首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
本文利用中国境內(大陆地区)7个地磁台1979年—1982年的磁暴资料进行了初步统计分析,结果表明:这些中低纬度台站在太阳活动峰年期间所观测到的磁暴,急始型磁暴的出现频次比缓始型磁暴的高,△H为100—200γ幅度的磁暴最多。磁暴的周日时间发生的频次,出现率是在午夜到凌晨时段稍高于其它时间。磁暴发生的频次具有季节的变化。各台磁暴的变幅随着磁纬度的不同而有所差异。  相似文献   

2.
本文应用Chisnell- no方法,求解了在理想介貭中,垂直磁流体冲激波在非均勻磁場中的传播問題。这种方法,把非均勻介貭分解成无限小的弱間断面,根据气体动力学中波与間断面相互作用的原理,算出激波通过弱間断面时的强度变化,然后用积分求得激波通过整个非均勻区时的强度变化。作者引入了激波的特征速度(它是激波在波前后介貭中传播速度的几何平均值)作为輔助参量,得到形式上比較簡单的激波传播方程。然后考虑了磁压力远大于气体压力的强磁介貭中的激波传播問題,并进行了数值积分。采用的介貭密度模型有三种:(1)阿尔芬波速为常数;(2)密度不变;(3)密度与磁場强度成正比。計算結果表明:当激波由弱磁場向强磁場传播时,激波的强度逐漸变弱。其中,在阿尔芬波速为常数的介貭中,激波强度的衰减最为緩慢;在密度不变的介貭中,激波强度的衰減最为迅速;而在密度与磁場成正比的介貭中,激波强度的衰減則介乎上述两种密度分布之間。作者联系磁流体冲激波在地球外层空間的传播問題进行了討論,密度的模型采取大气啃昔的观測結果(卽上述第三种密度分布),并进行了适当的外推,估計了在十个地球半径处的磁流体冲激波传到地面时的强度,求出了激波在地面引起的磁場变化与激波初始速度之間的关系。根据上述簡化模型,計算結果表明,在十个地球半径处初始速度为108厘米/秒的激波,传到地面引起的磁場变化大約为60伽(亻馬),这个数值的量級恰好与中低緯度强磁暴的急始变幅相符。  相似文献   

3.
磁暴急始的自动识别拾取与磁暴报告自动产出是国家地磁台网数据产品产出中重要的内容。为实现在1s采样率下的磁暴急始高精度拾取,本文针对性地提出基于Walsh变换和Akaike信息准则(AIC)的起跳点检测算法——Walsh-AIC算法,将其应用于98个磁暴急始事件的拾取上,并采用由国际地磁指数服务(ISGI)发布的磁暴时刻为标准对应用效果进行评估。结果表明,该算法不仅能够将急始磁暴起跳时刻的位置更加明显地刻画出来,而且能够有效避免传统识别急始磁暴的AIC算法中存在的识别起跳时刻结果晚于实际起跳时刻的情况。同时,将Walsh-AIC算法与其他主流拾取方法进行对比,发现前者定位结果的平均偏差和标准差均明显小于其他算法。此外,Walsh-AIC算法结果的误差关于0点的对称性较好,表明该算法拾取磁暴急始起跳时刻的精度较高,适合于解决磁暴急始的自动拾取问题。  相似文献   

4.
1989年3月13日太阳耀斑事件产生了丰富的地球物理效应。耀斑激波和耀斑粒子流引起强烈地磁暴。在武昌地区,磁暴急始发生于地方时3月13日09h30min,其初相期持续10小时(3月13日09h30min-19h20min),主相期持续13小时(3月13日19h20min-3月14日08h20min),至3月16日05h20min始恢复平静(图1)。  相似文献   

5.
本文应用1970—1979年部分磁暴急始资料,对我国7个三分量地磁台站记录到的一些磁暴急始进行了统计分析。所得结果表明,在我国昌黎、兰州、佘山磁暴急始垂直分量的变化幅度明显偏大(急始的垂直分量变化△Z的平均值分别为:昌黎9.2nT、兰州4.9nT、佘山5.3nT,而长春、北京、武汉、广州等台站则为1.5—3.0nT,垂直分量与水平分量变化的比值△Z/△H的平均值分别为:昌黎0.22,兰州0.20,佘山0.16,其余台站为0.02—0.10)。初步认为,这可能是由于这些台站地下存在着局部电性构造异常引起的。  相似文献   

