首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution digital topography is essential for land management and planning in any type of territory as well as the reproduction of the Earth surface in a geocoded digital format that allows several Digital Earth applications. In a volcanic environment, Digital Elevation Models are a valid reference for multi-temporal analyses aimed to observe frequent changes of a volcano edifice and for the relative detailed morphological and structural analyses. For the first time, a DTM (Digital Terrain Model) and a DSM (Digital Surface Model) covering the entire Mt. Etna volcano (Italy) derived from the same airborne Light Detection and Ranging (LiDAR) are here presented. More than 250 million 3D LiDAR points have been processed to distinguish ground elements from natural and anthropic features. The end product is the highly accurate representation of Mt. Etna landscape (DSM) and ground topography (DTM) dated 2005. Both models have a high spatial resolution of 2?m and cover an area of 620?km2. The DTM has been validated by GPS ground control points. The vertical accuracy has been evaluated, resulting in a root-mean-square-error of ±?0.24?m. The DTM is available as electronic supplement and represents a valid support for various scientific studies.  相似文献   

2.
In this study, linear spectral mixture analysis (LSMA) is used to characterize the spectral heterogeneity of lava flows from Nyamuragira volcano, Democratic Republic of Congo, where vegetation and lava are the two main land covers. In order to estimate fractions of vegetation and lava through satellite remote sensing, we made use of 30 m resolution Landsat Enhanced Thematic Mapper Plus (ETM+) and Advanced Land Imager (ALI) imagery. 2 m Pleiades data was used for validation. From the results, we conclude that (1) LSMA is capable of characterizing volcanic fields and discriminating between different types of lava surfaces; (2) three lava endmembers can be identified as lava of old, intermediate and young age, corresponding to different stages in lichen growth and chemical weathering; (3) a strong relationship is observed between vegetation fraction and lava age, where vegetation at Nyamuragira starts to significantly colonize lava flows ∼15 years after eruption and occupies over 50% of the lava surfaces ∼40 years after eruption. Our study demonstrates the capability of spectral unmixing to characterize lava surfaces and vegetation colonization over time, which is particularly useful for poorly known volcanoes or those not accessible for physical or political reasons.  相似文献   

3.
The goal of this research is to map land cover patterns and to detect changes that occurred at Alkali Flat and Lake Lucero, White Sands using multispectral Landsat 7 Enhanced Thematic Mapper Plus (ETM+), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and hyperspectral Hyperion and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The other objectives of this study were: (1) to evaluate the information dimensionality limits of Landsat 7 ETM+, ASTER, ALI, Hyperion, and AVIRIS data with respect to signal-to-noise and spectral resolution, (2) to determine the spatial distribution and fractional abundances of land cover endmembers, and (3) to check ground correspondence with satellite data. A better understanding of the spatial and spectral resolution of these sensors, optimum spectral bands and their information contents, appropriate image processing methods, spectral signatures of land cover classes, and atmospheric effects are needed to our ability to detect and map minerals from space. Image spectra were validated using samples collected from various localities across Alkali Flat and Lake Lucero. These samples were measured in the laboratory using VNIR–SWIR (0.4–2.5 μm) spectra and X-ray Diffraction (XRD) method. Dry gypsum deposits, wet gypsum deposits, standing water, green vegetation, and clastic alluvial sediments dominated by mixtures of ferric iron (ferricrete) and calcite were identified in the study area using Minimum Noise Fraction (MNF), Pixel Purity Index (PPI), and n-D Visualization. The results of MNF confirm that AVIRIS and Hyperion data have higher information dimensionality thresholds exceeding the number of available bands of Landsat 7 ETM+, ASTER, and ALI data. ASTER and ALI data can be a reasonable alternative to AVIRIS and Hyperion data for the purpose of monitoring land cover, hydrology and sedimentation in the basin. The spectral unmixing analysis and dimensionality eigen analysis between the various datasets helped to uncover the most optimum spatial–spectral–temporal and radiometric-resolution sensor characteristics for remote sensing based on monitoring of seasonal land cover, surface water, groundwater, and alluvial sediment input changes within the basin. The results demonstrated good agreement between ground truth data and XRD analysis of samples, and the results of Matched Filtering (MF) mapping method.  相似文献   

