首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The oldest igneous rocks in the Paleoproterozoic (~1.88–1.85 Ga) North Baikal postcollisional volcanoplutonic belt of the Siberian craton are the basaltoids of the Malaya Kosa Formation (Akitkan Group). The youngest are the composite (dolerite–rhyolite) and doleritic dikes cutting the granitoids of the Irel’ complex and the felsic volcanic rocks of the Khibelen Formation (Akitkan Group). The position of Malaya Kosa basaltoids in the Akitkan Group section and published geochronological data on the felsic volcanic rocks overlying Malaya Kosa rocks suggest that their age is ~1878 Ma. The rhyolites from the center of a composite dike were dated by the U–Pb zircon method at 1844 ± 11 Ma, and the dolerites in the dikes are assumed to be coeval with them. Malaya Kosa basaltoids correspond to high-Mg tholeiites and calc-alkaline andesites, whereas the dolerites in the dikes correspond to high-Fe tholeiites. Geochemically, these basaltoids and dolerites are both similar and different. As compared with the dolerites, the basaltoids are poorer in TiO2 (an average of 0.89 vs. 1.94 wt.%), Fe2O31 (9.54 vs. 14.71 wt.%), and P2O5 (0.25 vs. 0.41 wt.%). However, these rocks are both poor in Nb but rich in Th and LREE, εNd(T) being negative. According to petrographic and geochemical data, they derived from compositionally different sources. It is assumed that the basaltoids originated from subduction-enriched lithospheric mantle, whereas the dolerites originated from refractory lithospheric mantle metasomatized by subduction fluids. The isotopic and geochemical features of mafic rocks in the North Baikal belt are well explained by their formation during crustal extension which followed subduction and collision in the region. The early stages of postcollisional extension evidenced the melting of subduction-enriched lithospheric mantle with the formation of parent melts for Malaya Kosa basaltoids. At the final stages of the formation of the North Baikal belt, during the maximum crustal extension, Fe-enriched melts rose to the surface and generated the dolerites of the dikes.  相似文献   

2.
The western flank of the Paleoproterozoic Imandra-Varzuga rift zone consists of three volcanogenic-sedimentary series and layered mafic-ultramafic intrusions of different age (2.50–2.45 Ga). The earliest Monchegorsk and Monche Tundra layered massifs were formed about 2.50 Ga during the prerift stage of the evolution of the Imandra-Varzuga zone. The early rift stage (~2.45 Ga) produced layered intrusions of the Imandra complex and volcanic rocks of the Strelna Group, consisting of the Kuksha and Seidorechka formations. In terms of chemical composition, the volcanic rocks of the Seidorechka Formation belong to a single basalt-rhyolite series, mostly of normal alkalinity and both tholeiitic and calc-alkaline affinity. The rocks of the Imandra Complex are characterized by moderate LREE enrichment, relatively flat HREE patterns, and a positive Eu anomaly. Similar REE distribution patterns were observed in the volcanic rocks of the Seidorechka Formation, which show a gradual increase in REE content with increasing SiO2. The upper part of the Seidorechka Formation in the southern Khibiny region is composed of metarhyodacites. They terminate the sequence of the Strelna Group and have a U-Pb zircon age of 2448 ± 8 Ma. This age presumably reflects the upper age boundary of the rocks of the Seidorechka Formation and the end of the early stage of the evolution of the Imandra-Varzuga zone. Xenogenic zircon from the same sample yielded a U-Pb zircon age of 2715 ± 42 Ma. A U-Pb age of 2202 ± 17 Ma was obtained for titanite and rutile and interpreted as the metamorphic age of the Seidorechka Formation. The metavolcanic rocks of the Seidorechka Formation have negative ?Nd (T) varying from ?2.84 to ?2.32, and ISr values of 0.7041–0.7038, which are higher than those of the depleted mantle and suggest their derivation from an enriched mantle reservoir (EM1). The spatial association of the volcanic rocks of the Seidorechka Formation and the rocks of the Imandra Complex, similarity in the behavior of most major elements, similar REE distribution patterns, and close formation ages and isotope signatures give grounds to combine them in a single volcanoplutonic association.  相似文献   

