首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Garnet peridotites occur as lenses, blocks or layers within granulite–amphibolite facies gneiss in the Dabie-Sulu ultra-high-pressure (UHP) terrane and contain coesite-bearing eclogite. Two distinct types of garnet peridotite were identified based on mode of occurrence and petrochemical characteristics. Type A mantle-derived peridotites originated from either: (1) the mantle wedge above a subduction zone, (2) the footwall mantle of the subducted slab, or (3) were ancient mantle fragments emplaced at crustal depths prior to UHP metamorphism, whereas type B crustal peridotite and pyroxenite are a portion of mafic–ultramafic complexes that were intruded into the continental crust as magmas prior to subduction. Most type A peridotites were derived from a depleted mantle and exhibit petrochemical characteristics of mantle rocks; however, Sr and Nd isotope compositions of some peridotites have been modified by crustal contamination during subduction and/or exhumation. Type B peridotite and pyroxenite show cumulate structure, and some have experienced crustal metasomatism and contamination documented by high 87Sr/86Sr ratios (0.707–0.708), low εNd( t ) values (−6 to −9) and low δ18O values of minerals (+2.92 to +4.52). Garnet peridotites of both types experienced multi-stage recrystallization; some of them record prograde histories. High- P–T  estimates (760–970 °C and 4.0–6.5±0.2 GPa) of peak metamorphism indicate that both mantle-derived and crustal ultramafic rocks were subducted to profound depths >100 km (the deepest may be ≥180–200 km) and experienced UHP metamorphism in a subduction zone with an extremely low geothermal gradient of <5 °C km−1.  相似文献   

2.
The Higo metamorphic unit in west-central Kyushu island, southwest Japan is an imbricated crustal section in which a sequence of units with increasing metamorphic grade from high (northern part) to low (southern part) structural levels is exposed. The basal part of the metamorphic sequence representing an original depth of 23–24  km consists mainly of garnet–cordierite–biotite gneiss, garnet–orthopyroxene gneiss, orthopyroxene-bearing amphibolite and orthopyroxene-bearing S-type tonalite. These metamorphic rocks underwent high amphibolite-facies up to granulite facies metamorphism with peak P – T  conditions of 720  MPa, 870  °C. In addition sapphirine-bearing granulites and related high-temperature metamorphic rocks also occur as tectonic blocks in a metamorphosed peridotite intrusion. The sapphirine-bearing granulites and their related high-temperature metamorphic rocks can be subdivided into five types of mineral assemblages reflecting their bulk chemical compositions as follows: (1) sapphirine–corundum–spinel–cordierite (2) corundum–spinel–cordierite (3) garnet–corundum–spinel–cordierite (4) garnet–spinel–gedrite–corundum, and (5) orthopyroxene–spinel–gedrite. These metamorphic rocks are characterized by unusually high Al2O3 and low SiO2 contents, which could represent a restitic nature remaining after partial melting of pelitic granulite under the ultra high-temperature contact metamorphism at the peak metamorphic event of the Higo metamorphic unit. The metamorphic conditions are estimated to be about 800  MPa and above 950  °C which took place at about 250  Ma as a result of the thermal effect of the regional gabbroic rock intrusions.  相似文献   

3.
High-pressure metamorphic rocks exposed in the Bantimala area, c . 40  km north-east of Ujung Pandang, were formed as a Cretaceous subduction complex with fault-bounded slices of melange, chert, basalt, turbidite, shallow-marine sedimentary rocks and ultrabasic rocks. Eclogites, garnet–glaucophane rocks and schists of the Bantimala complex have estimated peak temperatures of T  =580–630 °C at 18  kbar and T  =590–640 °C at 24  kbar, using the garnet–clinopyroxene geothermometer. The garnet–omphacite–phengite equilibrium is used to estimate pressures. The distribution coefficient K D1=[( X pyr)3( X grs)6/( X di)6]/[(Al/Mg)M2,wm (Al/Si)T2,wm]3 among omphacite, garnet and phengite is a good index for metamorphic pressures. The K D1values of the Bantimala eclogites were compared with those of eclogites with reliable P–T  estimates. This comparison suggests that peak pressures of the Bantimala eclogites were P =18–24  kbar at T  =580–640 °C. These results are consistent with the P–T  range calculated using garnet–rutile–epidote–quartz and lawsonite–omphacite–glaucophane–epidote equilibria.  相似文献   

