首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seasonal and interannual variations in physicochemical properties were investigated in the neritic area of Sagami Bay, Kanagawa, Japan, from December 2000 to December 2005. Physicochemical properties (i.e. temperature, salinity, density, dissolved oxygen and dissolved inorganic nutrient concentration) revealed clear seasonal variations, which were similar to each other during all 5 years. Temperature, salinity and dissolved inorganic nutrients showed rapid, drastic variations within a few days and/or weeks. These variations are related to sea levels, principally due to the shifting effects of the Kuroshio Current axis: they were strongly affected by the Kuroshio Water and other waters, when sea level difference was greater than ca. 35 cm and lower than ca. 15 cm, respectively. Temperature difference (DF T ) increased with sea level difference, and the difference of salinity and dissolved inorganic nutrients (NH4 +-N, NO3 +NO2 -N, NH4 ++NO3 +NO2 -N, PO4 3−-P and SiO2-Si) increased and decreased with DF T , respectively. All these correlations are significant. Total dissolved inorganic nitrogen (N), phosphate (P) and silicate (Si) revealed seasonal variations in the ranges of 0.57–16.08, 0.0070–0.91 and 0.22–46.38 μM, respectively. From the regression equations between these elements allowed the following relation to be obtained; Si:N:P = 14.8:13.4:1. Dissolved inorganic nutrients were characterized by Si and/or P deficiency, especially in the upper layer (0–20 m depth) during summer. Single and/or combined elements are discussed on the basis of potential and stoichiometric nutrient limitations, which could restrict phytoplankton (diatom) growth as a limiting factor.  相似文献   

2.
Concentration and stable isotopic compositions (δ 18O) of dissolved O2 were measured in seawater samples collected from the Philippine Sea in June 2006. The in-situ O2 consumption rate and the isotopic fractionation factor (α r ) during dissolved O2 consumption were obtained from field observations by applying a vertical one-dimensional advection diffusion model to the deep water mass of about 1000–4000 m. The average O2 consumption rate and α r were, respectively, 0.11 ± 0.07 μmol kg−1yr−1 and 0.990 ± 0.001. These estimated values agree well with values from earlier estimations of Pacific deep water. The in-situ O2 consumption rates are two or more times higher north of 20°N, although the value of α r was not significantly different between the north and south. Its levels varied rapidly in the water mass of less about 2000 m depth. These results suggest that organic matter from the continent imparts a meaningful contribution to the upper water in the northern part of the area; it might produce the strong O2 minimum that is evident in the water mass from about 1000–2000 m in the northern part of the Philippine Sea.  相似文献   

3.
Cadmium is a biologically important trace metal that co-varies with phosphate (PO43− or Dissolved Inorganic Phosphate, DIP) in seawater. However, the exact nature of Cd uptake mechanisms and the relationship with phosphate and other nutrients in global oceans remain elusive. Here, we present a time series study of Cd and PO43− from coastal Antarctic seawater, showing that Cd co-varies with macronutrients during times of high biological activity even under nutrient and trace metal replete conditions. Our data imply that Cd/PO43− in coastal surface Antarctic seawater is higher than open ocean areas. Furthermore, the sinking of some proportion of this high Cd/PO43− water into Antarctic Bottom Water, followed by mixing into Circumpolar Deep Water, impacts Southern Ocean preformed nutrient and trace metal composition. A simple model of endmember water mass mixing with a particle fractionation of Cd/P (αCd–P) determined by the local environment can be used to account for the Cd/PO43− relationship in different parts of the ocean. The high Cd/PO43− of the coastal water is a consequence of two factors: the high input from terrestrial and continental shelf sediments and changes in biological fractionation with respect to P during uptake of Cd in regions of high Fe and Zn. This implies that the Cd/PO43− ratio of the Southern Ocean will vary on glacial–interglacial timescales as the proportion of deep water originating on the continental shelves of the Weddell Sea is reduced during glaciations because the ice shelf is pinned at the edge of the continental shelf. There could also be variations in biological fractionation of Cd/P in the surface waters of the Southern Ocean on these timescales as a result of changes in atmospheric inputs of trace metals. Further variations in the relationship between Cd and PO43− in seawater arise from changes in population structure and community requirements for macro- and micronutrients.  相似文献   

