首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
Seabed topography is ubiquitous across basin‐floor environments, and influences sediment gravity flows and sediment dispersal patterns. The impact of steep (several degrees) confining slopes on sedimentary facies and depositional architecture has been widely documented. However, the influence of gentle (fraction of a degree) confining slopes is less well‐documented, largely due to outcrop limitations. Here, exceptional outcrop and research borehole data from Unit A of the Permian Laingsburg Formation, South Africa, provide the means to examine the influence of subtle lateral confinement on flow behaviour and lobe stacking patterns. The dataset describes the detailed architecture of subunits A.1 to A.6, a succession of stacked lobe complexes, over a palinspastically restored 22 km across‐strike transect. Facies distributions, stacking patterns, thickness and palaeoflow trends indicate the presence of a south‐east facing low angle (fraction of a degree) lateral intrabasinal slope. Interaction between stratified turbidity currents with a thin basal sand‐prone part and a thick mud‐prone part and the confining slope results in facies transition from thick‐bedded sandstones to thin‐bedded heterolithic lobe fringe‐type deposits. Slope angle dictates the distance over which the facies transition occurs (hundreds of metres to kilometres). These deposits are stacked vertically over tens of metres in successive lobe complexes to form an aggradational succession of lobe fringes. Extensive slides and debrites are present at the base of lobe complexes, and are associated with steeper restored slope gradients. The persistent facies transition across multiple lobe complexes, and the mass flow deposits, suggests that the intrabasinal slope was dynamic and was never healed by deposition during Unit A times. This study demonstrates the significant influence that even subtle basin‐floor topography has on flow behaviour and depositional architecture of submarine lobe complexes. In addition, we present a new aggradational lobe fringe facies associations and recognition criteria for subtle confinement in less well‐exposed and subsurface basin fills.  相似文献   

3.
Sandy lobe deposits on submarine fans are sensitive recorders of the types of sediment gravity flows supplied to a basin and are economically important as hydrocarbon reservoirs. This study investigates the causes of variability in 20 lobes in small late Pleistocene submarine fans off East Corsica. These lobes were imaged using ultra‐high resolution boomer seismic profiles (<1 m vertical resolution) and sediment type was ground truthed using piston cores published in previous studies. Repeated crossings of the same depositional bodies were used to measure spatial changes in their dimensions and architecture. Most lobes increase abruptly down‐slope to a peak thickness of 8 to 42 m, beyond which they show a progressive, typically more gradual, decrease in thickness until they thin to below seismic resolution or pass into draping facies of the basin plain. Lobe areas range from 3 to 70 km2 and total lengths from 2 to 14 km, with the locus of maximum sediment accumulation from 3 to 28 km from the shelf‐break. Based on their location, dimensions, internal architecture and nature of the feeder channel, the lobes are divided into two end‐member types. The first are small depositional bodies located in proximal settings, clustered near the toe‐of‐slope and fed by slope gullies or erosive channels lacking or with poorly developed levées (referred to as ‘proximal isolated lobes’). The second are larger architecturally more complex depositional bodies deposited in more distal settings, outboard more stable and longer‐lived levéed fan valleys (referred to as ‘composite mid‐fan lobes’). Hybrid lobe types are also observed. At least three hierarchical levels of compensation stacking are recognized. Individual beds and bed‐sets stack to form lobe‐elements; lobe‐elements stack to form composite lobes; and composite lobes stack to form lobe complexes. Differences in the size, shape and architectural complexity of lobe deposits reflect several inter‐related factors including: (i) flow properties (volume, duration, grain‐size, concentration and velocity); (ii) the number and frequency of flows, and their degree of variation through time; (iii) gradient change and sea floor morphology at the mouth of the feeder conduit; (iv) lobe lifespan prior to avulsion or abandonment; and (v) feeder channel geometry and stability. In general, lobes outboard stable fan valleys that are connected to shelf‐incised canyons are wider, longer and thicker, accumulate in more basinal locations and are architecturally more complex.  相似文献   