4.
We investigate the ability of GPS to detect volcanic plumes at Mt. Etna, Italy. We use a robust statistical approach to highlight whether the presence of a volcanic plume in the atmosphere may really affect the GPS undifferenced post-fit phase residuals. The proposed method has been tested for the September 4–5, 2007 activity of Mt. Etna. This eruption produced powerful lava fountains forming a weak, a few kilometers high plume for several hours, representing typical activity at Etna over the last 5 years. We analyzed data from nineteen Etna permanent GPS stations located on the volcano flanks at different heights and applied a statistical test based on four main steps: (a) realization of a simplified model representing the volcanic plume in atmosphere; (b) evaluation of the GPS satellite and station couples intersecting the plume; (c) calculation of the volcanic plume region crossed by the GPS signal; (d) application of a robust statistical test in order to see whether the volcanic plume affected the GPS signals. Results show that during the September 4–5, 2007 explosive activity, the GPS residuals definitely include the contribution of the volcanic plume. Our analysis shows that values of the GPS residuals are ten times smaller than those found for the Miyakejima eruption (Japan), highlighting a likely relationship between residuals and eruption intensity. In the future, data derived from the GPS stations located on Etna’s flanks could be used to improve the alerting system of volcanic ash, already operating at the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo.  相似文献   

5.
The accurate estimation of leaf water content (LWC) and knowledge about its spatial variation are important for forest and agricultural management since LWC provides key information for evaluating plant physiology. Hyperspectral data have been widely used to estimate LWC. However, the canopy reflectance can be affected by canopy structure, thereby introducing error to the retrieval of LWC from hyperspectral data alone. Radiative transfer models (RTM) provide a robust approach to combine LiDAR and hyperspectral data in order to address the confounding effects caused by the variation of canopy structure. In this study, the INFORM model was adjusted to retrieve LWC from airborne hyperspectral and LiDAR data. Two structural parameters (i.e. stem density and crown diameter) in the input of the INFORM model that affect canopy reflectance most were replaced by canopy cover which could be directly obtained from LiDAR data. The LiDAR-derived canopy cover was used to constrain in the inversion procedure to alleviate the ill-posed problem. The models were validated against field measurements obtained from 26 forest plots and then used to map LWC in the southern part of the Bavarian Forest National Park in Germany. The results show that with the introduction of prior information of canopy cover obtained from LiDAR data, LWC could be retrieved with a good accuracy (R2 = 0.87, RMSE = 0.0022 g/cm2, nRMSE = 0.13). The adjustment of the INFORM model facilitated the introduction of prior information over a large extent, as the estimation of canopy cover can be achieved from airborne LiDAR data.  相似文献   

6.
结合Gram-Schmidt变换的高光谱影像谐波分析融合算法   总被引:1,自引:0,他引:1  
张涛  刘军  杨可明  罗文杉  张育育 《测绘学报》2015,44(9):1042-1047
针对高光谱影像谐波分析融合(HAF)算法在影像融合时不顾及地物光谱曲线整体反射率这一缺陷,提出了结合Gram-Schmidt变换的高光谱影像谐波分析融合(GSHAF)改进算法。GSHAF算法可在完全保留融合前后像元光谱曲线波形形态的基础上,将高光谱影像融合简化为各像元光谱曲线的谐波余相组成的二维影像与高空间分辨率影像之间的融合。它是在原始高光谱影像光谱曲线被谐波分解为谐波余项、振幅和相位后,首先将其谐波余项与高空间分辨率影像进行GS变换融合,这样便可有效地修正融合后像元光谱曲线的反射率特征,随后再利用该融合影像与谐波振幅、相位进行谐波逆变换,完成高光谱影像谐波融合。本文最后利用Hyperion高光谱遥感影像与ALI高空间分辨率影像对GSHAF算法进行可行性分析,再以HJ-1A等卫星数据对其进行普适性验证,试验结果表明,GSHAF算法不仅可以完全地保留光谱曲线波形形态,而且融合后影像的地物光谱曲线反射率更接近真实地物。  相似文献   

