要发育冲积扇、河流、曲流河三角洲、湖泊和海岸沉积相,其中河流沉积相包括辫状河和曲流河沉积,曲流河三角洲沉积相可划分为曲流河三角洲平原、曲流河三角洲前缘和前三角洲沉积,而湖泊沉积相以浅湖沉积为主,海岸沉积主要为潟湖沉积。太原期,海相沉积占主导,主要分布于银川-榆林北部一线以南广大地区,并且从东西两侧至中部地区由浅海陆棚沉积和滨浅海过渡为潟湖沉积和潮坪沉积,其间发育障壁岛。盆地西北缘发育冲积扇和扇三角洲沉积,北部广大地区以三角洲沉积为主,自北向南依次为三角洲平原和三角洲前缘沉积。山西期,海水从盆地东南部退却,整体演变为海陆过渡相沉积,盆地北部乌达-杭锦旗-鄂尔多斯一线发育冲积扇沉积,向南至靖边一带依次发育辫状河和曲流河沉积,靖边以南至延安以北地区以三角洲平原沉积为主,向南至同心-庆阳一线发育三角洲前缘沉积,盆地南部彭阳-泾阳地区主要为浅湖沉积,再向南发育物源来自南部的三角洲沉积,在东南部武乡-义马一带为潟湖沉积。  相似文献   

7.
Shelf‐edge deltas are a key depositional environment for accreting sediment onto shelf‐margin clinoforms. The Moruga Formation, part of the palaeo‐Orinoco shelf‐margin sedimentary prism of south‐east Trinidad, provides new insight into the incremental growth of a Pliocene, storm wave‐dominated shelf margin. Relatively little is known about the mechanisms of sand bypass from the shelf‐break area of margins, and in particular from storm wave‐dominated margins which are generally characterized by drifting of sand along strike until meeting a canyon or channel. The studied St. Hilaire Siltstone and Trinity Hill Sandstone succession is 260 m thick and demonstrates a continuous transition from gullied (with turbidites) uppermost slope upward to storm wave‐dominated delta front on the outermost shelf. The basal upper‐slope deposits are dominantly mass‐transport deposited blocks, as well as associated turbidites and debrites with common soft‐sediment‐deformed strata. The overlying uppermost slope succession exhibits a spectacular set of gullies, which are separated by abundant slump‐scar unconformities (tops of rotational slides), then filled with debris‐flow conglomerates and sandy turbidite beds with interbedded mudstones. The top of the study succession, on the outer‐shelf area, contains repeated upward‐coarsening, sandstone‐rich parasequences (2 to 15 m thick) with abundant hummocky and swaley cross‐stratification, clear evidence of storm‐swell and storm wave‐dominated conditions. The observations suggest reconstruction of the unstable shelf margin as follows: (i) the aggradational storm wave‐dominated, shelf‐edge delta front became unstable and collapsed down the slope; (ii) the excavated scars of the shelf margin became gullied, but gradually healed (aggraded) by repeated infilling by debris flows and turbidites, and then new gullying and further infilling; and (iii) a renewed storm wave‐dominated delta‐front prograded out across the healed outer shelf, re‐establishing the newly stabilized shelf margin. The Moruga Formation study, along with only a few others in the literature, confirms the sediment bypass ability of storm wave‐dominated reaches of shelf edges, despite river‐dominated deltas being, by far, the most efficient shelf‐edge regime for sediment bypass at the shelf break.  相似文献   