4.
Chemical disequilibrium exists between all phases of the Alpe Arami garnet-peridotite body (Ticino, Switzerland) which hampers the evaluation of P–T  conditions of origin, yet disequilibrium offers the inherent possibility to derive a P–T–t path for this mantle slice. We tried to tackle this problem by carrying out new mineral analyses and taking diffusion rates and bulk-rock compositional effects into consideration. Peak metamorphic conditions from mineral core compositions were estimated as 1120±50 °C/5±0.2 GPa. These values are significantly higher than previously published results and were determined from a combination of the O'Neill & Wood (1979) Fe/Mg garnet–olivine exchange thermometer and the Al-in-orthopyroxene barometer (Brey & Köhler, 1990), and are supported by the Ca/Cr ratios in garnet, which are in accord with these conditions. Details of the exhumation path were derived from (1) rim compositions of minerals that yield a first retrograde stage of 720±50 °C/2±0.25 GPa (2) a spinel lherzolite assemblage in narrow shear zones (tectonic phase F0', after Möckel, 1969) which documents a second retrograde stage at 500–600 °C/0.8–1.5 GPa. The Ca content in olivine (Köhler & Brey, 1989) can be used to evaluate further P–T  conditions along the retrograde path. We measured very low values (30–40  ppm Ca) in the cores of olivine and a remarkable increase towards the rim (120  ppm). The low core values may reflect an equilibrium stage during the main Alpine metamorphism. The increasing values towards the olivine rims probably represent a late-stage heating event. The initial cooling rates for the peridotite body are between 2700 and 5100 °C Ma−1, depending on which diffusion data are used.  相似文献   

5.
Garnet from a kinzigite, a high-grade gneiss from the central Black Forest (Germany), displays a prominent and regular retrograde diffusion zoning in Fe, Mn and particularly Mg. The Mg diffusion profiles are suitable to derive cooling rates using recent datasets for cation diffusion in garnet. This information, together with textural relationships, thermobarometry and thermochronology, is used to constrain the pressure–temperature–time history of the high-grade gneisses. The garnet–biotite thermometer indicates peak metamorphic temperatures for the garnet cores of 730–810  °C. The temperatures for the outer rims are 600–650  °C. Garnet–Al2SiO5–plagioclase–quartz (GASP) barometry, garnet–rutile–Al2SiO5–ilmenite (GRAIL) and garnet–rutile–ilmenite–plagioclase–quartz (GRIPS) barometry yield pressures from 6–9  kbar. U–Pb ages of monazite of 341±2  Ma date the low- P high- T metamorphism in the central Black Forest. A Rb/Sr biotite–whole rock pair defines a cooling age of 321±2  Ma. The two mineral ages yield a cooling rate of about 15±2  °C Ma−1. The petrologic cooling rates, with particular consideration of the f O2 conditions for modelling retrograde diffusion profiles, agree with the geochronological cooling rate. The oldest sediments overlying the crystalline basement indicate a minimum cooling rate of 10  °C Ma−1.  相似文献   

6.
By comparison with the general features of metamorphic soles (e.g. vertical and lateral extension, metamorphic grade and diagnostic mineral parageneses, deformation and dominant rock types), it is inferred that the amphibolites, metagabbros and hornblendites of the Wadi Um Ghalaga–Wadi Haimur area in the southern part of the Eastern Desert of Egypt represent the metamorphic sole of the Wadi Haimur ophiolite belt. The overlying ultramafic rocks represent overthrusted mantle peridotite. Mineral compositions and thermobarometric studies indicate that the rocks of the metamorphic sole record metamorphic conditions typical of such an environment. The highest P – T conditions ( c . 700 °C and 6.5–8.5 kbar) are preserved in clinopyroxene amphibolites and garnet amphibolites from the top of the metamorphic sole, which is exposed in the southern part of the study area. The massive amphibolites and metagabbros further north (Wadi Haimur) represent the basal parts of the sole and show the lowest P – T  conditions (450–620 °C and 4.7–7.8 kbar). The sole is the product of dynamothermal metamorphism associated with the tectonic displacement of ultramafic rocks. Heat was derived mainly from the hot overlying mantle peridotites, and an inverted P – T  gradient was caused by dynamic shearing during ophiolite emplacement. Sm/Nd dating of whole-rock–metamorphic mineral pairs yields similar ages of c . 630 Ma for clinopyroxene and hornblende, which is interpreted as a lower age limit for ophiolite formation and an upper age limit for metamorphism. A younger Sm/Nd age for a garnet-bearing rock ( c . 590 Ma) is interpreted as reflecting a meaningful cooling age close to the metamorphic peak. Hornblende K/Ar ages in the range 570–550 Ma may reflect thermal events during late orogenic granite magmatism.  相似文献   

7.
Ultra-high pressure eclogites and granulites both occur in the Dabie Mountains, central China. A garnet porphyroblast from felsic granulite in the Dabie Mountains has been analysed for compositional zoning by electron microprobe. Two segments of the porphyroblast have opposite compositional variations. Segment I (from centre outward 9  mm to analytical point 18) has decreasing XSps and increasing XPyr, while Segment II (from analytical point 18, 1  mm outward to the rim) has increasing XSps and XAlm and decreasing XPyr and XGrs. The compositional zoning in segment I is considered as growth zoning and that in Segment II as diffusive retrograde zoning. Garnet growth zoning records a P–T  path prior to the peak granulite metamorphism. The minimum P – T  conditions are estimated to be 1.35  GPa and 850  °C for peak metamorphism, based on the highest Mg/(Fe+Mg) composition in the garnet (analytical point 18) and matrix hypersthene, biotite and plagioclase. A symplectitic corona surrounds the porphyroblast and appears to have formed at 0.6  GPa and 700  °C. The well-preserved growth zoning in garnet suggests a short residence time for the granulite at peak metamorphism and thus rapid tectonic uplift history. The P–T  path is consistent with that of ultra-high-pressure eclogite in the area. Tectonic movements during a collisional event could have brought both the granulite and the eclogite to their present positions.  相似文献   