7.
The use of multispectral satellite sensors for generation of hyperspectral indices is restricted because of their coarse spectral resolutions. In this study, we attempted to synthesize a few of these hyperspectral indices, viz. RedEdge Normalized Difference Vegetation Index (NDVI705), Plant Senescence Reflectance Index (PSRI) and Normalized-Difference-Infrared-Index (NDII), for crop stress monitoring at regional scale using multispectral images, simulated from Hyperion data. The Hyperion data were resampled and simulated to corresponding spatial and spectral resolutions of AWiFS, OCM-2 and MODIS sensors using their respective filter function. Different possible combinations of two bands (i.e. simple difference, simple ratio and normalized difference) were computed using synthetic spectral bands of each sensor, and were regressed with NDVI705, PSRI and NDII. Models with highest correlation were selected and inverted on Hyperion data of another date to synthesize respective multispectral indices. Synthetic broad band indices of multispectral sensors with their respective narrow band indices of Hyperion were found to be in good agreement.  相似文献   

8.
Wetland biomass is essential for monitoring the stability and productivity of wetland ecosystems. Conventional field methods to measure or estimate wetland biomass are accurate and reliable, but expensive, time consuming and labor intensive. This research explored the potential for estimating wetland reed biomass using a combination of airborne discrete-return Light Detection and Ranging (LiDAR) and hyperspectral data. To derive the optimal predictor variables of reed biomass, a range of LiDAR and hyperspectral metrics at different spatial scales were regressed against the field-observed biomasses. The results showed that the LiDAR-derived H_p99 (99th percentile of the LiDAR height) and hyperspectral-calculated modified soil-adjusted vegetation index (MSAVI) were the best metrics for estimating reed biomass using the single regression model. Although the LiDAR data yielded a higher estimation accuracy compared to the hyperspectral data, the combination of LiDAR and hyperspectral data produced a more accurate prediction model for reed biomass (R2 = 0.648, RMSE = 167.546 g/m2, RMSEr = 20.71%) than LiDAR data alone. Thus, combining LiDAR data with hyperspectral data has a great potential for improving the accuracy of aboveground biomass estimation.  相似文献   

9.
Conventional methods of soil nitrogen extraction are time consuming, expensive and tedious. Remote sensing and Geographical Information System technologies can be used for the rapid and efficient prediction of the presence of soil nitrogen. However, studies are limited by and large to fields of larger and homogeneous units. This research concentrates on the prediction of topsoil nitrogen from harvested, scattered and small-sized agricultural fields of India using hyperspectral data. Spaceborne hyperspectral Hyperion data are used for the prediction of the presence of nitrogen. Multivariate partial least square regression method was used to predict the presence of nitrogen from reflectance. Reflectance data were pretreated using moving average and Savitzky–Golay filters which resulted in moderate prediction of R2 0.65 and 0.63 for calibration and validation, respectively. It can be inferred that Hyperion data can be effectively used for the prediction of the presence of soil nitrogen with a moderate level of accuracy even in case of scattered fields and fields of sizes approximately equal to the spatial resolution of the satellite.  相似文献   

10.
基于Hyperion影像的涩北气田油气信息提取   总被引:1,自引:0,他引:1  
 对柴达木地区涩北气田地质地理环境下的蚀变矿物进行分析,结合卫星高光谱遥感数据Hyperion的图谱,对已知气田区与背景区光谱特征进行相关分析,确定了932.64~1 346.25 nm与2 002.06~2 385.5 nm为油气信息识别的有利波长范围; 利用光谱角制图(SAM)技术提取了涩北气田油气的空间分布信息和台吉乃尔含气构造等远景区,为高光谱遥感油气勘探提供了有效技术方法与途径。  相似文献   

