首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A major challenge is to develop a biodiversity observation system that is cost effective and applicable in any geographic region. Measuring and reliable reporting of trends and changes in biodiversity requires amongst others detailed and accurate land cover and habitat maps in a standard and comparable way. The objective of this paper is to assess the EODHaM (EO Data for Habitat Mapping) classification results for a Dutch case study. The EODHaM system was developed within the BIO_SOS (The BIOdiversity multi-SOurce monitoring System: from Space TO Species) project and contains the decision rules for each land cover and habitat class based on spectral and height information. One of the main findings is that canopy height models, as derived from LiDAR, in combination with very high resolution satellite imagery provides a powerful input for the EODHaM system for the purpose of generic land cover and habitat mapping for any location across the globe. The assessment of the EODHaM classification results based on field data showed an overall accuracy of 74% for the land cover classes as described according to the Food and Agricultural Organization (FAO) Land Cover Classification System (LCCS) taxonomy at level 3, while the overall accuracy was lower (69.0%) for the habitat map based on the General Habitat Category (GHC) system for habitat surveillance and monitoring. A GHC habitat class is determined for each mapping unit on the basis of the composition of the individual life forms and height measurements. The classification showed very good results for forest phanerophytes (FPH) when individual life forms were analyzed in terms of their percentage coverage estimates per mapping unit from the LCCS classification and validated with field surveys. Analysis for shrubby chamaephytes (SCH) showed less accurate results, but might also be due to less accurate field estimates of percentage coverage. Overall, the EODHaM classification results encouraged us to derive the heights of all vegetated objects in the Netherlands from LiDAR data, in preparation for new habitat classifications.  相似文献   

2.
In this article, we present a satellite-based approach to gather information about the threat to coral reefs worldwide. Three chosen reef stressors – development, gas flaring and heavily lit fishing boat activity – are analysed using nighttime lights data derived from the Defense Meteorological Satellite Program (DMSP) produced at the National Oceanic & Atmospheric Administration, National Geophysical Data Center (NOAA/NGDC). Nighttime lights represent a direct threat to coral reef ecosystems and are an excellent proxy measure for associated human-caused stressors. A lights proximity index (LPI) is calculated, measuring the distance of coral reef sites to each of the stressors and incorporating the stressor's intensity. Colourized maps visualize the results on a global scale. Area rankings clarify the effects of artificial night lighting on coral reefs on a regional scale. The results should be very useful for reef managers and for state administrations to implement coral reef conservation projects and for the scientific world to conduct further research.  相似文献   

3.
To ensure successful conservation of ecological and cultural landscape values, detailed and up-to-date spatial information of existing habitat patterns is essential. However, traditional satellite-based and raster classifications rely on pixels that are assigned to a single category and often generalized. For many fragmented key habitats, such a strategy is too coarse and complementary data is needed. In this paper, we aim at detecting pixel-wise fractional coverage of broadleaved woodland and grassland components in a hemiboreal landscape. This approach targets ecologically relevant deciduous fractions and complements traditional crisp land cover classifications. We modeled fractional components using a k-NN approach, which was based on multispectral satellite data, assisted by a digital elevation model and a contemporary map database. The modeled components were then analyzed based on landscape structure indicators, and evaluated in conjunction with CORINE classification. The results indicate that both broadleaved forest and grassland components are widely distributed in the study area, principally organized as transition zones and small patches. Landscape structure indicators show a substantial variation based on the fractional threshold, pinpointing their dependency on the classification scheme and grain. The modeled components, on the other hand, suggest high internal variation for most CORINE classes, indicating their heterogeneous appearance and showing that the presence of deciduous components in the landscape are not properly captured in a coarse land cover classification. To gain a realistic perception of the landscape, and use this information for the needs of spatial planning, both fractional results and existing land cover classifications are needed. This is because they mutually contribute to an improved understanding of habitat patterns and structures, and should be used to complement each other.  相似文献   