4.
夏季外海水入侵对大亚湾浮游植物群落结构的影响   总被引:1,自引:0,他引:1  
杨熙  谭烨辉 《海洋科学》2019,43(7):96-105
夏季大亚湾存在由粤东沿岸上升流所引起的外海水入侵现象,且入侵强度存在年际差异,作者利用大亚湾2004~2017年历年夏季航次调查数据,将弱入侵年份与强入侵年份进行对比分析,以探讨外海水入侵对大亚湾浮游植物群落结构的影响。结果显示,当外海水入侵由弱变强时,湾内水体理化特征发现显著变化,水体由高温低盐转变为低温高盐,N、P等营养盐含量出现下降。海水理化性质的改变导致了浮游植物群落结构的变化,硅藻、甲藻种类数以及浮游植物Shannon-wiener指数均出现升高;浮游植物总丰度和硅藻丰度下降,甲藻丰度变化不明显;常见浮游植物种类伪菱形藻属(Pseudo-nitzschiasp.)、角毛藻属(Chaetocerossp.)和叉角藻(Ceratiumfurca)丰度出现下降,而中肋骨条藻(Skeletonemacostatum)和菱形海线藻(Thalassionemanitzschioides)丰度出现升高;优势种由单一硅藻种类向硅藻和甲藻共为优势转变。此外,外海水入侵还会通过改变海水理化因子的空间分布以及湾内上层水体流向来影响浮游植物群落结构的空间分布。  相似文献   

5.
The concentrations of Cu, Ni and Cd were determined in Funka Bay during a spring phytoplankton bloom, consisting of diatoms. Just after the bloom, both dissolved Cd and nutrients were removed in the euphotic zone. However, the removal ratio of Cd to phosphate was very different from that in seawater. The removal of Cd took place at a Cd/phosphate ratio of 0.07×10−3, which was lower than in seawater before the bloom (0.25×10−3), leading to an increase in this ratio in seawater exceeding 0.7×10−3 at the end of the bloom. Elevated concentrations of Cd and phosphate were observed in the deeper layer after the bloom due to the decomposition of detrital materials produced in the bloom. The ratio of Cd/phosphate in the regeneration step was 0.24×10−3 which was different from the removal ratio of 0.07×10−3. These observations suggest that the high Cd/phosphate ratio in the regeneration would reflect a relatively high regeneration rate of Cd than that of phosphate. No significant decrease in Cu and Ni concentrations was observed during the development of the bloom, suggesting that biological removal of these metals was not so significant during the spring bloom. The concentrations of Cd, Cu and silicate in surface waters increased after the bloom with decreasing salinity due to the influence of a spring thaw.  相似文献   

6.
We collected surface water along the 142nd E meridian from Tasmania to Antarctica in December 1999. We measured temperature, salinity and total chlorophyll a; additionally, we collected suspended particle size fractions and used fluorometric analysis to determine the quantity of chlorophyll a in each of four cell size classes: picoplankton (<3 μm), two nanoplankton fractions (3–10 μm and 10–20 μm) and microplankton (> 20 μm). Changes in temperature and salinity show that we crossed 6 water masses separated by 5 fronts. We found low abundance (<0.2 mg m−3) of chlorophyll in all size classes, with the exception of higher values near the continent (0.2 to 0.4 mg m−3). Lowest chlorophyll values (<0.1 mg m−3) were found in the Polar Frontal Zone (51° to 54°S). Microplankton made up the largest portion of total chlorophyll throughout most of the region. We conclude that biomass of all phytoplankton fractions, especially pico-and nanoplankton, was constrained by limiting factors, most probably iron, throughout the region and that ecosystem dynamics within a zone are not circumpolar but are regionalized within sectors.  相似文献   