8.
Pliocene age deposits of the palaeo‐Orinoco Delta are evaluated in the Mayaro Formation, which crops out along the western margin of the Columbus Basin in south‐east Trinidad. This sandstone‐dominated interval records the diachronous, basinwards migration of the shelf edge of the palaeo‐Orinoco Delta, as it prograded eastwards during the Pliocene–Pleistocene (ca 3·5 Ma). The basin setting was characterized by exceptionally high rates of growth‐fault controlled sediment supply and accommodation space creation resulting in a gross basin‐fill of around 12 km, with some of the highest subsidence rates in the world (ca 5 to 10 m ka?1). This analysis demonstrates that the Mayaro Formation was deposited within large and mainly wave‐influenced shelf‐edge deltas. These are manifested as multiple stacks of coarsening upward parasequences at scales ranging from tens to hundreds of metres in thickness, which are dominated by storm‐influenced and wave‐influenced proximal delta‐front sandstones with extensive, amalgamated swaley and hummocky cross‐stratification. These proximal delta‐front successions pass gradationally downwards into 10s to 100 m thick distal delta front to mud‐dominated upper slope deposits characterized by a wide variety of sedimentary processes, including distal river flood and storm‐related currents, slumps and other gravity flows. Isolated and subordinate sandstone bodies occur as gully fills, while extensive soft sediment deformation attests to the high sedimentation rates along a slope within a tectonically active basin. The vertical stratigraphic organization of the facies associations, together with the often cryptic nature of parasequence stacking patterns and sequence stratigraphic surfaces, are the combined product of the rapid rates of accommodation space creation, high rates of sediment supply and glacio‐eustasy in the 40 to 100 Ka Milankovitch frequency range. The stratigraphic framework described herein contrasts strikingly with that described from passive continental margins, but compares favourably to other tectonically active, deltaic settings (for example, the Baram Delta Province of north‐west Borneo).  相似文献   

9.
《Sedimentology》2018,65(4):1132-1169
Clinoform surfaces are routinely used to mark transitions from shallow waters to deep basins. This concept represents a valuable tool for screening potential reservoir intervals in frontier basins where limited data are available. Variations in the character of clinoform geometries and shoreline and shelf‐edge trajectories are indicators of a range of different factors, such as palaeobathymetry, changes in relative sea‐level and sediment supply. Applications of conceptual and generalized models might, however, lead to erroneous assumptions about the supply of coarse‐grained material to the delta front and basin when superficial similarities between clinoform geometries are not treated holistically. The present study examines the mudstone‐dominated Middle Triassic Kobbe Formation – a potential hydrocarbon reservoir interval in the Barents Sea, where prodeltaic to deltaic deposits can be examined in cores, well logs and two‐dimensional and three‐dimensional seismic data. Despite pronounced acoustic impedance contrast to the surrounding shale, channel belt networks are not observed close to the platform edge in seismic datasets, even at maximum regressive stages. However, sub‐seismic prodeltaic deposits observed on the shallow platform indicate that prodeltaic deposits were sourced directly from the delta plain. Clinoform surfaces with different geometries and scale are observed basinward of the palaeoplatform edge of underlying progradational sequences, correlative to mudstone‐dominated prodeltaic core sections. Results indicate that platform‐edge deltas developed at discrete sites in the basin due to normal regression, but the positions of these deltas are not directly relatable to variations in clinoform geometries. Transitions from third‐order to fourth‐order clinoform geometries record discrete transgressive–regressive cycles but are not necessarily good indicators of sandstone deposition. Because of prolonged periods with high accommodation, channel avulsions were frequent and only very fine‐grained sandstone was deposited in heterolithic units at the delta front. Sandstones with good reservoir properties are predominantly found along basin margins.  相似文献   

10.
In recent years it has become clear that many shallow‐marine heterolithic and mudstone‐dominated successions are deposited as mud belts forming part of subaqueous deltas that are related to major fluvial sources either upstream or along shore. Here the Havert Formation is presented as an ancient example of this kind of system. The Havert Formation in the south‐western Barents Sea represents shelf margin clinoforms consisting predominantly of heterolithic deposits. Sediments were mainly derived from the east (Ural Mountains), but a smaller system prograded northward from Fennoscandia. The Havert Formation holds a lot of interest due to: (i) its stratigraphic position, directly above the Permo–Triassic boundary and contemporaneous to the emplacement of the Siberian Traps; (ii) the fact that it represents the first siliciclastic input in the south‐western Barents Sea and it shows interaction between Uralian‐derived and Fennoscandian‐derived sediments; and (iii) its hydrocarbon potential. This study is focused on a detailed sedimentological analysis of cored intervals of the (Ural‐derived) Havert Formation, in combination with seismic interpretation, well‐log correlations and palynological analysis of the Havert and overlying Klappmyss formations. The cored intervals belong to the shelf environment of the Havert shelf‐margin clinoforms (300 to 500 m thick). This sedimentological analysis distinguishes six facies associations, spanning from tidally‐influenced channels at the shoreline to mud‐rich subaqueous platform and foresets of the subaqueous delta. Seismic lines and well‐log correlations show the larger‐scale evolution of the Ural‐derived Havert Formation, characterized by episodes of low‐accommodation and high‐accommodation. The palynological analyses provide the first detailed study of the Havert Formation in the Nordkapp Basin, revising its depositional age in the region as Induan to early Olenekian (Smithian). Furthermore, they strengthen the environmental interpretation; palynofacies present on the shelf record flora of tidally‐influenced coastal plains, whereas the palynofacies in the deep‐water slope contain only amorphous organic matter.  相似文献   