4.
From remotely sensed woody cover, we tested whether sables under hunting pressure preferred closed woodland habitats and whether those not under hunting preferred more open woodland habitats. We applied a two factorial logistic regression analysis to model the probability of occurrence of sable antelope in hunted and non-hunted areas of northwest Zimbabwe as a function of vegetation cover density (estimated by a normalized difference vegetation index (NDVI)). We validated the results by high-spatial resolution imagery derived tree canopy area. We subsequently compared the predictions from the two models in order to compare sable cover selection between hunted and non-hunted areas. Our results suggest that hunted sables are likely to select closed woodland, while non-hunted ones would prefer more open woodland habitats. We also established a significant positive relationship between NDVI and tree canopy cover, thus emphasizing the importance of remote sensing in studies that measure the impact of hunting on habitat selection of targeted species.  相似文献   

5.
Coral reefs are one of the most diverse of all marine ecosystems and are often referred to as the “rainforests of the sea”. Though they cover less than one per cent of Earth’s surface, they are home to one quarter of all ocean species by providing food and shelter to them. Optical remote sensing has been widely employed for mapping and monitoring coral reefs. But the application of microwave remote sensing has been an alternate domain in this area. This study explores the possibility of utilizing synthetic aperture radar (SAR) data of Radar Imaging Satellite-I, India’s first indigenous microwave satellite to delineate the coral reefs in Andaman and Lakshadweep Islands in the Indian Ocean. The dual polarized data, after reducing the speckle has been classified to delineate the coral reefs in the vicinity of both islands. SAR has a performance comparable with passive optical sensors under favourable conditions of imaging, viz. optimum tidal current and surface winds. The study results are compared with the international coral reef reference map and are found to be highly promising, with an overall accuracy of 98.3% and a Kappa coefficient of 0.944 for fringing reefs in Andaman region. For the atolls in Lakshadweep region, the overall accuracy is found to be 92.99% and the Kappa coefficient is estimated at 0.7377. This study tries to explore a different horizon for microwave remote sensing in coral reef studies. It is seen that, optical and microwave remote sensing can provide a mutually supporting platform in coral reef delineation, in terms of imaging depth as well as climatic conditions.  相似文献   

6.
Up‐to‐date and accurate digital elevation models (DEMs) are essential for many applications such as numerical modeling of mass movements or mapping of terrain changes. Today the Federal Department of Topography, swisstopo, provides Digital Terrain Models (DTMs) and Digital Surface Models (DSMs) derived from airborne LiDAR data with a high spatial resolution of 2 m covering the entire area of Switzerland below an elevation of 2000 m a.s.l.. However, above an elevation of 2000 m a.s.l., which is typical for high‐alpine terrain, the best product available is the a DTM with a spatial resolution of 25 m. This spatial resolution is insufficient for many applications in complex terrain. In this study, we investigate the quality of DSMs derived from opto‐electronic scanner data (ADS80; acquired in autumn 2010) using photogrammetric image correlation techniques based on the multispectral nadir and backward looking sensor data. As reference, we take a high precision airborne LiDAR data set with a spatial resolution of ca. 0.5 m, acquired in late summer 2010, covering the Grabengufer/Dorfbach catchment near Randa, VS. We find the deviations between the two datasets are surprisingly low. In terrain with inclination angles of less than 30° the RMSE is below 0.5 m. In extremely steep terrain of more than 50° the RMSE goes up to 2 m and outliers increase significantly. We also find dependencies of the deviations on illumination conditions and ground cover classes. Finally we discuss advantages and disadvantages of the different data acquisition methods.  相似文献   

7.
Spatial resolution of environmental data may influence the results of habitat selection models. As high-resolution data are usually expensive, an assessment of their contribution to the reliability of habitat models is of interest for both researchers and managers. We evaluated how vegetation cover datasets of different spatial resolutions influence the inferences and predictive power of multi-scale habitat selection models for the endangered brown bear populations in the Cantabrian Range (NW Spain). We quantified the relative performance of three types of datasets: (i) coarse resolution data from Corine Land Cover (minimum mapping unit of 25 ha), (ii) medium resolution data from the Forest Map of Spain (minimum mapping unit of 2.25 ha and information on forest canopy cover and tree species present in each polygon), and (iii) high-resolution Lidar data (about 0.5 points/m2) providing a much finer information on forest canopy cover and height. Despite all the models performed well (AUC > 0.80), the predictive ability of multi-scale models significantly increased with spatial resolution, particularly when other predictors of habitat suitability (e.g. human pressure) were not used to indirectly filter out areas with a more degraded vegetation cover. The addition of fine grain information on forest structure (LiDAR) led to a better understanding of landscape use and a more accurate spatial representation of habitat suitability, even for a species with large spatial requirements as the brown bear, which will result in the development of more effective measures to assist endangered species conservation.  相似文献   