3.
基性的碱性岩通常形成于伸展环境,具有富碱和不相容元素富集等地球化学特征,它们来源于深部富集地幔,是探索地幔交代和深部地球动力学的"岩石探针"。华北克拉通北缘燕辽裂谷内发育团山子组和大红峪组钾质火山岩以及侵入串岭沟组的钠质岩脉,它们共同组成了长城纪碱性岩系列。本文利用SHRIMP锆石U-Pb同位素方法对平谷-蓟县地区钾质火山岩进行年代学测试,获得误差范围内一致的年龄:1613±11Ma、1634±18Ma(团山子组)和1605±19Ma、1630±10Ma(大红峪组),说明钾质火山岩喷发的持续时间短,且与侵入串岭沟组的钠质岩脉同期(~1625Ma)。钾质火山岩和钠质岩脉的锆石Hf-O同位素组成相似:εHf(t)=-2~+4(正态分布峰值+0.6),δ^18O=4.5‰~7.7‰明显高于正常地幔锆石的值,钾质火山岩和钠质岩脉的母岩浆源自相同的富集地幔,源区受到高δ^18O物质的交代作用而富含钾质矿物,如角闪石或金云母。华北克拉通中-新元古代岩浆事件是伸展环境的产物,其锆石Hf同位素组成在~1.32Ga发生突变,由富集到亏损,暗示岩石圈地幔经历强烈的交代改造作用,可能成为检验地幔柱或者板块深俯冲驱动超大陆裂解机制的窗口。  相似文献   

4.
With U-Pb zircon dating, we determined the age of rhyodacites composing sedimentary covers among coarse-terrigenous rocks of the lowermost Chaya Formation of the Akitkan Group (North Baikal volcanoplutonic belt). These rocks are considered to have formed during the sedimentation. The dates (1863±9 Ma) permitted estimation of the age of basal beds of the Chaya Formation and substantiate the age boundary between the Khibelen and Chaya Formations of the Akitkan Group. The determined age and earlier dates of igneous rocks intruding the Chaya Formation deposits suggest that the latter accumulated for 10 Myr.  相似文献   

5.
赵子福  代富强  陈启 《地球科学》2019,44(12):4119-4127
俯冲到地幔深度的地壳物质不可避免地在板片-地幔界面与地幔楔发生相互作用,由此形成的超镁铁质交代岩就是造山带镁铁质火成岩的地幔源区.因此,造山带镁铁质火成岩为研究俯冲地壳物质再循环和壳-幔相互作用提供了重要研究对象.为了揭示俯冲陆壳物质再循环的机制和过程,对大别造山带碰撞后安山质火山岩开展了元素和同位素地球化学研究.这些安山质火山岩的SIMS锆石U-Pb年龄为124±3~130±2 Ma,表明其形成于早白垩世.此外,残留锆石的U-Pb年龄为中新元古代和三叠纪,分别对应于大别-苏鲁造山带超高压变火成岩的原岩年龄和变质年龄.它们具有岛弧型微量元素特征、富集的Sr-Nd-Hf同位素组成,以及变化的且大多不同于正常地幔的锆石δ18O值.这些元素和同位素特征指示,这些安山质火山岩是交代富集的造山带岩石圈地幔部分熔融的产物.在三叠纪华南陆块俯冲于华北陆块之下的过程中,俯冲华南陆壳来源的长英质熔体交代了上覆华北岩石圈地幔楔橄榄岩,大陆俯冲隧道内的熔体-橄榄岩反应产生了富沃、富集的镁铁质地幔交代岩.这种地幔交代岩在早白垩世发生部分熔融,就形成了所观察到的安山质火山岩.因此,碰撞造山带镁铁质岩浆岩的地幔源区是通过大陆俯冲隧道内板片-地幔相互作用形成的,而加入地幔楔中长英质熔体的比例决定了这些镁铁质岩浆岩的岩石化学和地球化学成分.   相似文献   

