首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The creation of a quality Digital Terrain Model (DTM) is essential for representing and analyzing the Earth in a digital form. The continuous improvements in the acquisition and the potential of airborne Light Detection and Ranging (LiDAR) data are increasing the range of applications of this technique to the study of the Earth surface. The aim of this study was to determine the optimal parameters for calculating a DTM by using an iterative algorithm to select minimum elevations from LiDAR data in a steep mountain area with shrub vegetation. The parameters were: input data type, analysis window size, and height thresholds. The effects of slope, point density, and vegetation on DTM accuracy were also analyzed. The results showed that the lowest root mean square error (RMSE) was obtained with an analysis window size of 10 m, 5 m, and 2.5 m, rasterized data as input data, and height thresholds equal to or greater than 1.5 m. These parameters showed a RMSE of 0.19 m. When terrain slope varied from 0–10% to 50–60%, the RMSE increased by 0.11 m. The RMSE decreased by 0.06 m when point density was increased from 4 to 8 points/m2, and increased by 0.05 m in dense vegetation areas.  相似文献   

2.
现今,DSM的获取日趋方便、快捷、精确,充分利用DSM所提供的信息,可以解决很多实际问题.本文提出了一种从DSM自动提取建筑物的方法,首先从DSM中提取DTM,差值后得到消除了地形影响的规格化的DSM(即NDSM),然后对NDSM进行改进型"标记控制的分水岭"分割,得到地上物目标;最后根据这些目标的各自特点进行过滤,祛除非建筑物对象,留下我们所要的建筑物对象.  相似文献   

3.
This article's goal is to explore the benefits of using Digital Surface Model (DSM) and Digital Terrain Model (DTM) derived from LiDAR acquisitions for characterizing the horizontal structure of different facies in forested areas (primary forests vs. secondary forests) within the framework of an object-oriented classification. The area under study is the island of Mayotte in the western Indian Ocean. The LiDAR data were the data originally acquired by an airborne small-footprint discrete-return LiDAR for the “Litto3D” coastline mapping project. They were used to create a Digital Elevation Model (DEM) at a spatial resolution of 1 m and a Digital Canopy Model (DCM) using median filtering. The use of two successive segmentations at different scales allowed us to adjust the segmentation parameters to the local structure of the landscape and of the cover. Working in object-oriented mode with LiDAR allowed us to discriminate six vegetation classes based on canopy height and horizontal heterogeneity. This heterogeneity was assessed using a texture index calculated from the height-transition co-occurrence matrix. Overall accuracy exceeds 90%. The resulting product is the first vegetation map of Mayotte which emphasizes the structure over the composition.  相似文献   

4.
Discriminating laser scanner data points belonging to ground from points above-ground (vegetation or buildings) is a key issue in research. Methods for filtering points into ground and non-ground classes have been widely studied mostly on datasets derived from airborne laser scanners, less so for terrestrial laser scanners. Recent developments in terrestrial laser sensors (longer ranges, faster acquisition and multiple return echoes) has aroused greater interest for surface modelling applications. The downside of TLS is that a typical dataset has high variability in point density, with evident side-effects on processing methods and CPU-time. In this work we use a scan dataset from a sensor which returns multiple target echoes, in this case providing more than 70 million points on our study site. The area presents low, medium and high vegetation, undergrowth with varying density, as well as bare ground with varying morphology (i.e. very steep slopes as well as flat areas). We test an integrated work-flow for defining a terrain and surface model (DTM and DSM) and successively for extracting information on vegetation density and height distribution on such a complex environment. Attention was given to efficiency and speed of processing. The method consists on a first step which subsets the original points to define ground candidates by taking into account the ordinal return number and the amplitude. A custom progressive morphological filter (opening operation) is applied next, on ground candidate points using a multidimensional grid to account for the fallout in point density as a function of distance from scanner. Vegetation density mapping over the area is then estimated using a weighted ratio of point counts in the tri-dimensional space over each cell. The overall result is a pipeline for processing TLS points clouds with minimal user interaction, producing a Digital Terrain Model (DTM), a Digital Surface Model (DSM), a vegetation density map and a derived Canopy Height Model (CHM). These products are of high importance for many applications ranging from forestry to hydrology and geomorphology.  相似文献   

5.
6.
本文提出了基于坡度因子的概念、利用已知DEM辅助信息、针对LIDAR点云迭代进行DTM提取的新方法。主要介绍了多源数据配准、激光点云滤波算法的原理,并在山地、居民、水域等地区进行了实验,同时应用两种精度验证方法对实验数据进行运算和评价。实验证明该算法不依赖初始坡度设定,自适应性较好。  相似文献   