6.
1989年3月13日太阳耀斑事件产生了丰富的地球物理效应。耀斑激波和耀斑粒子流引起强烈地磁暴。在武昌地区,磁暴急始发生于地方时3月13日09h30min,其初相期持续10小时(3月13日09h30min—19h20min),主相期持续13小时(3月13日19h20min—3月14日08h20min),至3月16日05h20min始恢复平静(图1)。  相似文献   

7.
苏联Р.Γ.阿芬尼娜研究急始型磁暴的十一年出現頻数分布吋,发現1944-1959这两个太阳黑子活动周期內,急始型磁暴的頻数分布曲线与太阳北半球黑子面积的十一年变化曲线相似。  相似文献   

8.
为考察赤道异常区电离层对中等强度磁暴的响应特性,用电离层CT成像方法重建电离层电子密度二维剖面。重建结果表明,暴时低纬电离层电子密度以降低为主,但暴相随纬度和高度而异;磁暴期间,赤道异常峰结构仍然存在,但恢复相期间峰的位置向赤道移动;磁暴急始之后约20min,在赤道异常峰区出现电子密度深度耗空,这种耗空遍及从底到顶的整个F区,朝赤道一侧显现水平梯度非常大的陡壁。这种与磁暴急始相联系的电子密度深度耗  相似文献   

9.
本文分析了乌鲁木齐地磁台的急始型变化事件的资料,发现1983年乌鲁木齐地区发生的三次M≥5级的地震中,有两次与地磁短周期变化存在着联系。本文选取地磁变化周期为1—10分钟的磁暴急始(S_c)、急始脉冲(S_z)、磁脉动(P_c)  相似文献   

10.
一次中强磁暴期间低纬电离层响应的CT成像   总被引:1,自引:0,他引:1       下载免费PDF全文
为考察赤道异常区电离层对中等强度磁暴的响应特性,用电离层CT成像方法重建电离层电子密度二维剖面.重建结果表明,暴时低纬电离层电子密度以降低为主,但暴相随纬度和高度而异;磁暴期间,赤道异常峰结构仍然存在,但恢复相期间峰的位置向赤道移动;磁暴急始之后约20min,在赤道异常峰区出现电子密度深度耗空,这种耗空遍及从底到顶的整个F区,朝赤道一侧显现水平梯度非常大的陡壁.这种与磁暴急始相联系的电子密度深度耗空现象很有意义,值得进一步研究.  相似文献   

11.
Interplanetary scintillation (IPS), the twinkling of small angular diameter radio sources, arises from the interaction of the signal with small-scale plasma irregularities in the solar wind. The technique may be used to sense remotely the near-Earth heliosphere and has potential for tracking large-scale interplanetary disturbances from close to the Sun to the Earth. Such observations might be useful within routine geomagnetic forecasts, and we use data from the Mullard Radio Astronomy Observatory to test this suggestion. A forecast was based on the visual evaluation of each daily map. If an IPS event was observed then we proposed that any associated geomagnetic activity would occur either on that day, or during the following two days. We consider the success of these forecasts in predicting days when either an SSC/SI or an Ap value exceeding 30 were recorded. The identification of IPS events is necessarily subjective and so two observers compiled independent events lists, and the results were compared. Approximately half of the IPS events in each list were followed by a geomagnetic signature but comparison of the two lists showed that different days were being chosen. We also found that the forecasts had very high false alarm rates. Since IPS is sensitive to a volume we did not expect all events to be associated with a geomagnetic signature. However, the technique failed to forecast a large proportion of geomagnetic events and the association between IPS events and geomagnetic activity is not much better than would be expected by chance. Comparing the IPS forecasts with forecasts of Ap released by the Space Environment Services Center (SESC) we found that SESC correctly predicted a similar proportion of days when Ap\geq30, but that the performance was significantly better than would be expected by chance, and had a much lower false alarm rate. We conclude that these IPS data cannot be used alone to produce reliable geomagnetic activity forecasts.  相似文献   