7.
Intermediate Waters in the East/Japan Sea   总被引:4,自引:0,他引:4  
Properties of the intermediate layer in the East/Japan Sea are examined by using CREAMS data taken mainly in summer of 1995. Vertical profiles of potential temperature, salinity and dissolved oxygen and relationships between these physical and chemical properties show that the dissolved oxygen concentration of 250 μmol/l, roughly corresponding to 0.6°C at the depth of about 400 db, makes a boundary between intermediate and deep waters. Water colder than 0.6°C has a very stable relationship between potential temperature and salinity while salinity of the water warmer than 0.6°C is lower in the western Japan Basin than that in the eastern Japan Basin. The low salinity water with high oxygen corresponds to the East Sea Intermediate Water (ESIW; <34.06 psu, >250 μmol/l and >1.0°C) which was previously identified by Kim and Chung (1984) and the high salinity water with high oxygen found in eastern Japan Basin is named as the High Salinity Intermediate Water (HSIW; >34.07 psu, >250 μmol/l and >0.6°C). Spatial distribution of salinity and acceleration potential on the surface of σϑ = 27.2 kg/m3 shows that the ESIW prevailing in the western Japan Basin is transported eastward by a zonal flow along the polar front near 40°N and a cyclonic gyre in the eastern Japan Basin is closely related to the HSIW. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
Dissolved and labile particulate Zr, Hf, Nb, Ta, Mo and W were determined at stations K1 (51°N, 165°E), K2 (47°N, 160°E), KNOT (44°N, 155°E) and 35N (35°N, 160°E) in the western North Pacific Ocean. A portion of seawater for dissolved species (D) was passed through a 0.2 μm Nuclepore filter and acidified to pH 2.2 with HCl and HF. A portion of seawater for acid-dissolvable species (AD) was acidified without filtration. Labile particulate (LP) species is defined as AD minus D, which represents a chemically labile fraction of particulate species. D-Zr, Hf and Ta increase with depth, Nb shows a slight depletion in surface water, whereas Mo and W have a conservative vertical profile. The concentration range of D-Zr, Hf, Nb, Ta and W is 31–275, 0.14–0.95, 4.0–7.2, 0.08–0.29 and 40–51 pmol kg−1, respectively, whereas that of Mo is 97–105 nmol kg−1. LP-species of Zr, Hf and Ta account for 10–14% of AD in average and increase up to 25% below 4000 m, whereas those for Mo and W are negligible. In contrast, LP-Nb shows maxima (up to 27%) in surface water. We also found that D-Zr/Hf, Nb/Ta and Mo/W mole ratios generally increase in the order continental crust < river water < coastal sea < open ocean.  相似文献   

9.
根据2012年3、5、8和12月4个航次长江口及邻近海域的调查数据,研究了氮、磷、硅营养盐及总氮(TN)、总磷(TP)的浓度特点,及其与盐度的相关性和叶绿素a的变化特征。结果表明,总溶解无机氮(DIN)、硅酸盐(Si O3)和TN的浓度分布均表现出自长江口至外海迅速降低的特征,且与盐度呈现显著负相关性。磷酸盐(PO4)的浓度降低程度随远离河口而减弱,且与盐度的相关性相对较弱,可能存在外海水补充;而TP则在长江口浑浊带海域呈现出较高浓度,且与盐度的相关性不明显,可能是受浑浊带泥沙吸附所致。在调查海区内,DIN与TN的平均值在夏季较低,结合叶绿素a数据分析,认为浮游植物吸收作用降低了DIN和TN的浓度。通过分析各营养盐之间的比值特征,进一步考察了营养盐来源及其对浮游植物生长的可能限制情况,其中N/P比值的变化同样揭示了N主要来自于长江水而P有部分来自于外海水的特征。该比值呈现远离河口而降低的特征,且在浑浊带无明显季节变化。春季和夏季有超过90%的调查站位显示潜在P限制,且均位于外海区。与历史资料对比发现,春季和夏季潜在P限制站位的比例明显升高,而潜在Si限制站位比例在春季和夏季降低。本文研究认为,营养盐含量及组成结构反映了该海域浮游植物群落组成和优势种的演替。  相似文献   