8.
珊瑚礁遥感研究进展   总被引:1,自引:0,他引:1  
珊瑚礁是生物多样性和初级生产力最高的海洋生态系统之一,对人类社会与海洋生态环境的健康和可持续发展有重要作用,而珊瑚礁又是中国南海主要的国土类型,国家因此越来越重视对南海珊瑚礁的规划、管理、建设与保护。珊瑚礁的调查与探测则是进行珊瑚礁活动的基础与依据,而遥感则在珊瑚礁的大范围探测方面具有很大的潜力,所以国内外已经存在很多利用遥感对珊瑚礁进行调查与探测的研究与应用。本文将按照被动遥感和主动遥感的顺序,客观地阐述国内外珊瑚礁遥感研究与应用的进展,探讨珊瑚礁遥感研究与应用的发展趋势,并尝试总结中国珊瑚礁遥感的机遇和挑战。其中被动遥感包括珊瑚礁地形与水深的遥感、珊瑚礁底质与地貌的遥感、珊瑚礁岸线变化与稳定性的遥感以及珊瑚礁环境的遥感等,而主动遥感则包括珊瑚礁水深的机载激光雷达遥感、珊瑚礁地貌的船载声学遥感和珊瑚礁地形的星载微波遥感等。结果发现,国内珊瑚礁遥感研究与应用的整体水平落后于国外:虽然在部分数据处理方面具有比国外更先进的技术,但相应的应用基础研究仍然达不到国外的广度与深度。因此,国内的珊瑚礁遥感研究仍需要鼓励珊瑚礁学者更多的参与与合作,以便在硬件设备和数据处理等方面加强针对珊瑚礁遥感的研究,进而融合多种手段而实现珊瑚礁遥感的工程化应用。  相似文献   

9.
The Phase 1 Survey is the most comprehensive and widely used national level map of semi-natural habitats in Wales. However, the survey was based largely on field survey and was conducted over several decades, before being completed in 1997. Given that resources for a repeat survey were limited, this study has used an object-orientated rule-based classification implemented within eCognition of multi-temporal satellite sensor data acquired between 2003 and 2006 to map semi-natural habitats and agricultural land across Wales, thereby allowing a progressive update of the Phase 1 Survey. The classification of objects to Phase 1 habitat classes was undertaken in two steps; firstly the landscape of Wales was divided into objects using orthorectified SPOT-5 High Resolution Geometric (HRG) reflectance data (10 m spatial resolution) and Land Parcel Information System (LPIS) boundaries. A rule-base was then developed to progressively discriminate and map the distribution of 105 sub-habitats across Wales based on time-series of SPOT HRG, Terra-1 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Indian Remote Sensing Satellite (IRS) LISS-3 data, derived datasets (e.g., vegetation indices, fractional images) and ancillary information (e.g., topography). The rules coupled knowledge of ecology and the information content of these remote sensing data using a combination of thresholds, Boolean operations and fuzzy membership functions. A second rule-base was then developed to translate the more detailed sub-habitat classification to Phase 1 habitat classes. Indicative accuracies of the revised Phase 1 mapping, based on comparisons with the later Phase 2 survey (for selected habitats), were >80% overall and typically between 70% and 90% for many classes. Through this exercise, Wales has become the first country in Europe to produce a national map of habitats (as opposed to land cover) through object-orientated classification of satellite sensor data. Furthermore, the approach can be adapted to allow continual monitoring of the extent and condition of habitats and agricultural land.  相似文献   