11.
Recent developments in hyperspectral remote sensing technologies enable acquisition of image with high spectral resolution, which is typical to the laboratory or in situ reflectance measurements. There has been an increasing interest in the utilization of in situ reference reflectance spectra for rapid and repeated mapping of various surface features. Here we examined the prospect of classifying airborne hyperspectral image using field reflectance spectra as the training data for crop mapping. Canopy level field reflectance measurements of some important agricultural crops, i.e. alfalfa, winter barley, winter rape, winter rye, and winter wheat collected during four consecutive growing seasons are used for the classification of a HyMAP image acquired for a separate location by (1) mixture tuned matched filtering (MTMF), (2) spectral feature fitting (SFF), and (3) spectral angle mapper (SAM) methods. In order to answer a general research question “what is the prospect of using independent reference reflectance spectra for image classification”, while focussing on the crop classification, the results indicate distinct aspects. On the one hand, field reflectance spectra of winter rape and alfalfa demonstrate excellent crop discrimination and spectral matching with the image across the growing seasons. On the other hand, significant spectral confusion detected among the winter barley, winter rye, and winter wheat rule out the possibility of existence of a meaningful spectral matching between field reflectance spectra and image. While supporting the current notion of “non-existence of characteristic reflectance spectral signatures for vegetation”, results indicate that there exist some crops whose spectral signatures are similar to characteristic spectral signatures with possibility of using them in image classification.  相似文献   

12.
This paper reports a series of laboratory and field measurements of spectral reflectance under artificial and natural light conditions which demonstrate that effects of natural chlorophyll fluorescence are observable in the reflectance red edge spectral region. These are results from the progress made to link physiologically-based indicators to optical indices from hyperspectral remote sensing in the Bioindicators of Forest Sustainability Project. This study is carried out on twelve sites of Acer saccharum M. in the Algoma Region, Ontario (Canada), where field measurements, laboratory-simulation experiments, and hyperspectral CASI imagery have been carried out in 1997, 1998, 1999 and 2000 campaigns. Leaf samples from the study sites have been used for reflectance and transmittance measurements with the Li-Cor Model 1800 integrating sphere apparatus coupled to an Ocean Optics Model ST1000 fibre spectrometer in which the same leaves are illuminated alternatively with and without fluorescence-exciting radiation. A study of the diurnal change in leaf reflectance spectra, combined with fluorescence measurements with the PAM-2000 Fluorometer show that the difference spectra are consistent with observed diurnal changes in steady-state fluorescence. Small canopies of Acer saccharum M. have been used for laboratory measurements with the CASI hyperspectral sensor, and under natural light conditions with a fibre spectrometer in diurnal trials, in which the variation of measured reflectance is shown experimentally to be consistent with a fluorescence signature imposed on the inherent leaf reflectance signature. Such reflectance changes due to CF are measurable under natural illumination conditions, although airborne experiments with the CASI hyperspectral sensor produced promising but less convincing results in two diurnal experiments carried out in 1999 and 2000, where small variations of reflectance due to the effect of CF were observed.  相似文献   

13.
天宫一号高光谱数据是继美国Hyperion之后,另一种可应用于地质领域的成像光谱数据.面向地质应用特点与需求,针对反射率产品开展全面、定量的数据质量评价对于深化应用研究具有重要意义.但是,由于航天成像光谱数据与地面实测波谱空间尺度差异甚大,在荒漠戈壁区选取自然地物进行波谱测试,并对其开展评价,特别是定量评价,非常困难.本文以航空HyMap数据为传递,完成了天宫一号成像光谱数据质量的定量评价.结果表明,在矿物识别采用的主要短波红外谱段,天宫一号高光谱数据的信噪比明显优于Hyperion数据.采用2190—2230 nm、2310—2355 nm两个谱段的吸收深度初步对天宫一号高光谱短波红外数据真实性进行了评价,经过校正后,天宫一号数据Al-OH、Mg-OH/CO32-矿物大类或组合的漏提率从71%、67%减小至29%、28%,可有效提高弱信息的检出率.  相似文献   