10.
彭鹏飞  马媛  史荣君  王迪  许欣  颜彬 《海洋科学》2022,46(10):140-149
根据2018年7月、11月和2019年1月、4月对广东考洲洋牡蛎养殖海域进行4个季节调查获得的pH、溶解无机碳(DIC)、水温、盐度、溶解氧(DO)及叶绿素a(Chla)等数据,估算该区域表层海水溶解无机碳体系各分量的浓度、初级生产力(PP)、表层海水CO2分压[p(CO2)]和海-气界面CO2交换通量(FCO2),分析牡蛎养殖活动对养殖区碳循环的影响。结果表明:牡蛎养殖区表层海水中Chla、DIC、HCO3PP显著低于非养殖区;养殖淡季表层海水中pH、DO、DIC、HCO3、和CO32–显著大于养殖旺季,养殖旺季的p(CO2)和FCO2显著大于养殖淡季。牡蛎养殖区表层海水夏季、秋季、冬季和春季的海-气界面CO2交换通量FCO2平均值分别是(42.04±9.56)、(276.14±52.55)、(–11.59±18.15)和(–13.02±6.71)mmol/(m2·d),冬季各站位FCO2值离散度较大,其中位数是–10.73mmol/(m2·d)。在全年尺度,表层海水p(CO2)及FCO2与水温呈显著正相关,与盐度呈显著负相关。在非养殖区,浮游植物光合作用可能对影响表层海水p(CO2)及FCO2起主导作用。养殖牡蛎钙化、呼吸作用等生理因素释放的CO2对表层海水p(CO2)及FCO2未产生显著影响。考洲洋养殖海域养殖旺季为CO2的源,养殖淡季整体为CO2的弱汇。  相似文献   

11.
From April 2005 to March 2006, the concentration of dissolved cadmium (Cd) was monitored in the surface seawater of Urasoko Bay, which is in a subtropical area of the North Pacific Ocean and is surrounded by a well-developed fringing reef. During this period, the observed salinity and Cd concentrations varied in a range of approximately 16–34.5 and 4.8–77.8 pM, respectively. The concentration range of Cd obtained in this study was considered to be too low to damage the coral species, and its variation throughout the year did not show any seasonality and was not connected with climate data. The Cd-salinity plot for all the data in the salinity range over 26 showed apparent non-conservative behavior, which suggests a possible irregular input of Cd from a solid phase through streams and groundwater, release from bottom sediments, and atmospheric deposition into the bay.  相似文献   

12.
Data from the R/V Mirai cruise (May–June 2000) have been examined to discover how mesoscale processes associated with eddy dynamics direct affect the water masses, the distributions and the vertical fluxes of the dissolved oxygen, nutrients and dissolved inorganic carbon in the western subarctic Pacific. Using maps of the temperature, salinity, dissolved oxygen, nutrients, chlorophyll and sea-air pCO2 difference we show that the boundaries of the anticyclone eddies in the study region were composed of high productivity coastal Oyashio water. The coastal waters were wrapped around the anticyclone eddies (thus creating a high productivity belt) and intruded inside of them. Using SeaWifs data we demonstrate that temporal variations in the position and the strength of anticyclone eddies advected the Kuril island coastal high productivity waters to the pelagic part, resulting in temporal variations of the chlorophyll in the Oyashio region. Computed vertical fluxes of the dissolved oxygen (DO), inorganic carbon (DIC) and silicate show that the anticylonic eddies in the Kuroshio-Oyashio Zone are characterized by enhanced vertical fluxes of the DO and DIC between the upper (σθ = 26.7–27.0) and lower (σθ = 27.1–27.5) intermediate layer, probably due to the intrusions of the Oyashio waters into the eddies. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The relationship between dissolved cadmium (Cd) and phosphate (PO4) was examined at three stations in the subtropical area near the Ryukyu Islands in May 1999. Preformed PO4 was obtained using the Redfield ratio in order to separate the surface water and the other layers in this study area. Almost 0 μM (−0.043 μM to 0.094 μM) was estimated in the layers above 300 m and 250 m at Sts. 1 and 3 and at St. 2, respectively. Up to these depths, water was considered to be uniform, and these layers were defined as the surface water in this study area. In the surface water, the slopes of the regression lines of the Cd-PO4 plot were 0.162, 0.156, and 0.226 (nM/μM) at Sts. 1, 2, and 3, respectively, and these values were much closer to the estimated regenerated ratio of Cd to PO4 from the Apparent Oxygen Utilization (AOU)-Cd/PO4 plots, which was 0.197 (nM/μM) in this study area. Below surface layers, the slopes of the Cd-PO4 plot changed to 0.371, 0.352, and 0.362 (nM//μM) at Sts. 1, 2, and 3, respectively. In the relationships between Cd and PO4, clear deviations or kinks were observed at three stations at a PO4 concentration of approximately 0.2 μM in the plot, which was attributable to the discontinuity of surface water and the other layers across the North Pacific subtropical mode water. In studies of the interaction between surface water and biogenic particles concerning the Cd/PO4 ratio, separate analyses of seawater (surface water and the other layers) should be carried out to obtain the individual surface water ratio because the Cd/PO4 ratio in the surface water is expected to differ from that of the underlying water. Furthermore, the biological fractionation of these constituents is based on the surface water ratio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
We measured potential temperature, salinity, and dissolved oxygen profiles from the surface to the bottom at two locations in the north Ross Sea (65.2°S, 174.2°E and 67.2°S, 172.7°W) in December 2004. Comparison of our data with previous results from the same region reveals an increase in potential temperature and decreases in salinity and dissolved oxygen concentration in the bottom layer (deeper than 3000 m) over the past four decades. The changes were significantly different from the analytical precisions. Detailed investigation of the temperature, salinity, dissolved oxygen and σ 3 value distributions and the bottom water flow in the north Ross Sea suggests a long-term change in water mass mixing balance. That is to say, it is speculated that the influence of cool, saline, high-oxygen bottom water (high-salinity Ross Sea Bottom Water) formed in the southwestern Ross Sea has possibly been decreased, while the influences of relatively warmer and fresher bottom water (low-salinity Ross Sea Bottom Water) and the Adélie Land Bottom Water coming from the Australia-Antarctic Basin have increased. The possible impact of global warming on ocean circulation needs much more investigation.  相似文献   