12.
Interplanetary scintillation (IPS), the twinkling of small angular diameter radio sources, is caused by the interaction of the signal with small-scale plasma irregularities in the solar wind. The technique may be used to sense remotely the near-Earth heliosphere and observations of a sufficiently large number of sources may be used to track large-scale disturbances as they propagate from close to the Sun to the Earth. Therefore, such observations have potential for use within geomagnetic forecasts. We use daily data from the Mullard Radio Astronomy Observatory, made available through the World Data Centre, to test the success of geomagnetic forecasts based on IPS observations. The approach discussed here was based on the reduction of the information in a map to a single number or series of numbers. The advantages of an index of this nature are that it may be produced routinely and that it could ideally forecast both the occurrence and intensity of geomagnetic activity. We start from an index that has already been described in the literature, INDEX35. On the basis of visual examination of the data in a full skymap format modifications were made to the way in which the index was calculated. It was hoped that these would lead to an improvement in its forecasting ability. Here we assess the forecasting potential of the index using the value of the correlation coefficient between daily Ap and the IPS index, with IPS leading by 1 day. We also compare the forecast based on the IPS index with forecasts of Ap currently released by the Space Environment Services Center (SESC). Although we find that the maximum improvement achieved is small, and does not represent a significant advance in forecasting ability, the IPS forecasts at this phase of the solar cycle are of a similar quality to those made by SESC.  相似文献   

13.
R. I. Crickmore 《Annales Geophysicae》1994,12(10-11):1101-1113
Thermospheric winds on a total of 237 nights have been studied for the effects due to geomagnetic activity, solar flux, and season. The observations have been made from 1988 to 1992 by a Fabry-Perot interferometer (FPI) operating at Halley (75.5°S, 26.6°W), Antarctica. This is the first statistical study of thermospheric winds near the southern auroral zone. The main factor affecting the wind velocities is the geomagnetic activity. Increases in activity cause an increase in the maximum equatorward wind, and cause the zonal wind in the evening to become more westward. Smaller changes in the mean wind occur with variations in season and solar flux. The small variation with solar flux is more akin to the situation found at mid-latitudes than at high latitudes. Since the geomagnetic latitude of Halley is only 61°, it suggests that the variability of the wind with solar flux may depend more on geomagnetic than geographic latitude. These observations are in good agreement with the empirical Horizontal Wind Model (HWM90). However, comparisons with predictions of the Vector Spherical Harmonic Model (VSH) show that for low geomagnetic activity the predicted phases of the two components of the wind closely resemble the observations but the modelled amplitudes are too small by a factor of two. At high geomagnetic activity the major differences are that modelled zonal velocity is too westward in the evening and too eastward after 04 UT. The modelled ion densities at the F-region peak are a factor of up to 9 too large, whilst the predicted mean value and diurnal variation of the altitude of the peak are significantly lower than those observed. It is suggested that these differences result from the ion loss rate being too low, and an inaccurate model of the magnetic field.  相似文献   

14.
This review deals with how the changes of the large-scale solar magnetic fields are related to the occurrence of solar phenomena, which are associated with geomagnetic storms. The review also describes how artificial neural networks have been used to forecast geomagnetic storms either from daily solar input data or from hourly solar wind data. With solar data as input predictions 1–3 days or a month in advance are possible, while using solar wind data as input predictions about an hour in advance are possible. The predictions one hour ahead of the geomagnetic storm indexD st from only solar wind input data have reached such high accuracy, that they are of practical use in combination with real-time solar wind observations at L1. However, the predictions days and a month ahead need to be much improved in order to be of real practical use.  相似文献   

15.
Amplitude regularities, intermittence statistics, and conditions of generation of magnetic (mag- netic impulse event, MIE) and geomagnetic storm sudden commencement (SSC) impulses were compara- tively analyzed. Common and different properties of MIE and SSC impulses observed in a high-latitude mag- netosphere were detected. It was shown that MIE impulses are observed against a background of relatively stable interplanetary medium parameters and mostly when the IMF sector structure is negative. SSC impulses are observed against a background of sharply increasing solar wind and IMF parameters and when the IMF sector structure is positive. The amplitude dynamics, depending on the geomagnetic latitude of MIE and SSC impulses relative to the noon meridian, as well as in the daytime and nighttime MLT sectors, is sim- ilar. The dynamics of the intermittence indices (α), depending on the geomagnetic latitude of MIE and SSC impulses in the same MLT sectors, is antiphase. Independently of the IMF sector structure, the amplitudes of MIE and SSC impulses increase with increasing geomagnetic latitude, and the intermittence indices change in antiphase. It is assumed that the degree of plasma turbulence at the front boundary of magneto- sphere at moderate geomagnetic activity is relatively high and sufficient for the generation of MIE impulsive regimes. At the same time, SSC impulses originate at a lower turbulence level in the subsolar magnetospheric region but under the external action of solar wind inhomogeneities on the magnetosphere.  相似文献   