4.
Shelf‐edge deltas record the potential magnitude of sediment delivery from shallow water shelf into deep water slope and basin floor and, if un‐incised, represent the main increment of shelf‐margin growth into the basin, for that period. The three‐dimensional complexity of shelf‐edge delta systems and along‐strike variability at the shelf edge in particular, remains understudied. The Permian–Triassic Kookfontein Formation of the Tanqua Karoo Basin, South Africa, offers extensive three‐dimensional exposure (>100 km2) and therefore a unique opportunity to evaluate shelf‐edge strata from an outcrop perspective. Analysis of stratal geometry and facies distribution from 52 measured and correlated stratigraphic sections show the following: (i) In outer‐shelf areas, parasequences are characterized by undeformed, river‐dominated, storm‐wave influenced delta mouth‐bar sandstones interbedded with packages showing evidence of syn‐depositional deformation. The amount and intensity of soft‐sediment deformation increases significantly towards the shelf edge where slump units and debris flows sourced from collapsed mouth‐bar packages transport material down slope. (ii) On the upper slope, mouth‐bar and delta‐front sandstones pinch out within 2 km of the shelf break and most slump and debris flow units pinch out within 4 km of the shelf break. (iii) Further down the slope, parasequences consist of finer‐grained turbidites, characterized by interbedded, thin tabular siltstones and sandstones. The results highlight that river‐dominated, shelf‐edge deltas transport large volumes of sand to the upper slope, even when major shelf‐edge incisions are absent. In this case, transport to the upper slope through slumping, debris flows and un‐channellized low density turbidites is distributed evenly along strike.  相似文献   

5.
A common facies observed in deep‐water slope and especially basin‐floor rocks of the Neoproterozoic Windermere Supergroup (British Columbia, Canada) is structureless, coarse‐tail graded, medium‐grained to coarse‐grained sandstone with from 30% to >50% mud matrix content (i.e. matrix‐rich). Bed contacts are commonly sharp, flat and loaded. Matrix‐rich sandstone beds typically form laterally continuous units that are up to several metres thick and several tens to hundreds of metres wide, and commonly adjacent to units of comparatively matrix‐poor, scour‐based sandstone beds with large tabular mudstone and sandstone clasts. Matrix‐rich units are common in proximal basin‐floor (Upper Kaza Group) deposits, but occur also in more distal basin‐floor (Middle Kaza Group) and slope (Isaac Formation) deposits. Regardless of stratigraphic setting, matrix‐rich units typically are directly and abruptly overlain by architectural elements comprising matrix‐poor coarse sandstone (i.e. channels and splays). Despite a number of similarities with previously described matrix‐rich beds in the literature, for example slurry beds, linked debrites and co‐genetic turbidites, a number of important differences exist, including the stratal make‐up of individual beds (for example, the lack of a clean sandstone turbidite base) and their stratigraphic occurrence (present throughout base of slope and basin‐floor strata, but most common in proximal lobe deposits) and accordingly suggest a different mode of emplacement. The matrix‐rich, poorly sorted nature of the beds and the abundance and size of tabular clasts in laterally equivalent sandstones imply intense upstream scouring, most probably related to significant erosion by an energetic plane‐wall jet or within a submerged hydraulic jump. Rapid energy loss coupled with rapid charging of the flow with fine‐grained sediment probably changed the rheology of the flow and promoted deposition along the margins of the jet. Moreover, these distinctive matrix‐rich strata are interpreted to represent the energetic initiation of the local sedimentary system, most probably caused by a local upflow avulsion.  相似文献   

6.
利用多个地震数据体的地震反射特征,分析了孟加拉湾若开盆地深水沉积体系的不同沉积结构单元类型(峡谷、水道及水道复合体、天然堤—漫溢沉积、朵体以及块体搬运沉积)的典型地震响应特征、及其发育的位置,构建了研究区陆架—陆坡—盆底的沉积结构单元演化模式。研究表明,一个深水沉积体系垂向上自下而上的组合样式为:底部块体搬运沉积及厚层大规模朵体沉积,上覆水道复合体沉积,之后为水道—天然堤复合体沉积、以及一些小规模朵体沉积,顶部为薄层深海泥岩沉积。横向上自陆架向深海盆地的发育模式表现为:陆架/上陆坡峡谷—上陆坡侵蚀型水道—下陆坡侵蚀沉积型水道—沉积型水道—盆地朵体。  相似文献   