10.
Protected areas are experiencing increased levels of human pressure. To enable appropriate conservation action, it is critical to map and monitor changes in the type and extent of land cover/use and habitat classes, which can be related to human pressures over time. Satellite Earth observation (EO) data and techniques offer the opportunity to detect such changes. Yet association with field information and expert interpretation by ecologists is required to interpret, qualify and link these changes to human pressure. There is thus an urgent need to harmonize the technical background of experts in the field of EO data analysis with the terminology of ecologists, protected area management authorities and policy makers in order to provide meaningful, context-specific value-added EO products. This paper builds on the DPSIR framework, providing a terminology to relate the concepts of state, pressures, and drivers with the application of EO analysis. The type of pressure can be inferred through the detection of changes in state (i.e. changes in land cover and/or habitat type and/or condition). Four broad categories of changes in state are identified, i.e. land cover/habitat conversion, land cover/habitat modification, habitat fragmentation and changes in landscape connectivity, and changes in plant community structure. These categories of change in state can be mapped through EO analyses, with the goal of using expert judgement to relate changes in state to causal direct anthropogenic pressures. Drawing on expert knowledge, a set of protected areas located in diverse socio-ecological contexts and subject to a variety of pressures are analysed to (a) link the four categories of changes in state of land cover/habitats to the drivers (anthropogenic pressure), as relevant to specific target land cover and habitat classes; (b) identify (for pressure mapping) the most appropriate spatial and temporal EO data sources as well as interpretations from ecologists and field data useful in connection with EO data analysis. We provide detailed examples for two protected areas, demonstrating the use of EO data for detection of land cover/habitat change, coupled with expert interpretation to relate such change to specific anthropogenic pressures. We conclude with a discussion of the limitations and feasibility of using EO data and techniques to identify anthropogenic pressures, suggesting additional research efforts required in this direction.  相似文献   

11.
以高黎贡山羚牛为研究对象,选取了植被类型、植被覆盖度、海拔、坡度、水源、土地覆被、主要道路、居民点8个影响因子,基于GIS技术,构建阻力面,从而探测多因子影响作用下高黎贡山羚牛适宜生境。结果表明:区域内羚牛的适宜生境面积整体占比较少,适宜区域主要分布在研究区的中西部及西南地区,在北部区域也有零散分布。羚牛的迁徙受到人类活动的干扰及道路阻隔的影响,其生境遭到一定程度的破坏。结合现有羚牛栖息地分布及最小阻力模型,建立区域内羚牛的生态廊道,结果显示:廊道主要分布于高黎贡山保护区南段、马边瓦底中段、子巴、俄恰沙迪、马士打亚窟、其期北段、四克洛娃俎及木当一带。  相似文献   

12.
Long-term observation of the earth is essential for studying the factors affecting global environmental changes. Digital earth technology can facilitate the monitoring of global environmental change with its ability to process vast amounts of information. In this study, we map the forest cover change of Myanmar from 2000 to 2005 using a training data automation procedure and support vector machines algorithm. Our results show that Myanmar's forests have declined 0.68% annually over this six-year period. We validated our derived change results and found the overall accuracy to be greater than 88%. We also assessed forest loss from protected areas, areas close to roads, and areas subject to fire, which were most likely to lose forested area. The results revealed the main reasons for forest losses in some hotspots to be increased agricultural conversion, fire, and the construction of highways. This information is useful for identifying the driving forces behind forest changes and to support environmental policy development in Myanmar.  相似文献   

13.
In this paper, we present a two-stage method for mapping habitats using Earth observation (EO) data in three Alpine sites in South Tyrol, Italy. The first stage of the method was the classification of land cover types using multi-temporal RapidEye images and support vector machines (SVMs). The second stage involved reclassification of the land cover types to habitat types following a rule-based spatial kernel. The highest accuracies in land cover classification were 95.1% overall accuracy, 0.94 kappa coefficient and 4.9% overall disagreement. These accuracies were obtained when the combination of images with topographic parameters and homogeneity texture was used. The habitat classification accuracies were rather moderate due to the broadly defined rules and possible inaccuracies in the reference map. Overall, our proposed methodology could be implemented to map cost-effectively alpine habitats over large areas and could be easily adapted to map other types of habitats.  相似文献   