11.
辽东苏子河盆地是早白垩世形成的小型断陷盆地,盆地内发育了相对连续的陆相沉积,是研究白垩纪陆地环境及气候演化的理想地区。早白垩世晚期沉积的聂尔库组地层出露连续,沉积现象典型。通过分析聂尔库组沉积岩类型、沉积构造、古生物化石及垂向沉积序列,可识别出扇三角洲相和湖泊相,其中扇三角洲相包括扇三角洲平原亚相、扇三角洲前缘亚相和前扇三角洲亚相,湖泊相主要为滨浅湖泥砂沉积。研究表明,聂尔库组形成于断陷盆地边缘陡坡带,属于间歇性洪水控制的扇三角洲—湖泊沉积体系,经历了扇三角洲—湖泊—扇三角洲的沉积环境变化,代表了断陷湖盆由深陷扩张期—抬升收缩早期的沉积充填过程。根据沉积岩与沉积相特征,结合古生物、特殊沉积、黏土矿物及地球化学资料,认为早白垩世晚期辽东地区总体与当时全球"温室气候"的大背景相一致,处于高温干旱/潮湿的气候条件,但这种高温气候具有不均一性,存在气候波动。  相似文献   

12.
《Sedimentology》2018,65(3):809-841
Degradation of basin‐margin clinothems around the shelf‐edge rollover zone may lead to the generation of conduits through which gravity flows transport sediment downslope. Many studies from seismic‐reflection data sets show these features, but they lack small‐scale (centimetre to metre) sedimentary and stratigraphic observations on process interactions. Exhumed basin‐margin clinothems in the Tanqua depocentre (Karoo Basin) provide seismic‐reflection‐scale geometries and internal details of architecture with depositional dip and strike control. At the Geelhoek locality, clinothem parasequences comprise siltstone‐rich offshore deposits overlain by heterolithic prodelta facies and sandstone‐dominated deformed mouth bars. Three of these parasequences are truncated by a steep (6 to 22°), 100 m deep and 1·5 km wide asymmetrical composite erosion surface that delineates a shelf‐incised canyon. The fill, from base to top comprises: (i) thick‐bedded sandstone with intrabasinal clasts and multiple erosion surfaces; (ii) scour‐based interbedded sandstone and siltstone with tractional structures; and (iii) inverse‐graded to normal‐graded siltstone beds. An overlying 55 m thick coarsening‐upward parasequence fills the upper section of the canyon and extends across its interfluves. Younger parasequences display progressively shallower gradients during progradation and healing of the local accommodation. The incision surface resulted from initial oversteepening and high sediment supply triggering deformation and collapse at the shelf edge, enhanced by a relative sea‐level fall that did not result in subaerial exposure of the shelf edge. Previous work identified an underlying highly incised, sandstone‐rich shelf‐edge rollover zone across‐margin strike, suggesting that there was migration in the zone of shelf edge to upper‐slope incision over time. This study provides an unusual example of clinothem degradation and readjustment with three‐dimensional control in an exhumed basin‐margin succession. The work demonstrates that large‐scale erosion surfaces can develop and migrate due to a combination of factors at the shelf‐edge rollover zone and proposes additional criteria to predict clinothem incision and differential sediment bypass in consistently progradational systems.  相似文献   