7.
Depositional slope systems along continental margins contain a record of sediment transfer from shallow‐water to deep‐water environments and represent an important area for natural resource exploration. However, well‐preserved outcrops of large‐scale depositional slopes with seismic‐scale exposures and tectonically intact stratigraphy are uncommon. Outcrop characterization of smaller‐scale depositional slope systems (i.e. < 700 m of undecompacted shelf‐to‐basin relief) has led to increased understanding of stratigraphic packaging of prograding slopes. Detailed stacking patterns of facies and sedimentary body architecture for larger‐scale slope systems, however, remain understudied. The Cretaceous Tres Pasos Formation of the Magallanes Basin, southern Chile, presents a unique opportunity to evaluate the stratigraphic evolution of such a slope system from an outcrop perspective. Inherited tectonic relief from a precursor oceanic basin phase created shelf‐to‐basin bathymetry comparable with continental margin systems (~1000 m). Sedimentological and architectural data from the Tres Pasos Formation at Cerro Divisadero reveal a record of continental margin‐scale depositional slope progradation and aggradation. Slope progradation is manifested as a vertical pattern exhibiting increasing amounts of sediment bypass upwards, which is interpreted as reflecting increasing gradient conditions. The well‐exposed, seismic‐scale outcrop is characterized by four 20 to 70 m thick sandstone‐rich successions, separated by mudstone‐rich intervals of comparable thickness (40 to 90 m). Sedimentary body geometry, facies distribution, internal bedding architecture, sandstone richness and degree of amalgamation were analysed in detail across a continuous 2·5 km long transect parallel to depositional dip. Deposition in the lower section (Units 1 and 2) was dominated by poorly channellized to unconfined sand‐laden flows and accumulation of mud‐rich mass transport deposits, which is interpreted as representing a base of slope to lower slope setting. Evidence for channellization and indicators of bypass of coarse‐grained turbidity currents are more common in the upper part of the > 600 m thick succession (Units 3 and 4), which is interpreted as reflecting increased gradient conditions as the system accreted basinward.  相似文献   

8.
Coarse‐grained deep‐water strata of the Cerro Toro Formation in the Cordillera Manuel Señoret, southern Chile, represent the deposits of a major channel belt (4 to 8 km wide by >100 km long) that occupied the foredeep of the Magallanes basin during the Late Cretaceous. Channel belt deposits comprise a ca 400 m thick conglomeratic interval (informally named the ‘Lago Sofia Member’) encased in bathyal fine‐grained units. Facies of the Lago Sofia Member include sandy matrix conglomerate (that show evidence of traction‐dominated deposition and sedimentation from turbulent gravity flows), muddy matrix conglomerate (graded units interpreted as coarse‐grained slurry‐flow deposits) and massive sandstone beds (high‐density turbidity current deposits). Interbedded sandstone and mudstone intervals are present locally, interpreted as inner levée deposits. The channel belt was characterized by a low sinuousity planform architecture, as inferred from outcrop mapping and extensive palaeocurrent measurements. Laterally adjacent to the Lago Sofia Member are interbedded mudstone and sandstone facies derived from gravity flows that spilled over the channel belt margin. A levée interpretation for these fine‐grained units is based on several observations, which include: (i) palaeocurrent measurements that indicate flows diverged (50° to 100°) once they spilled over the confining channel margin; (ii) sandstone beds progressively thin, away from the channel belt margin; (iii) evidence that the eroded channel base was not very well indurated, including a stepped margin and injection of coarse‐grained channel material into surrounding fine‐grained units; and (iv) the presence of sedimentary features common to levées, including slumped units inferring depositional slopes dipping away from the channel margin, lenticular sandstone beds thinning distally from the channel margin, soft sediment deformation and climbing ripples. The tectonic setting and foredeep architecture influenced deposition in the axial channel belt. A significant downstream constriction of the channel belt is reflected by a transition from more tabular units to an internal architecture dominated by lenticular beds associated with a substantially increased degree of scour. Differential propagation of the fold‐thrust belt from the west is speculated to have had a major control on basin, and subsequently channel, width. The confining influence of the basin slopes that paralleled the channel belt, as well as the likelihood that numerous conduits fed into the basin along the length of the active fold‐thrust belt to the west, suggest that proximal–distal relationships observed from large channels in passive margin settings are not necessarily applicable to axial channels in elongate basins.  相似文献   