14.
Seagrasses ecosystems are fragile yet highly productive ecosystems of the world showing declining trend throughout the world due to natural and anthropogenic pressures. Effective conservation and management plan is thus required to protect these resources, to aid with conservation need mapping and monitoring of seagrasses using high resolution remote sensing data is very much required. Hence, the present study was made to record the seagrass aerial cover in the Lakshadweep islands using IRS P6 LISS IV satellite data. The suitability of LISS IV sensor for seagrass mapping was tested for the first time with an overall accuracy of 73.16%. The study found an area of 2590.2?ha of seagrasses in Lakshadweep islands with 1310.8?ha and 1279.4?ha dense and sparse seagrass cover respectively. The study recommends the use of LISS IV data for mapping the shallow water seagrasses, as mapping efficiency increases nearly 4 times more than the LISS III data, as the former (LISS IV) picks up the small patches of seagrasses and delineates the coral and reef vegetation patches from seagrass class.  相似文献   

15.
The implementation of the Natura 2000 network requires methods to assess the conservation status of habitats. This paper shows a methodological approach that combines the use of (satellite) Earth observation with ontologies to monitor Natura 2000 habitats and assess their functioning. We have created an ontological system called Savia that can describe both the ecosystem functioning and the behaviour of abiotic factors in a Natura 2000 habitat. This system is able to automatically download images from MODIS products, create indicators and compute temporal trends for them. We have developed an ontology that takes into account the different concepts and relations about indicators and temporal trends, and the spatio-temporal components of the datasets. All the information generated from datasets and MODIS images, is stored into a knowledge base according to the ontology. Users can formulate complex questions using a SPARQL end-point. This system has been tested and validated in a case study that uses Quercus pyrenaica Willd. forests as a target habitat in Sierra Nevada (Spain), a Natura 2000 site. We assess ecosystem functioning using NDVI. The selected abiotic factor is snow cover. Savia provides useful data regarding these two variables and reflects relationships between them.  相似文献   

16.
The Natura 2000 network of protected sites is one of the means to enable biodiversity conservation in Europe. EU member states have to undertake surveillance of habitats and species of community interest protected under the Habitat Directive. Remote sensing techniques have been applied successfully to monitor biodiversity aspects according to Natura 2000, but many challenges remain in assessing dynamics and habitat changes outside protected sites. Grasslands are among the most threatened habitats in Europe. In this paper we tested the integration of expert knowledge into different standard classification approaches to map grassland habitats in Schleswig Holstein, Germany. Knowledge about habitat features is represented as raster information layers, and used in subsequent grassland classifications. Overall classification accuracies were highest for the maximum likelihood and support vector machine approaches using RapidEye time series, but results improved for specific grassland classes when information layers were included in the classification process.  相似文献   

17.
High-resolution digital topography is essential for land management and planning in any type of territory as well as the reproduction of the Earth surface in a geocoded digital format that allows several Digital Earth applications. In a volcanic environment, Digital Elevation Models are a valid reference for multi-temporal analyses aimed to observe frequent changes of a volcano edifice and for the relative detailed morphological and structural analyses. For the first time, a DTM (Digital Terrain Model) and a DSM (Digital Surface Model) covering the entire Mt. Etna volcano (Italy) derived from the same airborne Light Detection and Ranging (LiDAR) are here presented. More than 250 million 3D LiDAR points have been processed to distinguish ground elements from natural and anthropic features. The end product is the highly accurate representation of Mt. Etna landscape (DSM) and ground topography (DTM) dated 2005. Both models have a high spatial resolution of 2?m and cover an area of 620?km2. The DTM has been validated by GPS ground control points. The vertical accuracy has been evaluated, resulting in a root-mean-square-error of ±?0.24?m. The DTM is available as electronic supplement and represents a valid support for various scientific studies.  相似文献   