13.
Depositional slope systems along continental margins contain a record of sediment transfer from shallow‐water to deep‐water environments and represent an important area for natural resource exploration. However, well‐preserved outcrops of large‐scale depositional slopes with seismic‐scale exposures and tectonically intact stratigraphy are uncommon. Outcrop characterization of smaller‐scale depositional slope systems (i.e. < 700 m of undecompacted shelf‐to‐basin relief) has led to increased understanding of stratigraphic packaging of prograding slopes. Detailed stacking patterns of facies and sedimentary body architecture for larger‐scale slope systems, however, remain understudied. The Cretaceous Tres Pasos Formation of the Magallanes Basin, southern Chile, presents a unique opportunity to evaluate the stratigraphic evolution of such a slope system from an outcrop perspective. Inherited tectonic relief from a precursor oceanic basin phase created shelf‐to‐basin bathymetry comparable with continental margin systems (~1000 m). Sedimentological and architectural data from the Tres Pasos Formation at Cerro Divisadero reveal a record of continental margin‐scale depositional slope progradation and aggradation. Slope progradation is manifested as a vertical pattern exhibiting increasing amounts of sediment bypass upwards, which is interpreted as reflecting increasing gradient conditions. The well‐exposed, seismic‐scale outcrop is characterized by four 20 to 70 m thick sandstone‐rich successions, separated by mudstone‐rich intervals of comparable thickness (40 to 90 m). Sedimentary body geometry, facies distribution, internal bedding architecture, sandstone richness and degree of amalgamation were analysed in detail across a continuous 2·5 km long transect parallel to depositional dip. Deposition in the lower section (Units 1 and 2) was dominated by poorly channellized to unconfined sand‐laden flows and accumulation of mud‐rich mass transport deposits, which is interpreted as representing a base of slope to lower slope setting. Evidence for channellization and indicators of bypass of coarse‐grained turbidity currents are more common in the upper part of the > 600 m thick succession (Units 3 and 4), which is interpreted as reflecting increased gradient conditions as the system accreted basinward.  相似文献   

14.
本文以琼东南盆地崖南凹陷陵水组三段扇三角洲体系为例,详细讨论了进积于海湾背景环境下扇三角洲体系的岩性相、成因相及其空间配置关系。研究区海湾扇三角洲体系自下而上潮汐作用越来越强,其垂向演化可划分为三个阶段,早期为以河流作用占优势阶段,中期为河流和潮汐混合作用阶段,晚期为以潮汐作用占优势逐渐过渡为以潮汐作用占优势。  相似文献   

15.
Tide‐dominated deltas have an inherently complex distribution of heterogeneities on several different scales and are less well‐understood than their wave‐dominated and river‐dominated counterparts. Depositional models of these environments are based on a small set of ancient examples and are, therefore, immature. The Early Jurassic Gule Horn Formation is particularly well‐exposed in extensive sea cliffs from which a 32 km long, 250 m high virtual outcrop model has been acquired using helicopter‐mounted light detection and ranging (LiDAR). This dataset, combined with a set of sedimentological logs, facilitates interpretation and measurement of depositional elements and tracing of stratigraphic surfaces over seismic‐scale distances. The aim of this article is to use this dataset to increase the understanding of depositional elements and lithologies in proximal, unconfined, tide‐dominated deltas from the delta plain to prodelta. Deposition occurred in a structurally controlled embayment, and immature sediments indicate proximity to the sediment source. The succession is tide dominated but contains evidence for strong fluvial influence and minor wave influence. Wave influence is more pronounced in transgressive intervals. Nine architectural elements have been identified, and their internal architecture and stratigraphical distribution has been investigated. The distal parts comprise prodelta, delta front and unconfined tidal bar deposits. The medial part is characterized by relatively narrow, amalgamated channel fills with fluid mud‐rich bases and sandier deposits upward, interpreted as distributary channels filled by tidal bars deposited near the turbidity maximum. The proximal parts of the studied system are dominated by sandy distributary channel and heterolithic tidal‐flat deposits. The sandbodies of the proximal tidal channels are several kilometres wide and wider than exposures in all cases. Parasequence boundaries are easily defined in the prodelta to delta‐front environments, but are difficult to trace into the more proximal deposits. This article illustrates the proximal to distal organization of facies in unconfined tide‐dominated deltas and shows how such environments react to relative sea‐level rise.  相似文献   