9.
The study of new seismic data permits the identification of sediment gravity flows in terms of internal architecture and the distribution on shelf and abyssal setting in the Qiongdongnan Basin (QDNB). Six gravity flow types are recognized: (1) turbidite channels with a truncational basal and concordant overburden relationship along the shelf edge and slope, comprising laterally-shifting and vertically-aggrading channel complexes; (2) slides with a spoon-shaped morphology slip steps on the shelf-break and generated from the deformation of poorly-consolidated and high water content sediments; (3) slumps are limited on the shelf slope, triggered either by an anomalous slope gradient or by fault activity; (4) turbidite sheet complexes (TSC) were ascribed to the basin-floor fan and slope fan origin, occasionally feeding the deep marine deposits by turbidity currents; (5) sediment waves occurring in the lower slope-basin floor, and covering an area of approximately 400?km2, were generated beneath currents flowing across the sea bed; and (6) the central canyon in the deep water area represents an exceptive type of gravity flow composed of an association of debris flow, turbidite channels, and TSC. It presents planar multisegment and vertical multiphase characteristics. Turbidite associated with good petrophysical property in the canyon could be treated as a potential exploration target in the QDNB.  相似文献   

10.
This paper documents a subsurface trace fossil and ichnofabric study of the proximal parts of a structurally confined and channelized sand‐rich, lower slope and proximal basin‐floor deep‐marine system in the Middle Eocene Ainsa basin, Spanish Pyrenees. Five depositional environments are recognized based on sedimentary facies associations, depositional architecture and stratigraphic context (channel axis, channel off‐axis, channel margin, leveé‐overbank and interfan), as well as a channel abandonment phase. Each environment is characterized by distinct and recurring ichnofabrics. Ichnological measurements and observations were recorded from six cores recovered from six wells drilled at a spacing of between 400 m and 500 m at outcrop, and totalling 1213 m in length. From channel axis to levée‐overbank environments, there is a trend of increasing bioturbation intensity and ichnodiversity. Ichnofabrics in channel axis and channel off‐axis environments are characterized by low bioturbation intensity and low ichnodiversity. Thalassinoides‐dominated firmground ichnofabrics associated with erosive sediment gravity flows are common in these environments. In contrast, channel margin and levée‐overbank environments are characterized by ichnofabrics associated with high bioturbation intensity and ichnodiversity. Sediments of the interfan are characterized by the highest bioturbation intensity, associated with burrow mottling and an absence of primary sedimentary structures. This paper demonstrates that in core‐based studies, ichnofabric analysis is an important and valuable tool in discriminating between different environments in channelized deep‐marine siliciclastic systems. The results of this study should find wide applicability in reservoir characterization studies in the petroleum industry, in field‐based analogue ichnofabric studies and other core‐based studies in deep‐water siliciclastic systems worldwide such as the Integrated Ocean Drilling Program.  相似文献   

11.
The down‐dip portion of submarine fans comprises terminal lobes that consist of various gravity flow deposits, including turbidites and debrites. Within lobe complexes, lobe deposition commonly takes place in topographic lows created between previous lobes, resulting in an architecture characterized by compensational stacking. However, in some deep water turbidite systems, compensational stacking is less prominent and progradation dominates over aggradation and lateral stacking. Combined outcrop and subsurface data from the Eocene Central Basin of Spitsbergen provide a rare example of submarine fans that comprise progradationally stacked lobes and lobe complexes. Evidence for progradation includes basinward offset stacking of successive lobe complexes, a vertical change from distal to proximal lobe environments as recorded by an upward increase in bed amalgamation, and coarsening and thickening upward trends within the lobes. Slope clinoforms occur immediately above the lobe complexes, suggesting that a shelf‐slope system prograded across the basin in concert with deposition of the lobe complexes. Erosive channels are present in proximal axial lobe settings, whereas shallow channels, scours and terminal lobes dominate further basinward. Terminal lobes are classified as amalgamated, non‐amalgamated or thin‐bedded, consistent with turbidite deposition in lobe axis, off‐axis and fringe settings, respectively. Co‐genetic turbidite–debrite beds, interpreted as being deposited from hybrid sediment gravity flows which consisted of both turbulent and laminar flow phases, occur frequently in lobe off‐axis to fringe settings, and are rare and poorly developed in channels and axial lobe environments. This indicates bypass of the laminar flow phase in proximal settings, and deposition in relative distal unconfined settings. Palaeocurrent data indicate sediment dispersal mainly towards the east, and is consistent with slope and lobe complex progradation perpendicular to the NNW–SSE trending basin margin.  相似文献   