15.
Major gases dissolved in seawater were accurately determined with a shipboard gas chromatographic method. The standard deviations were 0.28, 0.34 and 0.36% for N2, O2 and Ar, respectively. The method was applied to water from the northwestern North Pacific Ocean collected in May to June 2000. We got 127 duplicate seawater samples from the surface 200 m layer at 11 stations. The O2 concentrations obtained by this method agreed with those given by the Winkler method. All the seawater samples from the surface 200 m, especially those from the upper 30 m, were supersaturated with respect to atmospheric N2 and Ar concentrations. In the topmost 30 m layer, the degrees of supersaturation in the inventory were 2.7–4.3% for N2 (ΔN2) and 1.7–2.6% for Ar (ΔAr), and their ratios, ΔN2/ΔAr, ranged from 1.53 to 1.81. This supersaturation seems to be chiefly due to air bubbles injected into the water and dissolved due to the water pressure, because the N2/Ar ratio of the air is around 2. The amounts of air bubbles dissolved in the upper 30 m water were relatively large, with mean value of 0.41 ml/kg or 18.4 μmol/kg. The ΔN2, ΔAr and ΔN2/ΔAr values were all positively well correlated with the wind velocities averaged for the last 24 hours prior to sampling, allowing the conclusion to be drawn that the weaker the wind velocity, the dissolved gas composition approaches in equilibrium with the air; while the stronger the wind velocity, it approaches in the air composition. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
乔永亮  徐少春  周毅  贾小平 《海洋科学》2022,46(12):103-114
为全面了解我国黄渤海鳗草(Zostera marina L.)床重金属污染水平, 本研究以大连林阳北海、葫芦岛兴城、唐山乐亭-曹妃甸和青岛湾四处鳗草床为研究对象。于夏季采集鳗草、海水和沉积物样品并分析其重金属(Cu、Zn、Pb和Cd)含量。以此分析海草的重金属富集特征, 并对比评估不同鳗草床重金属潜在生态风险。结果表明, 夏季四处鳗草床海水重金属含量由高到低依次为: Zn > Cu > Pb > Cd, 均低于国家一级水质标准; 对沉积物来说, 重金属含量由高到低依次为: Zn > Pb > Cu > Cd, 均低于国家一级沉积物质量标准。鳗草对重金属的富集因重金属种类和海草积累部位而异, 其地上组织对Cu、Zn、Cd的富集能力高于地下组织。研究区域海水中Cu、Zn、Pb和Cd潜在风险等级均处于低风险水平。而对沉积物而言, 葫芦岛兴城鳗草床Cd的潜在风险等级处于较高风险水平(Ei值为156.9)。唐山乐亭-曹妃甸和青岛湾鳗草床的地质累积指数(Igeo)由大到小依次为: Cd > Pb > Zn > Cu。综合所有元素的潜在生态风险指数(IR), 葫芦岛兴城鳗草床的潜在生态风险值最高。  相似文献   