6.
Geochemical and geochronological studies of the main types of granitoids of the Angara-Vitim batholith (AVB) and granites of the Zaza complex in western Transbaikalia were carried out. U-Pb (SHRIMP-II) and Rb-Sr dating yielded the age of autochthonous gneiss-granites of the Zelenaya Griva massif (325.3±2.8 Ma), quartz syenites of the Khangintui pluton (302.3±3.7 Ma) and intruding leucogranites of the Zaza complex (294.4±1 Ma), monzonites of the Khasurta massif (283.7±5.3 Ma), and quartz monzonites of the Romanovka massif (278.5±2.4 Ma). The U-Pb and Rb-Sr dates show that the Late Paleozoic magmatism in western Transbaikalia proceeded in two stages: (1) 340–320 Ma, when predominantly mesocratic granites of the Barguzin complex, including autochthonous ones, formed, and (2) 310–270 Ma, when most AVB granitoids formed. We suggest that at the early stage, crustal peraluminous granites formed in collision geodynamic setting. At the late (main) stage, magmatism occurred in postorogenic-extension setting and was accompanied by the formation of several geochemical types of granitoids: (1) typical intrusive mesocratic granites of the Barguzin complex, similar to those produced at the first stage; (2) melanocratic granitoids (monzonitoids, quartz syenites), which were earlier dated to the early stage of the AVB evolution; (3) leucocratic medium-alkali (peraluminous) granites of the Zaza intrusive complex; and (4) some alkali-granite and syenite intrusions accompanied by alkaline mafic rocks. The diversity of granitoids that formed at the late stage of magmatism was due to the heterogeneous composition of crust protoliths and different degrees of mantle-magma participation in their formation.  相似文献   

7.
The bimodal volcanoplutonic (basalt-peralkaline rhyolite with peralkaline granites) association of the Noen and Tost ranges was formed 318 Ma ago in the Gobi-Tien Shan rift zone of the Late Paleozoic-Early Mesozoic central Asian rift system, the development of which was related to the movement of the continental lithosphere over a mantle hot spot. A specific feature of the Late Paleozoic rifting was that it occurred within the Middle-Late Paleozoic active continental margin of the northern Asian paleocontinent. Continental margin magmatism was followed after a short time delay by the magmatism of the Gobi-Tien Shan rift zone, which was located directly in the margin of the paleocontinent. Such a geodynamic setting of the rift zone was reflected in the geochemical characteristics of rift-related rocks. The distribution of major elements and compatible trace elements in the rift-related basic and intermediate rocks corresponds to a crystallization differentiation series. The distribution of incompatible trace elements suggests contributions from several sources. This is also supported by the heterogeneity of Sr and Nd isotopic compositions of the rift-related basaltoids: εNd(T) ranges from 4.4 to 6.7, and (87Sr/86Sr)0, from 0.70360 to 0.70427. The geochemical characteristics of the rift-related basaltoids of the Noen and Tost ranges are not typical of rift settings (negative anomalies in Nb and Ta and positive anomalies in K and Pb) and suggest a significant role of the rocks of a metasomatized mantle wedge in their source. In addition, there are high-titanium rocks among the rift-related basaltoids, whose geochemical characteristics approach those of the basalts of mid-ocean ridges and ocean islands. This allowed us to conclude that the compositional variations of the rift-related basaltoids of the Noen and Tost ranges were controlled by three magma sources: the enriched mantle, depleted mantle (high-titanium basaltoids), and metasomatized mantle wedge (medium-Ti basaltoids). The medium-titanium basaltoids were formed in equilibrium with spinel peridotites, whereas the high-titanium magmas were formed at deeper levels both in the spinel and garnet zones. It terms of geodynamics, the occurrence of three sources of the rift-related basaltoids of the Noen and Tost ranges was related to the ascent of a mantle plume with enriched geochemical characteristics beneath a continental margin, where its influence caused melting in the overlying depleted mantle and the metasomatized mantle wedge. The formation of rift-related andesites in the Noen and Tost ranges was explained by the contamination of mantle-derived basaltoid melts with sialic (mainly sedimentary) continental crustal materials or the assimilation of anatectic granitoid melts.  相似文献   