14.
机载激光雷达及高光谱的森林乔木物种多样性遥感监测   总被引:1,自引:0,他引:1  
利用机载LiDAR和高光谱数据并结合37个地面调查样本数据,基于结构差异与光谱变异理论,通过相关分析法分别筛选了3个最优林冠结构参数和6个最优光谱指数,在单木尺度上利用自适应C均值模糊聚类算法,在神农架国家自然保护区开展森林乔木物种多样性监测,实现了森林乔木物种多样性的区域成图。研究结果表明,(1)基于结合形态学冠层控制的分水岭算法可以获得较高精度的单木分割结果(R~2=0.88,RMSE=13.17,P0.001);(2)基于LiDAR数据提取的9个结构参数中,95%百分位高度、冠层盖度和植被穿透率为最优结构参数,与Shannon-Wiener指数的相关性达到R~2=0.39—0.42(P0.01);(3)基于机载高光谱数据筛选的16个常用的植被指数中,CRI、OSAVI、Narrow band NDVI、SR、Vogelmann index1、PRI与Shannon-Wiener指数的相关性最高(R~2=0.37—0.45,P0.01);(4)在研究区,利用以30 m×30 m为窗口的自适应模糊C均值聚类算法可预测的最大森林乔木物种数为20,物种丰富度的预测精度为R~2=0.69,RMSE=3.11,Shannon-Wiener指数的预测精度为R~2=0.70,RMSE=0.32。该研究在亚热带森林开展乔木物种多样性监测,是在区域尺度上进行物种多样性成图的重要实践,可有效补充森林生物多样性本底数据的调查手段,有助于实现生物多样性的长期动态监测及科学分析森林物种多样性的现状和变化趋势。  相似文献   

15.
Modern hyperspectral imaging and non-imaging spectroradiometer has the capability to acquire high-resolution spectral reflectance data required for surface materials identification and mapping. Spectral similarity metrics, due to their mathematical simplicity and insensitiveness to the number of reference labelled spectra, have been increasingly used for material mapping by labelling reflectance spectra in hyperspectral data labelling. For a particular hyperspectral data set, the accuracy of spectral labelling depends considerably upon the degree of unambiguous spectral matching achieved by the spectral similarity metric used. In this work, we propose a new methodology for quantifying spectral similarity for hyperspectral data labelling for surface materials identification. Developed adopting the multiple classifier system architecture, the proposed methodology unifies into a single framework the differential performances of eight different spectral similarity metrics for the quantification of spectral matching for surface materials. The proposed methodology has been implemented on two types of hyperspectral data viz. image (airborne hyperspectral images) and non-image (library spectra) for numerous surface materials identification. Further, the performance of the proposed methodology has been compared with the support vector machines (SVM) approach, and with all the base spectral similarity metrics. The results indicate that, for the hyperspectral images, the performance of the proposed methodology is comparable with that of the SVM. For the library spectra, the proposed methodology shows a consistently higher (increase of about 30% when compared to SVM) classification accuracy. The proposed methodology has the potential to serve as a general library search method for materials identification using hyperspectral data.  相似文献   

16.
The present study was carried out to evaluate the satellite-based hyperspectral data available from Hyperion onboard EO-1 of NASA for agricultural applications. The study was carried out for Daurala block of Meerut district, using data of March 2005. The preliminary data analysis showed that there are 196 usable bands out of a total of 242 bands. Principal component (PC) analysis showed that about 99% of the information explained in 10 PCs. The atmospherically corrected reflectance, derived from satellite data had good agreement with the ground reflectance, observed using handheld spectroradiometer, with r2 ranging from 0.85 to 0.98. A set of twenty most usable bands was selected by the criteria of maximum contribution to first five PCs and the band combinations with least inter-band correlations.  相似文献   

17.
Abstract

This study proposes the development of a multi-sensor, multi-spectral composite from Landsat-8 and Sentinel-2A imagery referred to as ‘LSC’ for land use land cover (LULC) characterisation and compared with respect to the hyperspectral imagery of the EO1: Hyperion sensor. A three-stage evaluation was implemented based on the similarity observed in the spectral response, supervised classification results and endmember abundance information obtained using linear spectral unmixing. The study was conducted for two areas located around Dhundi and Rohtak in Himachal Pradesh and Haryana, respectively. According to the analysis of the spectral reflectance curves, the spectral response of the LSC is capable of identifying major LULC classes. The kappa accuracy of 0.85 and 0.66 was observed for the classification results from LSC and Hyperion data for Dhundi and Rohtak datasets, respectively. The coefficient of determination was found to be above 0.9 for the LULC classes in both the datasets as compared to Hyperion, indicating a good agreement. Thus, these three-stage results indicated the significant potential of a composite derived from freely available multi-sensor multi-spectral imagery as an alternative to hyperspectral imagery for LULC studies.  相似文献   