12.
《Sedimentology》2018,65(3):809-841
Degradation of basin‐margin clinothems around the shelf‐edge rollover zone may lead to the generation of conduits through which gravity flows transport sediment downslope. Many studies from seismic‐reflection data sets show these features, but they lack small‐scale (centimetre to metre) sedimentary and stratigraphic observations on process interactions. Exhumed basin‐margin clinothems in the Tanqua depocentre (Karoo Basin) provide seismic‐reflection‐scale geometries and internal details of architecture with depositional dip and strike control. At the Geelhoek locality, clinothem parasequences comprise siltstone‐rich offshore deposits overlain by heterolithic prodelta facies and sandstone‐dominated deformed mouth bars. Three of these parasequences are truncated by a steep (6 to 22°), 100 m deep and 1·5 km wide asymmetrical composite erosion surface that delineates a shelf‐incised canyon. The fill, from base to top comprises: (i) thick‐bedded sandstone with intrabasinal clasts and multiple erosion surfaces; (ii) scour‐based interbedded sandstone and siltstone with tractional structures; and (iii) inverse‐graded to normal‐graded siltstone beds. An overlying 55 m thick coarsening‐upward parasequence fills the upper section of the canyon and extends across its interfluves. Younger parasequences display progressively shallower gradients during progradation and healing of the local accommodation. The incision surface resulted from initial oversteepening and high sediment supply triggering deformation and collapse at the shelf edge, enhanced by a relative sea‐level fall that did not result in subaerial exposure of the shelf edge. Previous work identified an underlying highly incised, sandstone‐rich shelf‐edge rollover zone across‐margin strike, suggesting that there was migration in the zone of shelf edge to upper‐slope incision over time. This study provides an unusual example of clinothem degradation and readjustment with three‐dimensional control in an exhumed basin‐margin succession. The work demonstrates that large‐scale erosion surfaces can develop and migrate due to a combination of factors at the shelf‐edge rollover zone and proposes additional criteria to predict clinothem incision and differential sediment bypass in consistently progradational systems.  相似文献   

13.
An air‐gun survey, conducted over a total distance of 4356 km in the western end of the Kurile Arc offshore, has revealed the architecture and evolution of the Kushiro submarine canyon and Tokachi submarine channels of the Tokachi‐oki forearc basin. The Kushiro submarine canyon, which runs along the eastern margin of the forearc basin, is characterized by an entrenchment of up to several hundred metres in depth. The Tokachi submarine channels, by contrast, occupy the centre of the basin and consist of small, branching and levéed channels. The Kushiro submarine canyon is not connected to the Tokachi River, which has the largest drainage area in eastern Hokkaido, with a catchment area of approximately 9010 km2 that includes high mountains and a volcanic region. Instead, the Kushiro submarine canyon exhibits an offset connection/quasi‐connection (probably having been connected during a prior sea‐level lowstand) with the Kushiro River (drainage area of 2500 km2) which contains the Kushiro Swamp at its mouth. To understand this unusual arrangement of rivers and submarine channels, acoustic facies analysis was undertaken to establish the seismic stratigraphy of the area. Subsurface strata can be divided into six seismic units of Miocene to Recent age. Analyses of seismic facies and isopach maps indicate that: (i) the palaeo‐Kushiro submarine canyon, which was ancestral to the Kushiro submarine canyon, was an aggradational levéed channel; and (ii) the palaeo‐Tokachi submarine channel was much larger than the present‐day channel and changed its course several times. Both the palaeo‐Kushiro submarine canyon and palaeo‐Tokachi submarine channel were fed predominantly by the ancestral Tokachi River, whereas the present‐day channels are no longer connected or quasi‐connected to the Tokachi River. Entrenchment of the Kushiro submarine canyon began in its distal reaches during the Early Pleistocene and propagated landward over time, which was possibly caused by base‐level fall (i.e. subsidence of the trench floor) or uplift of the forearc basin. Entrenchment of the upper part of the Kushiro submarine canyon began during the Middle Pleistocene, which may have been related to: (i) depositional progradation; (ii) uplift of the coastal area; or (iii) a change in source area from the ancestral Tokachi River to the Kushiro River.  相似文献   