8.
The Zapolyarnyi volcanic center is confined to the boundary between the oldest volcanic formations (I and II) of the Pechenga complex. Its structure and rock association are significantly different from those of numerous eruptive centers of areal basaltic volcanism in the Pechenga structure. It is an oval-shaped body, 700 × 300 m in size, composed of volcanic eruptive lava breccia. The clastic material of the breccia includes angular and partially molten fragments of granites, pegmatoid granites, epidosites, quartz, and feldspars embedded in basaltic lava. The basalts are titanium-rich and iron-rich varieties enriched in large-ion lithophile elements (Rb, Ba, and Sr); they are similar in composition, including Rb-Sr and Sm-Nd isotopic characteristics, to the ferropicrites of the youngest volcanic formation (IV) and their differentiation products. The basalts of the volcanic center show εNd(T) values from ?3.13 to ?1.17. In general, these rocks definitely represent the vent facies of an Early Proterozoic central-type volcano. The age of the basalt of the volcanic center is 1918 ± 3 Ma (U-Pb method on zircon) and is similar to the previously determined age of volcanics of volcanic formation IV (1990 ± 40 Ma, Sm-Nd method). The rocks of this formation participated 2000–1900 Ma ago in the formation of the volcanoplutonic ore-bearing ferropicrite-gabbro-wehrlite association of the Pechenga structure. The age of the ore-bearing Pilguyarvi gabbro-wehrlite intrusion was constrained between 1987 ± 5 Ma (U-Pb method on zircon) and 1980 ± 10 Ma (U-Pb method on baddeleyite). In addition, the first data were obtained for the age of comagmatic olivine norites of the Nyasyucka dike complex in the northeastern flank of the Pechenga structure (1941 ± 3 Ma, U-Pb method on baddeleyite) and the peridotites of the Allarechka ore field in the southern framing of the Pechenga structure (1918 ± 29 Ma, U-Pb method on zircon), which were previously considered Archean. Taking into account the geological and geochemical characteristics of the rocks of the Zapolyarnyi paleovolcano and the identical age of the Ludikovian intrusions, it can be concluded that the basalts of the paleovolcano were formed during late stages of the evolution of Early Proterozoic basic-ultrabasic magmatism, which was characterized by extensive explosive activity and strong magmatic differentiation responsible for the generation of the ore-bearing intrusions of the ferropicrite-gabbro-wehrlite association.  相似文献   

9.
苏门答腊岛位于东特提斯构造域,沿该岛分布了大量不同时代和成因的花岗岩,但这些花岗岩的形成时代和延伸以及对比均未能得到很好的界定,也限制了对东南亚主要岩浆岩带延伸及其构造背景的理解.对西苏门答腊实武牙地区新识别出的花岗岩体开展了精细的LA-ICP-MS锆石U-Pb年代学研究.结果显示,3个花岗岩样品的锆石均为典型的岩浆成因,其岩浆年龄分别为215.1±2.4 Ma(MSWD=0.14)、206.1±5 Ma(MSWD=0.22)、214.3±5 Ma(MSWD=0.11),锆石年代学研究表明西苏门答腊存在晚三叠世的岩浆作用.对比东南亚花岗岩省内同期侵入岩认为,西苏门答腊实武牙地区的晚三叠世花岗岩可与东南亚西部花岗岩省进行对比和联系,该套晚三叠世花岗岩可能形成于中特提斯洋初始俯冲的弧后裂谷环境.   相似文献   

10.
为了探究苏吉组基性岩岩浆的起源和演化,对华北板块北缘中段土牧尔台地区苏吉组玄武安山岩进行了锆石LA-ICP-MS U-Pb定年和岩石地球化学研究,并用此来制约该地区的构造演化历史。苏吉组玄武安山岩中的锆石形态较好,均为自形—半自形,具有明显的震荡环带,且Th/U值为0.61~1.06,反映其为典型的岩浆成因。测年结果显示,苏吉组玄武安山岩形成于早二叠世((279.0±2.1)Ma)。地球化学特征表明,苏吉组玄武安山岩贫硅(49.0%~55.2%)和HFSEs,富铝(15.70%~17.80%)、镁(Mg#=49.84~67.02)和LILEs,具有较低的稀土元素总量和较平缓的稀土分配方式,显示了岛弧火山岩的地球化学特征,加之本组安山岩具有高镁安山岩的属性,所以该组火山岩源区应为受俯冲板片流体交代的亏损地幔楔。综上,笔者认为苏吉组安山岩形成于俯冲的构造背景下,在早二叠世古亚洲洋未闭合。  相似文献   