7.
Over the past decades, several filters have been developed to derive a Digital Terrain Model (DTM) from a Digital Surface Model (DSM), by means of filtering out aboveground objects such as vegetation. In this filtering process, however, one of the major challenges remains to precisely distinguish sharp terrain features, e.g. ridges, agricultural terraces or other anthropogenic geomorphology such as open-pit mines, riverbanks or road ramps. Hence, loss of elevation data around terrain edges (and consequent smoothing) is very common with existing algorithms. In terraced landscapes, the preservation of precise geomorphology is of key importance in digital terrain analyses, such as hydrologic and erosion modelling, or automatic feature recognition and inventorying. In this work, we propose a new filtering method called TERRA (Terrain Extraction from elevation Rasters through Repetitive Anisotropic filtering). The novelty of the algorithm lies within its usage of terrain aspect to guide the anisotropic filtering direction, therefore maximising the preservation of terrain edges. We derived six DTMs from DSMs using UAV Structure from Motion (SfM) photogrammetry, laser altimetry and satellite sources (grid resolutions ranging from 0.1–1.0 m). The results indicated a close agreement of DTMs filtered using the TERRA algorithm and reference DTMs, while terrace risers were well preserved even under thick canopies of vines and trees. Compared to existing filtering approaches, TERRA performed well in minimising Type I errors (false ground removal), while Type II errors occurred locally where vegetation was covering the terrace edges. Given the promising filtering performance, and supported by the minimal requirements of parameterisation and computation, the TERRA algorithm could be a useful tool in DTM preparation for digital terrain analysis of agricultural terraces and similar hillslopes characterised by a complex mosaic of sharp terrain and non-terrain features.  相似文献   

8.
The aim of this paper was to analyze the ground and low vegetation points of a Light Detection and Ranging (LiDAR) point cloud from the aspect of the generated digital terrain model (DTM). We determined the height difference between the surveyed surface and the DTM and the level of interspersion of ground and low vegetation points in a floodplain. Finally, we performed a supervised classification with topographic (elevation, slope and aspect) variables and an Normalized Difference Vegetation Index (NDVI) layer to identify swales and point bars as floodplain forms. Cross sections of field surveys provided reference data to express the magnitude of the bias on the DTM caused by the vegetation, and we proved that the bias can reach the 60% of the relative height and depth of the floodplain forms (mean error was 0.15 ± 0.12 m). A landscape metric, the Aggregation Index, provided an appropriate tool to analyze and quantify the interspersion of the ground and vegetation points: indicating a high level of interspersion of the classified points, i.e. proved that vegetation points where the last echoes reflected from the vegetation became ground points. Floodplain classification performed best with the common use of DTM, slope, aspect and NDVI coverages, with 71% overall accuracy.  相似文献   

9.
提出一种基于等高线的滤波方法,它先由LIDAR数据生成数字表面模型,并内插出等高线,再根据DSM等高线的特征,如闭合性、首尾点距离、等高线的长度及等高线间距离等,通过设定阈值自动提取出属于自然地面的等高线线段,以获得初始的自然地面点,然后内插生成初始数字地面模型,最后使用迭代逼近法生成最终的(精确的)数字地面模型,即比较初始DTM与DSM,差值小于预设阈值的点视为DTM点,而差值大于预设阈值的点则标记为无数据点,最后,这些无数据点由选择的DTM点内插出.通过与现有表面估计的滤波方法的对比实验以及所提取地物轮廓线与航片的叠加对比试验,证明新方法可适用于地表起伏较大的地形,地物提取精度高、计算量小、效率高.  相似文献   

10.
任自珍  岑敏仪  张同刚  周国清 《测绘科学》2010,35(6):134-136,141
激光雷达技术(LiDAR)已广泛应用于数字高程模型(DEM)的快速获取和三维城市模型的建立中,但仍有许多不足之处,需要做更深入的研究。本文介绍了一种新的建筑物提取方法,称之为Fc-S法。该方法首先利用等高线特征进行滤波,从LIDAR数据内插的数字表面模型(DSM)中提取出DEM,利用DSM与DEM的高差阈值和DSM边缘特征参数去掉地面点和汽车等矮小物体,获得主要包含植被和建筑物的地物点群,然后对地物点群进行分割,利用二次梯度和面积等参数去掉植被点,并采用迭代逼近的方法精化建筑物。文章通过实验对所提方法进行验证,并借助高分辨率的航空影像对建筑物提取结果进行评估,评估结果表明该方法能够在地形起伏的区域中较准确地提取出建筑物。  相似文献   