14.
Shelf‐edge deltas play a critical role in shelf‐margin accretion and deepwater sediment delivery, yet much remains to be understood about the detailed linkage between shelf edge and slope sedimentation. The shelf edge separates the flat‐lying shelf from steeper slope regions, and is observable in seismic data and continuous outcrops; however, it is commonly obscured in non‐continuous outcrops. Defining this zone is essential because it segregates areas dominated by shelf currents from those governed by gravity‐driven processes. Understanding this linkage is paramount for predicting and characterizing associated deepwater reservoirs. In the Tanqua Karoo Basin, the Permian Kookfontein Formation shelf‐slope clinothems are well‐exposed for 21 km along depositional strike and dip. Two independent methods identified the shelf‐edge position, indicating that it is defined by: (i) a transition from predominantly shelf‐current to gravitational deposits; (ii) an increase in soft‐sediment deformation; (iii) a significant gradient increase; and (iv) clinothem thickening. A quantitative approach was used to assess the impact of process‐regime variability along the shelf edge on downslope sedimentation. Facies proportions were quantified from sedimentary logs and photographic panels, and integrated with mapped key surfaces to construct a stratigraphic grid. Spatial variability in facies proportions highlights two types of shelf‐edge depositional zones within the same shelf‐edge delta. Where deposition occurred in fluvial‐dominated zones, the slope is sand rich, channelized with channels widening downslope, and rich in collapse features. Where deltaic deposits indicate considerable tidal reworking, the deposits are thin and pinch‐out close to the shelf edge, and the slope is sand poor and lacks channelization. Amplification of tidal energy, and decrease in fluvial drive on the shelf, coincides with a decrease in mouth bar and shelf‐edge collapse, and a lack of channelization on the slope. This analysis suggests that process‐regime variability along the shelf edge exercised significant control on shelf‐edge progradation, slope channelization and deepwater sediment delivery.  相似文献   

15.
The Bosphorus Strait accommodates two‐way flow between the Aegean and Black Seas. The Aegean (Mediterranean) inflow has speeds of 5 to 15 cm sec?1 in the strait and a salinity contrast of ~12‰ to 16‰ with the Black Sea surface waters on the shelf. An anastomosed channel network crosses the shelf and in water deeper than 70 m is characterized by first‐order channels 5 to 10 m deep, local lateral accretion bedding, muddy in‐channel barforms, and a variety of sediment waves both on channel floors and bar crests, crevasse channels entering the overbank area and levée/overbank deposits which are radiocarbon‐dated in cores to be younger than ~7·5 to 8·0 ka. This channel network accommodates the saline density current formed by the Mediterranean inflow. The density contrast between the density underflow and the ambient water mass is ~0·01 g cm?3, similar to the density contrast ascribed to low‐concentration turbidity currents in the deep sea. Channel‐floor deposits are sandy to gravelly with local shell concentrations. Low‐relief bedforms on the channel floor have relatively straight crests, upflow‐dipping cross‐stratification, heights 1 to 1·5 m and wavelengths 85 to 155 m. Bankfull flows are subcritical, so these probably are not antidunes. Bar tops are ornamented locally with mudwaves having heights 1 to 2 m and wavelengths ~20 to 100 m; these are potentially antidunes formed under shallow overbank flows. Towards the shelf edge, the degree of channel bifurcation increases dramatically and bar tops are dissected locally by secondary channels, some of which terminate in hanging valleys. Conical mounds on the shelf (possibly mud volcanoes or sites of fluid seepage) interact with the channel network by promoting accretion of muddy streamlined macroforms in their lee. This channel network may be one of the largest and most accessible natural laboratories on Earth for the study of continuously flowing density currents. Although the driver is salinity contrast, the underflow transports sufficient sediment to form levée wedges and large streamlined barforms, and presumably transports sediment into deep water.  相似文献   