11.
报道了东天山觉罗塔格构造带中雅满苏组火山岩的地球化学特征和年代学结果,通过岩石学、同位素年代学及地球化学研究显示: (1)雅满苏组火山岩由玄武岩、安山岩、英安岩、流纹岩以及火山碎屑岩组成,以钙碱性系列为主.火山岩地球化学特征及捕获锆石年龄指示雅满苏组火山岩形成于具有古老基底的陆源弧环境; (2)东天山觉罗塔格构造带雅满苏组火山岩LA-ICP-MS锆石U-Pb谐和年龄为东段348.0±1.7 Ma(MSWD=1.15)、中段335.9±2.4 Ma(MSWD=1.03)、西段334.0±2.5 Ma (MSWD=1.02),雅满苏组火山岩整体形成于早石炭世,但东段形成时间早于西段; (3)东天山雅满苏岛弧带形成时期东段早于中段和西段,东天山石炭纪时的俯冲事件可能是由东部先开始,依次到中部、西部,俯冲形式类似于"剪刀"闭合的过程.   相似文献   

12.
《International Geology Review》2012,54(11):1370-1390
ABSTRACT

To better understand the Neoproterozoic tectonic evolution along the northern margin of Yangtze Block, we have determined the geochronological and geochemical compositions of newly recognized bimodal volcanic suite and coeval granites from the western Dabie terrain. LA-ICP-MS zircon U-Pb dating reveals that the felsic and mafic volcanics from the Hong’an unit have crystallization ages of 730 ± 4Ma and 735 ± 5Ma, respectively, indicating that the bimodal suite was erupted during the Neoproterozoic. The Xuantan, Xiaoluoshan, and Wuchenhe granites yield U-Pb ages of 742 ± 4 Ma, 738 ± 4 Ma, and 736 ± 4 Ma, respectively. The felsic volcanic rocks show peraluminous characteristics, and have a close affinity to S-type granite. The mafic volcanic rocks are basalt in compositions, and are likely generated from a depleted mantle source. The granites belong to high-K calc-alkaline and calc-alkaline series, display metaluminous to peraluminous, and are mainly highly fractionated I-type and A-type granite. The granites and felsic volcanics have zircon εHf(t) values of ?16.4 to + 5.6 and two-stage Hf model ages (TDM2) of 1.28 to 2.40 Ga, suggesting that they were partial melting of varying Mesoproterozoic–early-Neoproterozoic crust. The granites have εNd(t) of -14.7 to -1.5, and the two-stage Nd model ages (TDM2) values of 1.54 to 2.61 Ga, also implying the Yangtze crustal contribution. These Neoproterozoic bimodal suite and coeval granites were most likely generated in a rifting extensional setting, triggered by the mantle upwelling, associated with crust–mantle interaction. Intensive magmatic rocks are widespread throughout the South Qingling, Suizhao, western Dabie and eastern Dabie areas during 810–720 Ma, and show peak ages at ~ 740 Ma. Combining regional geology, we support a continental rifting extensional setting for the north margin of the Yangtze Block during the break-up of the supercontinent Rodinia.  相似文献   