11.
Spectral properties of volcanic materials in the optical region (350–2500 nm) of the electromagnetic spectrum are analyzed. The goal is to characterize air-fall deposits, recent lava flows, and old lava flows based on their spectral reflectance properties and on the textural characteristics (grain size) of pyroclastic deposits at an active basaltic volcano. Data were acquired during a spectroradiometric field survey at Mt. Etna (Italy) in summer 2003 and combined with hyperspectral satellite (Hyperion) and airborne LiDAR (Light Detection and Ranging) data. In addition, air-fall deposits produced by the highly explosive 2002–2003 eruption have been sampled and spectrally characterized at different distances from the new vents. The spectral analysis shows that air-fall deposits are characterized by low reflectance values besides variations in grain size. This distinguishes them from other surface materials. Old lava flows show highest reflectance values due to weathering and vegetation cover. The spectral data set derived from the field survey has been compared to corrected satellite hyperspectral data in order to investigate the Hyperion capabilities to differentiate the surface cover using the reflectance properties. This has allowed us to identify the 2002–2003 air-fall deposits in a thematic image just few months after their emplacement. Moreover, the observed differences in the field spectra of volcanic surfaces have been compared with differences in the signal intensity detected by airborne LiDAR survey showing the possibility to include information on the texture of volcanic surfaces at Mt. Etna. The approach presented here may be particularly useful for remote and inaccessible volcanic areas and also represents a potentially powerful tool for the exploration of extraterrestrial volcanic surfaces.  相似文献   

12.
森林植被碳储量的空间分布格局及其动态变化是陆地生态系统碳收支核算的基础。作为森林地上生物量的重要指示因子,森林高度的精确估算是提高森林植被碳储量估算精度的关键。现有研究已证明,由专业星载摄影测量系统获取的立体观测数据可用于森林高度提取,但光学遥感数据最大的问题是受云雨等天气因素的影响严重。区域森林地上生物量产品的生产需要充分挖掘潜在数据源。国产高分二号卫星(GF-2)虽然不是为获取立体观测数据而设计的专业星载摄影测量系统,但其获取的图像空间分辨率可达0.8 m,且具备±35°的的侧摆能力,在重复观测区域可构成异轨立体观测。本文以分别获取于2015年6月20日和2016年7月19的GF-2数据作为立体像对,其标称轨道侧摆角分别为0.00118°和20.4984°,以激光雷达数据获取的林下地形(DEM)和森林高度(CHM)为参考,对利用GF-2立体观测数据进行森林高度提取进行了研究。通过对立体处理得到的摄影测量点云的栅格化得到DSM,以激光雷达数据提供的DEM作为林下地形,得到了GF-2的CHM。结果表明GF-2提取的CHM与激光雷达CHM空间分布格局较为一致,两者之间存在明显的相关性,像素对像素的线性相关性(R2)达到0.51,均方根误差(RMSE)为3.6 m。研究结果表明,在林下地形已知的情况下,GF-2立体观测数据可用于森林高度估算。  相似文献   

13.
LIDAR Data Filtering and DTM Interpolation Within GRASS   总被引:5,自引:0,他引:5  
LIDAR (Light Detection and Ranging) is one of the most recent technologies in surveying and mapping. LIDAR is based on the combination of three different data collection tools: a laser scanner mounted on an aircraft, a Global Positioning System (GPS) used in phase differential kinematic modality to provide the sensor position and an Inertial Navigation System (INS) to provide the orientation. The laser sends towards the ground an infrared signal, which is reflected back to the sensor. The time employed by the signal, given the aircraft position and attitude, allows computation of the earth point elevation. In standard conditions, taking into account the flight (speed 200–250 km/hour, altitude 500–2,000 m) and sensor characteristics (scan angle ± 10–20 degrees, emission rate 2,000–50,000 pulses per second), earth elevations are collected within a density of one point every 0.5–3 m. The technology allows us therefore to obtain very accurate (5–20 cm) and high resolution Digital Surface Models (DSM). For many applications, the Digital Terrain Model (DTM) is needed: we have to automatically detect and discard from the previous DSM all the features (buildings, trees, etc.) present on the terrain. This paper describes a procedure that has been implemented within GRASS to construct DTMs from LIDAR source data.  相似文献   

14.
Photogrammetry represents a non-destructive, cost-effective tool for coral reef monitoring, able to integrate traditional remote sensing techniques and support researchers’ work. However, its application to submerged habitats is still in early stage. We present new ways to employ Structure from Motion techniques to infer properties of reef habitats. In particular, we propose the use of Digital Surface Models and Digital Terrain Models for assessing coral colonies extension and height and discriminating between seabed and coral cover. Such information can be coupled with digital rugosity estimates to improve habitat characterization. DTM, DSM and orthophotos were derived and used to compute a series of metrics like coral morphologies, reef topography, coral cover and structural complexity. We show the potentialities offered by underwater photogrammetry and derived products to provide useful basic information for marine habitat mapping, opening the possibility to extend these methods for large-scale assessment and monitoring of coral reefs.  相似文献   

15.
数字高程模型是数字地球技术和各种数字化模型的重要基础,目前已有多种DEM生成技术,以全数字摄影测量方法最具前途。本文介绍了利用OEAD(OrthoEngineAirphotoDEM)软件进行DEM提取的方法和技术流程,以某水库库区金龙山地区为例进行了DEM提取,并对生成的DEM进行分析。  相似文献   