16.
小尺度地磁场勒让德多项式建模方法   总被引:1,自引:1,他引:0       下载免费PDF全文
根据地面实测地磁场数据,提出一种基于勒让德多项式的对小尺度地磁场的模型建立方法,结合数据预处理、最小二乘拟合方法,采用高阶的模型描述典型小尺度区域的地磁场,绘制出地磁图.通过实验验证,模型拟合实验点的数据与真实数据的磁场总强度平均误差小于30 nT,并且反映出小尺度区域中磁场的精细结构,有效地抑制了边界效应,大大提高了地磁场建模能力.另外讨论了勒让德多项式建模方法的优缺点以及使用范围.这为地磁场在空间延拓、探矿、地下结构分析提供了重要的方法和理论基础.  相似文献   

17.
The relationship between the F2-layer critical frequency and solar wind parameters during magnetic storm sudden commencement (SSC) and main phase periods for intense (IS) and very intense (VIS) class of storms is investigated. The analysis covers low- and mid-latitude stations. The effects of ionospheric storm during SSC period is insignificant compared to the main phase, but can trigger the latter. The main phase is characterized by severe negative storm effect at both latitudes during VIS periods while it is latitudinal symmetric for IS observations. The IS reveal positive/negative storm phase in the low-/mid-latitudes, respectively. Ionization density effect is more prominent during VIS events, and is attributed to large energetic particle and solar activity input into the earth magnetosphere. However, ionospheric effect is more significant at the low-latitude than at the mid-latitude. Lastly, ionospheric storm effect during a geomagnetic storm may be related to the combinational effect of interplanetary and geomagnetic parameters and internal ionospheric effect, not necessarily the solar wind alone.  相似文献   

18.
This study aims at looking for the characteristic patterns of mesospheric wind over the geomagnetic storm times. For this purpose, the geomagnetic storms preceded by a sudden commencement (SSC) have been selected from January 1995 to April 1999. By using the onset of SSC as the timing mark, a superposed epoch analysis has been performed on the available neutral wind data measured with medium frequency (MF) radars at Yamagawa (31.2°N, 130.6°E) and Wakkanai (45.4°N, 141.7°E). In doing so, the length of time chosen for the superposed analysis is from 7 days before the SSC onset to 21 days after the onset; subsets of wind data are superimposed for summer and winter months, respectively. Then with harmonic analysis on the superposed winds the mean winds in both summer and winter months have been obtained. Concerning mean wind characteristics, some interesting details are the reversal heights of the summer zonal winds, which is 79–80 km at Yamagawa and 84 km at Wakkanai. Strong wavy structures with 2–4 days period are observed at both Yamagawa and Wakkanai in both summer and winter. As for storm effects, significant enhancement of eastward wind is found 5 days after SSC onset at both Yamagawa and Wakkanai in winter. Moreover, the northward wind turns southward at Wakkanai 2 days after the onset of SSC, and the southward wind lasts for several days thereafter. In summer months, the post-storm enhancement tends to be small and mainly in the eastward wind at both Yamagawa and Wakkanai.  相似文献   

19.
In tidal environments, the response of suspended sediment concentration (SSC) to the current velocity is not instantaneous, the SSC lagging behind the velocity (phase lag), and the amplitude of SSC variation decreasing with height above the bed (amplitude attenuation). In order to quantitatively describe this phenomenon, a one-dimensional vertical advection–diffusion equation of SSC is derived analytically for uniform unsteady tidal flow by defining a concentration boundary condition using a constant vertical eddy diffusivity and sediment settling velocity. The solution, in simple and straightforward terms, shows that the vertical phase lag increases linearly with the height above the bed, while the amplitude of the SSC variation decreases exponentially with the height. The relationship between the SSC and the normalized current velocity can be represented by an ellipse or a line, depending on the phase lag. The lag of sediment movement or “diffusion/settling lag” is the mechanism generating the phase lag effect. Field observations used for validation show that the theoretically predicted and the observed curves of the vertical SSC phase lag and amplitude attenuation show reasonable agreement. The procedure proposed in this paper substantially simplifies the modeling of suspended matter transport in tidal flows.  相似文献   

20.
本文利用最小二乘非参数辨识,在线性时不变假设下,对由太阳风变化引起的地磁场扰动进行了研究.用这种方法得到的脉冲响应函数给出了地磁层对太阳风变化响应的宏观外部描述,同时还得到了较好的地磁扰动预报结果.本文不仅对单输入单输出系统(SISO系统)进行了分析,而且也对多输入单输出系统(MISO系统)进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号