18.
The Normalized Area Over reflectance Curve (NAOC) is proposed as a new index for remote sensing estimation of the leaf chlorophyll content of heterogeneous areas with different crops, different canopies and different types of bare soil. This index is based on the calculation of the area over the reflectance curve obtained by high spectral resolution reflectance measurements, determined, from the integral of the red–near-infrared interval, divided by the maximum reflectance in that spectral region. For this, use has been made of the experimental data of the SPARC campaigns, where in situ measurements were made of leaf chlorophyll content, LAI and fCOVER of 9 different crops – thus, yielding 300 different values with broad variability of these biophysical parameters. In addition, Proba/CHRIS hyperspectral images were obtained simultaneously to the ground measurements. By comparing the spectra of each pixel with its experimental leaf chlorophyll value, the NAOC was proven to exhibit a linear correlation to chlorophyll content. Calculating the correlation between these variables in the 600–800 nm interval, the best correlation was obtained by computing the integral of the spectral reflectance curve between 643 and 795 nm, which practically covers the spectral range of maximum chlorophyll absorption (at around 670 nm) and maximum leaf reflectance in the infrared (750–800 nm). Based on a Proba/CHRIS image, a chlorophyll map was generated using NAOC and compared with the land-use (crops classification) map. The method yielded a leaf chlorophyll content map of the study area, comprising a large heterogeneous zone. An analysis was made to determine whether the method also serves to estimate the total chlorophyll content of a canopy, multiplying the leaf chlorophyll content by the LAI. To validate the method, use was made of the data from another campaign ((SEN2FLEX), in which measurements were made of different biophysical parameters of 7 crops, and hyperspectral images were obtained with the CASI imaging radiometer from an aircraft. Applying the method to a CASI image, a map of leaf chlorophyll content was obtained, which on, establishing comparisons with the experimental data allowed us to estimate chlorophyll with a root mean square error of 4.2 μg/cm2, similar or smaller than other methods but with the improvement of applicability to a large set of different crop types.  相似文献   

19.
Pleistocene to present evaporitic lacustrine sediments in Lake Magadi, East African Rift Valley, Kenya were studied and mapped using spectral remote sensing methods. This approach incorporated surface mineral mapping using space-borne hyperspectral Hyperion imagery together with laboratory analysis, including visible, near-infrared diffuse reflectance spectroscopy (VNIR) measurements and X-ray diffraction for selected rock and soil samples of the study area. The spectral signatures of Magadiite and Kenyaite, which have not been previously reported, were established and the spectral signatures of trona, chert series, volcanic tuff and the High Magadi bed were also analyzed.Image processing techniques, MNF (Minimum Noise Fraction) and MTMF (Mixture Tuned Matched Filtering) using a stratified approach (image analysis with and without the lake area), were used to enhance the mapping of evaporates. High Magadi beds, chert series and volcanic tuff were identified from the Hyperion image with an overall mapping accuracy of 84.3%. Even though, the spatial distribution of evaporites and sediments in Lake Magadi area change in response to climate variations, the mineralogy of this area has not been mapped recently. The results of this study shows the usefulness of the hypersspectral remote sensing to map the surface geology of this kind of environment and to locate promising sites for industrial open-pit trona mining in a qualitative and quantitative manner.  相似文献   

20.
This study presents an approach for chlorophyll content determination of small shallow water bodies (kettle holes) from hyperspectral airborne ROSIS and HyMap data (acquired on 15 May and 29 July 2008 respectively). Investigated field and airborne spectra for almost all kettle holes do not correspond to each other due to differences in ground sampling distance. Field spectra were collected from the height of 30–35 cm (i.e. area of 0.01–0.015 m2). Airborne pixels of ROSIS and HyMap imageries cover an area of 4 m2 and 16 m2 respectively and their spectra are highly influenced by algae or bottom properties of the kettle holes. Analysis of airborne spectra revealed that chlorophyll absorption near 677 nm is the same for both datasets. In order to enhance absorption properties, both airborne hyperspectral datasets were normalized by the continuum removal approach. Linear regression algorithms for ROSIS and HyMap datasets were derived using normalized average chlorophyll absorption spectra for each kettle hole. Overall accuracy of biomass mapping for ROSIS data was 71%, and for HyMap 64%. Biomass mapping results showed that, depending on the type of kettle hole, algae distribution, the ‘packaging effect’ and bottom reflection lead to miscalculations of the chlorophyll content using hyperspectral airborne data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号