16.
目前LiDAR技术已经成为DTM的主要生产方法。地面误差对LiDAR生成DTM的精度影响比较明显,特别是由于亚热带森林植被覆盖区LiDAR激光点云少,生成的DTM更复杂,需要分析地面误差对LiDAR生成林下DTM的精度影响。本文以华南农业大学增城教学科研基地为研究对象,从森林郁闭度和坡度两个方面探讨了地面误差对机载LiDAR数据生成林下DTM精度的影响。研究结果发现高程误差会随郁闭度的增大而增大;而随坡度变化趋势不明显,但是坡度为15°时成为误差的分水岭,其前后误差差异比较明显。总体而言,郁闭度的影响更为明显。  相似文献   

17.
三维快速建模在实现三维数字城市建设进程中起着举足轻重的作用。针对JX-4G数字摄影测量系统测得的数字高程模型(DEM)和数字线划图(DLG),提出一种改进的方法,主要对建筑物底部的DEM和道路DEM处存在的不匹配问题进行修改,并对DLG数据中建筑物高度信息的缺失进行改进。改进后的DEM和数字正射影像图(DOM)能生成更高精度的数字表面模型(DSM),为高效率、高精度地建立三维数字城市模型奠定基础。  相似文献   

18.
We investigate the ability of GPS to detect volcanic plumes at Mt. Etna, Italy. We use a robust statistical approach to highlight whether the presence of a volcanic plume in the atmosphere may really affect the GPS undifferenced post-fit phase residuals. The proposed method has been tested for the September 4–5, 2007 activity of Mt. Etna. This eruption produced powerful lava fountains forming a weak, a few kilometers high plume for several hours, representing typical activity at Etna over the last 5 years. We analyzed data from nineteen Etna permanent GPS stations located on the volcano flanks at different heights and applied a statistical test based on four main steps: (a) realization of a simplified model representing the volcanic plume in atmosphere; (b) evaluation of the GPS satellite and station couples intersecting the plume; (c) calculation of the volcanic plume region crossed by the GPS signal; (d) application of a robust statistical test in order to see whether the volcanic plume affected the GPS signals. Results show that during the September 4–5, 2007 explosive activity, the GPS residuals definitely include the contribution of the volcanic plume. Our analysis shows that values of the GPS residuals are ten times smaller than those found for the Miyakejima eruption (Japan), highlighting a likely relationship between residuals and eruption intensity. In the future, data derived from the GPS stations located on Etna’s flanks could be used to improve the alerting system of volcanic ash, already operating at the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo.  相似文献   

19.
Up‐to‐date and accurate digital elevation models (DEMs) are essential for many applications such as numerical modeling of mass movements or mapping of terrain changes. Today the Federal Department of Topography, swisstopo, provides Digital Terrain Models (DTMs) and Digital Surface Models (DSMs) derived from airborne LiDAR data with a high spatial resolution of 2 m covering the entire area of Switzerland below an elevation of 2000 m a.s.l.. However, above an elevation of 2000 m a.s.l., which is typical for high‐alpine terrain, the best product available is the a DTM with a spatial resolution of 25 m. This spatial resolution is insufficient for many applications in complex terrain. In this study, we investigate the quality of DSMs derived from opto‐electronic scanner data (ADS80; acquired in autumn 2010) using photogrammetric image correlation techniques based on the multispectral nadir and backward looking sensor data. As reference, we take a high precision airborne LiDAR data set with a spatial resolution of ca. 0.5 m, acquired in late summer 2010, covering the Grabengufer/Dorfbach catchment near Randa, VS. We find the deviations between the two datasets are surprisingly low. In terrain with inclination angles of less than 30° the RMSE is below 0.5 m. In extremely steep terrain of more than 50° the RMSE goes up to 2 m and outliers increase significantly. We also find dependencies of the deviations on illumination conditions and ground cover classes. Finally we discuss advantages and disadvantages of the different data acquisition methods.  相似文献   

20.
数字地形模型自动获取的一种新方案——辐射法   总被引:1,自引:0,他引:1  
利用数字影像自动提取数字地形模型(DTM)的关键是影像匹配。匹配算法有基于特征的相关匹配和基于影像区域匹配两类,前者利用某种抽象的“特征”(一般为线段或点),而后者直接比较像素。但要同时满足DTM的精度,密度、可靠性和速度等要求,单纯引用某种特定的相关方法是不能有效地解决生产实际问题的。本文在分析现有几种典型方法的基础上,提出了基于特征点的辐射法,从而较为合理地兼顾了精度、密度、可靠性以及速度等指标。在AST 386微机上,无任何加速处理器,运行速度达到每秒1~3点,精度为子像素精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号