18.
斯里兰卡亚洲象栖息地是全球重要的亚洲象保护区,象群分布密度约为其他地区的10倍,但由于生境破碎与丧失以及人象冲突等原因导致亚洲象数量急剧下降。对斯里兰卡亚洲象栖息地的生境质量监测与评估能够为亚洲象及其栖息地的保护政策制定与规划提供理论依据,并在全球物种多样性保护中具有重要意义。为评估斯里兰卡亚洲象栖息地的生境质量,综合考虑亚洲象栖息地需求以及影响亚洲象栖息地的关键要素,应用InVEST-HQ模型来估算生境质量指数,同时分析亚洲象栖息地生境质量在海拔梯度及植被覆盖梯度上的分布状况;随后引入空间自相关分析方法在像元尺度上探讨亚洲象栖息地生境质量的空间分布模式与时间演化过程,进而分析栖息地内不同保护区和气候分区的生境质量所存在的空间分异特征。研究结果表明:在空间分布上,斯里兰卡亚洲象栖息地生境质量具有高度聚集性,空间异常值不显著。生境质量高值区主要集中在中低海拔、植被覆盖情况较好、保护区范围密集的区域;生境质量低值区集中于耕地面积大、海拔偏高的区域。在梯度分布上,斯里兰卡亚洲象栖息地生境质量对海拔和植被覆盖度均具有显著线性相关关系,且在较低海拔和较高植被覆盖度梯度上存在聚集现象。在区域尺度上,斯里兰卡亚洲象栖息地生境质量存在显著的地域差异性。栖息地内自然保护区的生境质量明显高于非自然保护区,其中严格自然保护区的生境质量相对较高;热带雨林气候带的生境质量高值聚类大于其余气候分区,而热带疏林草原气候带与热带季风气候带生境质量受到季节性降水的影响较大,高值像元占比偏少。在时间尺度上,斯里兰卡亚洲象栖息地的生境质量总体呈现先降低后趋于平缓的态势。1995年—2010年,生境质量高值聚类占比明显减少,低值聚类占比缓慢上升;2010年—2020年生境质量低值占比有小幅度下降,高值聚类逐渐增加,生境质量逐渐稳定并呈缓慢上升的趋势。  相似文献   

19.
Blending photogrammetric and Structure from Motion techniques with Unmanned Aerial Vehicles (UAV) is a commonly used approach for the documentation and analysis of archaeological sites. Using the dense 3D point clouds generated from these techniques, two main photogrammetric products are created: orthophotos and Digital Surfaces Models (DSM). Depending on the UAV technology, the flight parameters, the topography and land cover of the flown area, DSMs and orthophotos are delivered with varying positional accuracies and output scales. In this paper, the positional accuracy and maximum allowable scale of these products generated by complete automation of flight mode and processing workflow are assessed. Moreover, three known International Mapping Standards (IMS) are validated using independent checkpoints, obtained by geodetic Global Navigation Satellite Systems receivers, in two Spanish study areas. The results show that accurate photogrammetric products adapted to the IMS can be successfully obtained by the automation of the photogrammetric workflow.  相似文献   

20.
Mapping of habitats with relevance for nature conservation involves the identification of patches of target habitats in a complex mosaic of vegetation types not relevant for conservation planning. Limiting the necessary ground reference to a small sample of target habitats would greatly reduce and therefore support the field mapping effort. We thus aim to answer in this study the question: can semi-automated remote sensing methods help to map such patches without the need of ground references from sites not relevant for nature conservation? Approaches able to fulfill this task may help to improve the efficiency of large scale mapping and monitoring programs such as requested for the European Habitat Directive.In the present study, we used the maximum-entropy based classification approach Maxent to map four habitat types across a patchy landscape of 1000 km2 near Munich, Germany. This task was conducted using the low number of 125 ground reference points only along with easily available multi-seasonal RapidEye satellite imagery. Encountered problems include the non-stationarity of habitat reflectance due to different phenological development across space, continuous transitions between the habitats and the need for improved methods for detailed validation.The result of the tested approach is a habitat map with an overall accuracy of 70%. The rather simple and affordable approach can thus be recommended for a first survey of previously unmapped areas, as a tool for identifying potential gaps in existing habitat inventories and as a first check for changes in the distribution of habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号