13.
报道了滇东南个旧超大型锡多金属矿区西区北部白云山碱性岩新的锆石U-Pb年龄、全岩地球化学和Sr-Nd同位素数据。LA-ICP-MS锆石U-Pb定年结果表明,白云山碱性正长岩形成于晚白垩世(80.0±0.6 Ma),与个旧地区的中基性岩及花岗岩均为同一次构造岩浆事件的产物;碱性正长岩与霞石正长岩具有相似的主微量元素地球化学特征及Sr-Nd同位素组成,暗示二者很可能是源于同一富集地幔源区并经历了不同程度演化的产物。结合已有的元素和同位素组成结果,认为碱性岩、中基性岩和成矿花岗岩很可能分别源自富集的岩石圈地幔、正常的岩石圈地幔和地壳源区。在晚白垩世伸展构造背景控制下,源于不均一岩石圈地幔的碱性和中基性的岩浆底侵,促使中下地壳岩石部分熔融形成花岗质熔体,在上升至近地表过程中引起构造活动带成矿物质的富集,从而形成个旧超大型锡多金属矿床的矿化格局。可以说,源于富集地幔的碱性岩浆在含矿花岗质岩浆的成岩成矿过程中,应不只是提供热量的贡献。  相似文献   

14.
青藏高原南部广泛发育的林子宗火山岩蕴涵着新特提斯洋俯冲与印度—亚洲大陆碰撞过程的地质信息。为探讨冈底斯中段格达地区典中组火山岩的形成时代、岩浆源区及构造环境等特征,对其开展了LA-ICP-MS锆石U-Pb同位素测年和地球化学特征研究。研究结果表明: 该地区典中组火山岩锆石U-Pb年龄为(61.6±1.0) Ma; 典中组火山岩相对富集LILE和LREE、亏损HFSE,具典型岛弧火山岩的特征; 岩浆源区主要来源于地壳物质部分熔融,是俯冲岛弧构造环境下新特提斯洋北向俯冲消减过程的产物。  相似文献   

15.
本文选取内蒙古苏尼特右旗地区石炭-二叠纪地层及火山岩为研究对象,通过典型地层剖面测制、锆石U-Pb年代学、古生物和地球化学等方法,查明其形成时代、物质来源及沉积环境,并进一步探讨兴蒙造山带中段南缘晚古生代的演化过程。本巴图组2个碎屑岩样品最小年龄为299Ma和296Ma,结合古生物化石研究,其形成时代应为晚石炭-早二叠世;三面井组2个碎屑岩样品的最小年龄为271Ma和272Ma,同样结合其古生物化石资料,判断其形成时代为早-中二叠世。锆石组成和岩相特征显示本巴图组和三面井组形成于不同的沉积背景之下。本巴图组的沉积相变化显示为一个海进序列,形成于弧后伸展背景之下;三面井组则与之相反,显示沉积环境由稳定变为活动,形成于汇聚背景之下。安山岩的喷出年龄为277±1.4Ma,有着高镁安山岩的属性,显示出俯冲背景下陆缘弧火山岩的特征。结合以往区域地质资料,我们认为晚古生代兴蒙造山带南缘的构造演化过程可分为五个阶段:(1)泥盆纪,碰撞后伸展阶段;(2)早石炭世,俯冲开始阶段;(3)晚石炭,俯冲不强烈、局部发生伸展作用阶段,以本巴图组和阿木山组的碎屑岩-碳酸盐组合为代表;(4)早中二叠世,俯冲加强阶段,发育三面井组和大量的陆缘弧火山岩,此时古亚洲洋仍然存在;(5)晚二叠世之后,碰撞结束、古亚洲洋消失阶段,区域开始出现大量A型花岗岩,整体进入造山后环境。  相似文献   

16.
李玉娟 《中国地质》2021,48(1):264-283
大兴安岭火山带晚中生代火山岩的起源、演化及形成的构造背景一直存在争议。文章对出露于扎木廷地区白音高老组火山岩进行LA-ICP-MS锆石U-Pb定年,结果显示流纹岩及粗面岩分别形成于(131.6±1.2)Ma和(126.9±1.5)Ma,与白音高老组第二段火山沉积夹层中动植物化石鉴定结果一致,表明形成于早白垩世早期。流纹岩及粗面岩属碱性系列火山岩,具高硅、富碱、低铝、贫镁、钙和高FeOT/(FeOT+MgO)比值特征;相对富集大离子亲石元素Rb、Th、U、Pb,强烈亏损高场强元素Nb、Ta、Ti、P和Ba、Sr,流纹岩具A型花岗岩特征。微量元素与稀土元素特征表明流纹岩及粗面岩均来自于地壳的熔融,二者具有相同的岩浆来源。白音高老组火山岩形成于造山后的伸展构造背景,反映了蒙古鄂霍茨克洋向南俯冲与额尔古纳—兴安陆块碰撞拼合后,大兴安岭地区开始由挤压向伸展构造体制转换,软流圈地幔上涌底侵使下地壳发生了部分熔融,导致流纹岩喷发,残留相进一步熔融继而导致大规模粗面岩喷发。  相似文献   