16.
Coarse‐grained deep‐water strata of the Cerro Toro Formation in the Cordillera Manuel Señoret, southern Chile, represent the deposits of a major channel belt (4 to 8 km wide by >100 km long) that occupied the foredeep of the Magallanes basin during the Late Cretaceous. Channel belt deposits comprise a ca 400 m thick conglomeratic interval (informally named the ‘Lago Sofia Member’) encased in bathyal fine‐grained units. Facies of the Lago Sofia Member include sandy matrix conglomerate (that show evidence of traction‐dominated deposition and sedimentation from turbulent gravity flows), muddy matrix conglomerate (graded units interpreted as coarse‐grained slurry‐flow deposits) and massive sandstone beds (high‐density turbidity current deposits). Interbedded sandstone and mudstone intervals are present locally, interpreted as inner levée deposits. The channel belt was characterized by a low sinuousity planform architecture, as inferred from outcrop mapping and extensive palaeocurrent measurements. Laterally adjacent to the Lago Sofia Member are interbedded mudstone and sandstone facies derived from gravity flows that spilled over the channel belt margin. A levée interpretation for these fine‐grained units is based on several observations, which include: (i) palaeocurrent measurements that indicate flows diverged (50° to 100°) once they spilled over the confining channel margin; (ii) sandstone beds progressively thin, away from the channel belt margin; (iii) evidence that the eroded channel base was not very well indurated, including a stepped margin and injection of coarse‐grained channel material into surrounding fine‐grained units; and (iv) the presence of sedimentary features common to levées, including slumped units inferring depositional slopes dipping away from the channel margin, lenticular sandstone beds thinning distally from the channel margin, soft sediment deformation and climbing ripples. The tectonic setting and foredeep architecture influenced deposition in the axial channel belt. A significant downstream constriction of the channel belt is reflected by a transition from more tabular units to an internal architecture dominated by lenticular beds associated with a substantially increased degree of scour. Differential propagation of the fold‐thrust belt from the west is speculated to have had a major control on basin, and subsequently channel, width. The confining influence of the basin slopes that paralleled the channel belt, as well as the likelihood that numerous conduits fed into the basin along the length of the active fold‐thrust belt to the west, suggest that proximal–distal relationships observed from large channels in passive margin settings are not necessarily applicable to axial channels in elongate basins.  相似文献   

17.
Although modern wave‐dominated shorelines exhibit complex geomorphologies, their ancient counterparts are typically described in terms of shoreface‐shelf parasequences with a simple internal architecture. This discrepancy can lead to poor discrimination between, and incorrect identification of, different types of wave‐dominated shoreline in the stratigraphic record. Documented in this paper are the variability in facies characteristics, high‐resolution stratigraphic architecture and interpreted palaeo‐geomorphology within a single parasequence that is interpreted to record the advance of an ancient asymmetrical wave‐dominated delta. The Standardville (Ab1) parasequence of the Aberdeen Member, Blackhawk Formation is exposed in the Book Cliffs of central Utah, USA. This parasequence, and four others in the Aberdeen Member, record the eastward progradation of north/south‐trending, wave‐dominated shorelines. Within the Standardville (Ab1) parasequence, distal wave‐dominated shoreface‐shelf deposits in the eastern part of the study area are overlain across a downlap surface by southward prograding fluvial‐dominated delta‐front deposits, which have previously been assigned to a separate ‘stranded lowstand parasequence’ formed by a significant, allogenic change in relative sea‐level. High‐resolution stratigraphic analysis of these deposits reveals that they are instead more likely to record a single episode of shoreline progradation characterized by alternating periods of normal regressive and forced regressive shoreline trajectory because of minor cyclical fluctuations in relative sea‐level. Interpreted normal regressive shoreline trajectories within the wave‐dominated shoreface‐shelf deposits are marked by aggradational stacking of bedsets bounded by non‐depositional discontinuity surfaces. Interpreted forced regressive shoreline trajectories in the same deposits are characterized by shallow incision of fluvial distributary channels and strongly progradational stacking of bedsets bounded by erosional discontinuity surfaces that record enhanced wave‐base scour. Fluvial‐dominated delta‐front deposits most probably record the regression of a lobate delta parallel to the regional shoreline into an embayment that was sheltered from wave influence. Wave‐dominated shoreface‐shelf and fluvial‐dominated delta‐front deposits occur within the same parasequence, and their interpretation as the respective updrift and downdrift flanks of a single asymmetrical wave‐dominated delta that periodically shifted its position provides the most straightforward explanation of the distribution and relative orientation of these two deposit types.  相似文献   