17.
The Subei Shoal is a special coastal area with complex physical oceanographic properties in the Yellow Sea. In the present study, the distribution of phytoplankton and its correlation with environmental factors were studied during spring and summer of 2012 in the Subei Shoal of the Yellow Sea. Phytoplankton species composition and abundance data were accomplished by Uterm?hl method. Diatoms represented the greatest cellular abundance during the study period. In spring, the phytoplankton cell abundance ranged from 1.59×10~3 to 269.78×10~3 cell/L with an average of 41.80×10~3 cell/L, and Skeletonema sp. and Paralia sulcata was the most dominant species. In summer, the average phytoplankton cell abundance was 72.59×10~3 cell/L with the range of 1.78×10~3 to 574.96×10~3 cell/L, and the main dominant species was Pseudo-nitzschia pungens, Skeletonema sp., Dactyliosolen fragilissima and Chaetoceros curvisetus. The results of a redundancy analysis(RDA) showed that turbidity,temperature, salinity, pH, dissolved oxygen(DO), the ratio of dissolved inorganic nitrogen to silicate and SiO_4-Si(DIN/SiO_4-Si) were the most important environmental factors controlling phytoplankton assemblages in spring or summer in the Subei Shoal of the Yellow Sea.  相似文献   

18.
Intermediate intrusion of low salinity water (LSW) into Sagami Bay was investigated on the basis of CTD data taken in Sagami Bay and off the Boso Peninsula in 1993–1994. In October 1993, water of low temperature (<7.0°C), low salinity (<34.20 psu) and high dissolved oxygen concentration (>3.5 ml I−1) intruded along the isopycnal surface of {ie29-1} at depths of 320–500 m from the Oshima East Channel to the center of the bay. On the other hand, the LSW was absent in Sagami Bay in the period of September–November 1994, though it was always found to the south off the Boso Peninsula. Salinity and dissolved oxygen distributions on relevant isopycnal surfaces and water characteristics of LSW cores revealed that the LSW intruded from the south off the Boso Peninsula to Sagami Bay through the Oshima East Channel. The LSW cores were distributed on the continental slope along 500–1000 m isobaths and its onshore-offshore scales were two to three times the internal deformation radius. Initial phosphate concentrations in the LSW revealed its origin in the northern seas. These facts suggest that the observed LSW is the submerged Oyashio Water and it flows southwestward along the continental slope as a density current in the rotating fluid. The variation of the LSW near the center of Sagami Bay is closely related to the Kuroshio flow path. The duration of LSW in Sagami Bay is 0.5 to 1.5 months.  相似文献   

19.
The quantitative distribution and grain-size composition of the suspended particulate matter (SPM) in the marginal filter of the Severnaya Dvina River during the summer low-water periods of 2001–2005 were first analyzed in seawater on board of the vessel immediately after its sampling (without preliminary treatment) using a Coulter counter. This analysis revealed the main regularities in the transformation of the grain-size spectra at successive salinity steps of the marginal filter as well as the boundaries between these steps based on the data obtained by direct complex studies of the SPM dispersion. It is established that the water salinity is the main factor that controls the changes in the grain-size distribution and the composition of the particulate matter in the marginal filter. The concentrations of the pelitic fraction and the salinity demonstrate negative correlations between each other. It is shown that the areas characterized by the mass development of phytoplankton are located along the outer boundary of the marginal filter (at the biological step), where the salinity amounts to 23–24 psu. The content of the suspended forms of some chemical (lithogenic) elements and the Corg indicating the SPM’s genetic composition and their relations with the grain-size composition of the latter and the environments are studied.  相似文献   

20.
The solubility of aluminum hydroxide in seawater of 35‰ salinity at pH = 7.4−8.2 and 25°C was determined experimentally for three samples synthesized in different ways. The solubilities of two phases subjected to ageing and precipitated (a) from a boiling solution of aluminum sulfate and (b) immediately from seawater at room temperature were a little different and showed the minimum within pH = 8.05−8.10. The solubility of aluminum hydroxide precipitated from a solution of sulfate aluminum at room temperature and not subjected to ageing was about twofold at pH∼7.9. The analysis of the pH dependence of the concentration of dissolved aluminum allows one to suppose that an Al(OH)2+ hydroxo complex is the primary form of the aluminum occurrence in seawater at pH < 8.05, whereas the Al(OH)4 anion is prevailing at pH > 8.10. Electrically neutral Al(OH)30 hydroxocomplexes may be prevailing within the narrow range of pH = 8.05−8.10 and, in general, are of secondary importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号