17.
内蒙古敖汉旗朝吐沟组火山岩LA-ICP-MS锆石U-Pb年龄   总被引:2,自引:0,他引:2  
孙立新  任邦方  滕飞  张永  谷永昌  郭虎 《地质通报》2015,34(8):1493-1501
内蒙古赤峰敖汉旗一带的朝吐沟组由变基性岩、变质酸性火山岩夹云母石英片岩组成。采用LA-ICP-MS技术,对朝吐沟组2件变流纹岩样品进行了U-Pb同位素测定,获得的锆石206Pb/238U年龄加权平均值分别为359.4±1.4Ma和360.3±1.4Ma,即晚泥盆世法门期,表明朝吐沟组形成于晚泥盆世,而非前人认为的早石炭世。朝吐沟组火山岩石组合为变玄武岩和变流纹岩,显示出典型的双峰式火山岩特征,揭示该区在晚泥盆世处于伸展构造环境。  相似文献   

18.
The results of study of chemical composition, mineral-forming medium, P-T conditions of crystallization, and the age characteristics of subvolcanic felsic rocks that are spatially associated with rare-metal granite massifs in the ore units of Transbaikalia (Sherlovaya Gora, Khangilay, Bukuka, Belukha, and Shumilovka) give grounds for defining cogenetic volcanoplutonic associations. These associations within the studied region consist of rare-metal granites, ongonites, rhyolites, ongorhyolites, and trachyrhyodacites, which have much in common, but also many differences. The common chemical features of these rocks are their peraluminium signature, low mafic index and basicity, as well as enrichment (as compared to crust) in trace lithophile elements (Li, Rb, Nb, Ta, Sn, W, and F), the low contents of Zr, REE, and Sr, and the similar distribution of trace and refractory elements. At the same time, these rocks differ in the proportions of sodium and potassium, levels of concentrations of lithophile trace and refractory elements, REE distribution patterns, P-T regimes of crystallization, and the volatile composition. The composition of melts from all types of the studied rocks and trace element distribution between melts and rocks were studied on the basis of ion-microprobe analysis of rehomogenized glasses of melt inclusions in quartz. The highest concentrations of lithophile trace elements in the melt, including Cs (up to 300 ppm), Rb (up to 1002 ppm), U (up to 42 ppm), and Th, were found in the trachyrhyodacites of the Bukuka-Belukha ore unit; in terms of Li content this melt is comparable with the Ary-Bulak ongonites (690 and 715 ppm Li, respectively), and differ by an order of magnitude in the contents of refractory and rare-earth elements (total REE 94.4 and 5.44 ppm, respectively), which is indicative of a lower differentiation degree of this melt as compared to ongonites. Potassic rhyolites are peculiar in the low content of lithophile trace elements, but residual melt reveals notable enrichment in Li (up to 130 ppm) and Nb (up to 120 ppm). The accumulation of U in the residual melt of the trachyrhyodacitic and rhyolitic magmas of Eastern Transbaikalia may indicate their high potential for postmagmatic uranium ore formation. Isotope-geochronological studies (Rb-Sr isotope system) of the Sherlovaya Gora ore unit showed that the entire complex of volcanoplutonic association (granites, ongonites, rhyolites, and ongorhyolites) formed almost simultaneously within an interval of 4 Ma: from 145.7 ± 1.3 Ma at IRSr = 0.70507 ± 20 and MSWD = 0.48 to 141.5 ± 1.0 Ma at IRSr = 0.70359 ± 63 Ma and MSWD = 0.24. A spatial association of the subvolcanic rock complex with rare-metal granite massifs, their formation within a common age interval, geochemical features, and P-T conditions of crystallization suggest that they are genetically related but were derived from variably evolved sources, which originated from a single protolith under the action of mantle plume that existed beneath Central Asia at that time (Yarmolyuk and Kovalenko, 2003).  相似文献   