16.
珠江口盆地荔湾3-1气田珠江组深水扇沉积相分析   总被引:7,自引:1,他引:6  
根据已钻井取芯段岩相分析,从荔湾3-1气田珠江组深水扇沉积体系中划分出巨厚层和厚层块状砂岩相、厚层正粒序砂岩相、厚层逆粒序砂岩相、平行—板状斜层理砂岩相、滑塌变形砂岩相、薄层砂岩夹层相、薄层(粉)砂岩与泥岩互层相、厚层粉砂岩相、厚层泥岩相和层状深水灰岩相等10种岩相类型和识别出砂岩相组合、泥岩相组合、(粉)砂岩与泥岩互...  相似文献   

17.
Cenomanian–Turonian strata of the south‐central Pyrenees in northern Spain contain three prograding carbonate sequences that record interactions among tectonics, sea level, environment and sediment fabric in controlling sequence development. Sequence UK‐1 (Lower to Upper Cenomanian) contains distinct lagoonal, back‐margin, margin, slope and basin facies, and was deposited on a broad, flat shelf adjacent to a deep basin. The lack of reef‐constructing organisms resulted in a gently dipping ramp morphology for the margin and slope. Sequence UK‐2 (Upper Cenomanian) contains similar shallow‐water facies belts, but syndepositional tectonic modification of the margin resulted in a steep slope and deposition of carbonate megabreccias. Sequence UK‐3 (Lower to Middle Turonian) records a shift from benthic to pelagic deposition, as the shallow platform was drowned in response to a eustatic sea‐level rise, coupled with increased organic productivity. Sequences UK‐1 to UK‐3 are subdivided into lowstand, transgressive and highstand systems tracts based on stratal geometries and facies distribution patterns. The same lithologies (e.g. megabreccias) commonly occur in more than one systems tract, indicating that: (1) the depositional system responded to more than just sea‐level fluctuations; and (2) similar processes occurred during different times throughout sequence development. These sequences illustrate the complexity of carbonate platform dynamics that influence sequence architecture. Rift tectonics and flexural subsidence played a major role in controlling the location of the platform margin, maintaining a steep slope gradient through syndepositional faulting, enhancing slope instability and erosion, and influencing depositional processes, stratal relationships and lithofacies distribution on the slope. Sea‐level variations (eustatic and relative) strongly influenced the timing of sequence and parasequence boundary formation, controlled changes in accommodation and promoted platform drowning (in conjunction with other factors). Physico‐chemical and climatic conditions were responsible for reducing carbonate production rates and inducing platform drowning. Finally, a mud‐rich sediment fabric affected platform morphology, growth geometries (aggradation vs. progradation) and facies distribution patterns.  相似文献   