18.
《Sedimentology》2018,65(6):1918-1946
In southern Patagonia, outcrops of the Upper Cretaceous Cerro Toro Formation preserve a >150 km long deep‐water axial channel belt in the Magallanes–Austral Basin, providing a unique opportunity to investigate longitudinal variations in the depositional characteristics of a deep‐water channel system. This study documents sedimentological, stratigraphical and geochronological data from the Cerro Toro Formation in the Argentine sector of the basin. New results are integrated with previous work from the Chilean basin sector to conduct a basin‐scale comparison of the timing of deposition, provenance and lithofacies proportions. The Cerro Toro channel belt includes a nearly 1000 m thick section characterized by high‐density turbidites and mass‐wasting deposits. Two ash beds from the base of the section yield U–Pb zircon ages of 90·4 ± 2 Ma and 88·0 ± 3 Ma, indicating similar initiation ages as documented in the Chilean sector. The U–Pb detrital zircon age spectra from samples in the study area reveal similar provenance trends to samples from the Chilean basin sector, with peak age populations at 310 to 260 Ma, 160 to 135 Ma and 110 to 82 Ma. The maximum depositional age of the channel belt in the Argentine sector is 87·8 ± 1·5 Ma and all new geochronology data corroborate an 86 to 80 Ma depositional age for the main Cerro Toro channel belt. Statistical analyses of 7370 beds from nearly 8000 m of new and previously published stratigraphic sections along the entire outcrop belt suggest progressive variations in the down‐system proportion of lithofacies. In the up‐slope region, lithofacies representing mass wasting processes (for example, debris‐flow and mass‐transport deposits) account for ca 29% of the stratigraphic thickness, as opposed to 5% in the down‐slope region of the channel belt, where turbidity current deposits are more prevalent. The proportion of beds >1 m thick also decreases systematically down slope, particularly for conglomeratic turbidite deposits. This work highlights that: (i) the proportion of thick beds and distribution of lithofacies are key down‐system changes in the stratigraphic fill of this deep‐water channel belt; (ii) detrital zircon trends suggest a relatively well‐mixed longitudinal depositional system; and (iii) geochronology of the main Cerro Toro outcrop belt supports but does not necessitate the model of a single, roughly age‐equivalent, channel system. This study has implications for understanding the downslope variability in depositional processes, stratigraphic architecture and reservoir quality of submarine channel systems.  相似文献   

19.
The Early Miocene Bílina Palaeodelta consists of fluvio‐deltaic and lacustrine clastics deposited along the south‐eastern margin of the extensional Most Basin, part of the Eger Graben in north Bohemia (Czech Republic). The Bílina succession shows evidence of repeated advances of an axial deltaic system across a thick accumulation of organic material and clay in the hangingwall of an active fault. Exposures up to ca 4·5 km long in the Bílina open‐cast mine help bridge the gap between seismic scale and typical outcrop scale of observation and thus allow the relationships between small‐scale and basin‐scale stratal geometries to be evaluated. The Bílina Palaeodelta deposits include sand‐dominated, fluvial channel fills and heterolithic sheets interpreted as delta plain strata, sand‐dominated mouth‐bar wedges and heterolithic sheets of prodeltaic deposits, passing distally into lacustrine clays. The depositional environment is interpreted as a fluvial‐dominated, mixed‐load, lacustrine delta with a high degree of grain‐size segregation at the feeder‐channel mouths. On the largest temporal and spatial scales, variable tectonic subsidence controlled the overall advance and retreat of the delta system. The medium‐term transgressive‐regressive history was probably driven by episodes of increased subsidence rate. However, at this temporal scale, the architecture of the deltaic sequences (deltaic lobes and correlative lacustrine deposits) was strongly affected by: (i) compaction of underlying peat and clay which drove lateral offset stacking of medium‐term sequences; and (ii) growth of a fault‐propagation fold close to the active Bílina Fault. At the smallest scale, the geometries of individual mouth bars and groups of mouth bars (short‐term sequences) reflect the interaction among sediment loading, compaction and growth faulting that produced high‐frequency relative lake‐level fluctuations and created local accommodation at the delta front.  相似文献   

20.
The Lower Cretaceous Fortress Mountain Formation occupies a spatial and temporal niche between syntectonic deposits at the Brooks Range orogenic front and post‐tectonic strata in the Colville foreland basin. The formation includes basin‐floor fan, marine‐slope and fan‐delta facies that define a clinoform depositional profile. Texture and composition of clasts in the formation suggest progressive burial of a tectonic wedge‐front that included older turbidites and mélange. These new interpretations, based entirely on outcrop study, suggest that the Fortress Mountain Formation spans the boundary between orogenic wedge and foredeep, with proximal strata onlapping the tectonic wedge‐front and distal strata downlapping the floor of the foreland basin. Our reconstruction suggests that clinoform amplitude reflects the structural relief generated by tectonic wedge development and load‐induced flexural subsidence of the foreland basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号