19.
林靓  钱青  王艳玲  高俊  江拓  刘新 《岩石学报》2015,31(6):1749-1760
西天山昭苏北部侵入于大哈拉军山组火山岩层上部的辉长岩体具有富集大离子亲石元素(Rb、Sr、Ba)、亏损高场强元素(Nb、Ta)、轻重稀土分馏等地球化学特征,与火山岩围岩具有相似的不相容元素和Sr-Nd同位素特征,其母岩浆可能由俯冲流体交代的富集岩石圈地幔部分熔融形成,晚石炭世之前南天山洋盆向伊犁-中天山板块之下的俯冲可能导致了岩石圈的富集作用。利用不相容元素进行地球化学模拟计算,结果表明辉长岩成分由50%~80%的堆晶矿物(单斜辉石、斜长石)与50%~20%的玄武质熔浆组成。辉长岩体的Cameca锆石U-Pb年龄为311.3±2.3Ma,与伊犁-中天山板块晚石炭世伊什基里克组火山岩的时代大致相当,略晚于西天山榴辉岩的峰期变质时间。辉长岩的时代进一步限定该地区大哈拉军山组火山活动应在早石炭世晚期结束,下石炭统阿克沙克组沉积岩应形成于320~311Ma之间。与辉长岩同时期的岩浆岩在伊犁-中天山板块广泛分布,形成于俯冲结束之后挤压环境向拉张环境过度的构造环境。  相似文献   

20.
《China Geology》2022,5(3):457-474
The A-type granites with highly positive εNd(t) values in the West Junggar, Central Asian Orogenic Belt (CAOB), have long been perceived as a group formed under the same tectonic and geodynamic setting, magmatic sourceq and petrogenetic model. Geological evidence shows that these granites occurred at two different tectonic units related to the southeastern subduction of Junggar oceanic plate: the Hongshan and Karamay granites emplaced in the southeast of West Junggar in the Baogutu continental arc; whereas the Akebasitao and Miaoergou granites formed in the accretionary prism. Here the authors present new bulk-rock geochemistry and Sr-Nd isotopes, zircon U-Pb ages and Hf-O isotopes data on these granites. The granites in the Baogutu continental arc and accretionary prism contain similar zircon εHf(t) values (+10.9 to +16.2) and bulk-rock geochemical characteristics (high SiO2 and K2O contents, enriched LILEs (except Sr), depleted Sr, Ta and Ti, and negative anomalies in Ce and Eu). The Hongshan and Karamay granites in the Baogutu continental arc have older zircon U-Pb ages (315–305 Ma) and moderate 18O enrichments (δ18Ozircon=+6.41‰–+7.96‰); whereas the Akebasitao and Miaoergou granites in the accretionary prism have younger zircon U-Pb ages (305–301 Ma) with higher 18O enrichments (δ18Ozircon=+8.72‰–+9.89‰). The authors deduce that the elevated 18O enrichments of the Akebasitao and Miaoergou granites were probably inherited from low-temperature altered oceanic crusts. The Akebasitao and Miaoergou granites were originated from partial melting of low-temperature altered oceanic crusts with juvenile oceanic sediments below the accretionary prism. The Hongshan and Karamay granites were mainly derived from partial melting of basaltic juvenile lower crust with mixtures of potentially chemical weathered ancient crustal residues and mantle basaltic melt (induced by hot intruding mantle basaltic magma at the bottom of the Baogutu continental arc). On the other hand, the Miaoergou charnockite might be sourced from a deeper partial melting reservoir under the accretionary prism, consisting of the low-temperature altered oceanic crust, juvenile oceanic sediments, and mantle basaltic melt. These granites could be related to the asthenosphere’s counterflow and upwelling, caused by the break-off and delamination of the subducted oceanic plate beneath the accretionary prism Baogutu continental arc in a post-collisional tectonic setting.©2022 China Geology Editorial Office.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号