18.
Shelf‐edge deltas are a key depositional environment for accreting sediment onto shelf‐margin clinoforms. The Moruga Formation, part of the palaeo‐Orinoco shelf‐margin sedimentary prism of south‐east Trinidad, provides new insight into the incremental growth of a Pliocene, storm wave‐dominated shelf margin. Relatively little is known about the mechanisms of sand bypass from the shelf‐break area of margins, and in particular from storm wave‐dominated margins which are generally characterized by drifting of sand along strike until meeting a canyon or channel. The studied St. Hilaire Siltstone and Trinity Hill Sandstone succession is 260 m thick and demonstrates a continuous transition from gullied (with turbidites) uppermost slope upward to storm wave‐dominated delta front on the outermost shelf. The basal upper‐slope deposits are dominantly mass‐transport deposited blocks, as well as associated turbidites and debrites with common soft‐sediment‐deformed strata. The overlying uppermost slope succession exhibits a spectacular set of gullies, which are separated by abundant slump‐scar unconformities (tops of rotational slides), then filled with debris‐flow conglomerates and sandy turbidite beds with interbedded mudstones. The top of the study succession, on the outer‐shelf area, contains repeated upward‐coarsening, sandstone‐rich parasequences (2 to 15 m thick) with abundant hummocky and swaley cross‐stratification, clear evidence of storm‐swell and storm wave‐dominated conditions. The observations suggest reconstruction of the unstable shelf margin as follows: (i) the aggradational storm wave‐dominated, shelf‐edge delta front became unstable and collapsed down the slope; (ii) the excavated scars of the shelf margin became gullied, but gradually healed (aggraded) by repeated infilling by debris flows and turbidites, and then new gullying and further infilling; and (iii) a renewed storm wave‐dominated delta‐front prograded out across the healed outer shelf, re‐establishing the newly stabilized shelf margin. The Moruga Formation study, along with only a few others in the literature, confirms the sediment bypass ability of storm wave‐dominated reaches of shelf edges, despite river‐dominated deltas being, by far, the most efficient shelf‐edge regime for sediment bypass at the shelf break.  相似文献   

19.
The margin of the Foz do Amazonas Basin saw a shift from predominantly carbonate to siliciclastic sedimentation in the early late Miocene. By this time, the Amazon shelf had also been incised by a canyon that allowed direct influx of sediment to the basin floor, thus confirming that the palaeo‐Amazon fan had already initiated by that time (9.5–8.3 Ma). Above this interval, during a prolonged lowstand, Messinian third‐order sequences are preserved only in the incised‐valley fills of the canyon with no equivalent strata on the shelf. Third‐ and fourth‐order sequences younger than Messinian are preserved on the shelf after sea‐level rise above the shelf by the early Pliocene. Sequences younger than 3.8 Ma often show fourth‐order cyclicity with an average duration of 400 ka (larger scale eccentricity cycles) often preserved in high‐sedimentation‐rate areas of river deltas. Mass wasting and transportation of slope sediments to the basin began to play an important role in sediment dispersal at least as far back as the mid‐Pliocene, after rapid progradation had produced steeper slopes more prone to failure.  相似文献   

20.
The Miocene Gorgoglione Flysch Formation records the stratigraphic product of protracted sediment transfer and deposition through a long‐lived submarine channel system developed in a narrow and elongate thrust‐top basin of the Southern Apennines (Italy). Channel‐fill deposits are exposed in an outcrop belt approximately 500 m thick and 15 km long, oriented oblique to the palaeoflow, which was roughly south‐eastward. These exceptional exposures of channel‐fill strata allow the stacking architectures and the evolution of the channel system to be analyzed at multiple scales, enabling the effects of syn‐sedimentary thrust tectonics and basin confinement on the depositional system development to be deciphered. Two end‐member types of elementary channel architecture have been identified: high‐aspect‐ratio, weakly‐confined channels, and low‐aspect‐ratio, incisional channels. Their systematic stacking results in a complex pattern of seismic‐scale depositional architectures that determines the stratigraphic framework of the deep‐water system. From the base of the succession, two prominent channel complex sets have been recognized, namely CS1 and CS2, consisting of amalgamated incisional channel elements and weakly‐confined channel elements. These channelized units are overlain by isolated incisional channels, erosional into mud‐prone slope deposits. The juxtaposition of different channel architectures is interpreted to have been governed by regional thrust‐tectonics, in combination with a high subsidence rate that promoted significant aggradation. In this scenario, the alternating ‘in sequence’ and ‘out of sequence’ tectonic pulses of the basin‐bounding thrusts controlled the activation of coarse‐clastic inputs in the basin and the resulting stacking architectures of channelized units. The tectonically‐driven confinement of the depositional system limited the lateral offset in channel stacking, preventing large‐scale avulsions. This study represents an excellent opportunity to analyze the stratigraphic evolution of a submarine channel system in tectonically‐active settings from an outcrop perspective. It should find wide applicability in analogous depositional systems, whose stratigraphic architecture has been influenced by tectonically‐controlled lateral confinement and associated lateral tilting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号