8.
ABSTRACT An Early Palaeozoic UHP metamorphic belt was recently discovered in the North Qaidam Mountains in the north-eastern part of the Tibet Plateau. The belt contains abundant eclogite with lesser amounts of garnet peridotite and gneiss. The paragneiss contains abundant zircon with coesite inclusions whereas the eclogite has garnet with coesite pseudomorphs and omphacite with exsolved quartz. The calculated peak metamorphic conditions for the eclogite are T  = 730 °C and P  = 2.8 GPa. The garnet peridotites are magnesium-rich with Mg#s [100 × Mg/(Mg + Fe)] up to 92. Olivine in the peridotites is highly magnesian (Fo > 91.5) and TiO2-poor and is typical of low- T garnet peridotites. Calculated peak metamorphic conditions for the peridotites are T  = 837 °C and P  = 2.5 GPa. U–Pb and Sm–Nd isotope dating indicate that continental subduction started during the early Ordovician (∼ 495 Ma). The North Qaidam UHP, together with the North Qilian HP belt about 300 km to the north, constitute a pair of genetically related early Palaeozoic subduction zones along the northern margin of the Tibet Plateau.  相似文献   

9.
The Raobazhai ultramafic body of the North Dabie Complex is re-interpreted as a mantle-derived peridotitic slice enclosed in, and isofacially metamorphosed with, surrounding granulite-to-amphibolite facies gneisses. The ultramafic sheet consists mainly of metaharzburgite, but includes subunits of metadunite and mylonitic lherzolite. The rocks contain spinel but neither garnet nor plagioclase. However, in the mylonitic lherzolite, fine-grained intergrowths of spinel, orthopyroxene and clinopyroxene outline domains resembling the habit of garnet in two dimensions; broad-beam microprobe analyses imply pseudomorphs after a pyropic garnet precursor. The mineral assemblage of the metadunite and metaharzburgite is: olivine (Fo92)+orthopyroxene (En92)+tremolitic-to-magnesiohornblende+Mg–Al-chromite, indicating amphibolite facies recrystallization. The mineral assemblage of the mylonitic lherzolite is: olivine (Fo90)+orthopyroxene (En90)+clinopyroxene+Cr-bearing spinel+pargasitic amphibole, indicative of granulite-to-amphibolite facies metamorphism. Phase equilibria and geothermometric estimations show that the Raobazhai meta-ultramafics have undergone at least three stages of recrystallization: (I) 950–990 °C, (II) 750–860 °C, and (III) 670–720 °C, assuming equilibrium in the spinel peridotite stability field ( c. 6–15 kbar), although an early, high-pressure stage (≥18 kbar) is probable, based on the inferred garnet pseudomorphs. Petrochemical and geothermobarometric data suggest that the ultramafic slice represents a fragment of the mantle wedge, tectonically incorporated into subducted continental crust and re-equilibrated at granulite-to-amphibolite facies conditions while being exhumed to shallow levels.  相似文献   

10.
The high- P , medium- T  Pouébo terrane of the Pam Peninsula, northern New Caledonia includes barroisite- and glaucophane-bearing eclogite and variably rehydrated equivalents. The metamorphic evolution of the Pouébo terrane is inferred from calculated P–T  and P–T  – X H2O pseudosections for bulk compositions appropriate to these rocks in the model system CaO–Na2O–FeO–MgO–Al2O3–SiO2–H2O. The eclogites experienced a clockwise P–T  path that reached P ≈19  kbar and T  ≈600  °C. The eclogitic mineral assemblages are preserved because reaction consequent upon decompression consumed the rocks' fluid. Extensive reaction occurred only in rocks with fluid influx during decompression of the Pouébo terrane.  相似文献   

11.
van Roermund  & Drury 《地学学报》1998,10(6):295-301
We report here for the first time the occurrence of relics of majoritic garnet within orogenic garnet peridotites from Otrøy, Western Gneiss Region, Norway. The microstructural evidence consists of two-pyroxene exsolution from garnet. Majoritic garnets are only stable at depths greater than 150 km. Estimates of the initial composition of the majoritic garnets imply pressures of 6–6.5 GPa indicating that the Otrøy peridotites were derived from depths > 185 km.
  Mineral-chemical data indicate that the present mineral compositions equilibrated at mantle conditions around 805 ± 40 °C and 3.2 ± 0.2 GPa.
  Estimates of the initial pressure temperature (PT) conditions and PTtime ( t ) path are consistent with a multistage, multiorogenic exhumation history with upwelling of hot asthenosphere up to ≈ 100 km in the Pre-Cambrian followed by subsequent crustal emplacement and exhumation during the Caledonian orogeny.  相似文献   

12.
The Mallee Bore area in the northern Harts Range of central Australia underwent high-temperature, medium- to high-pressure granulite facies metamorphism. Individual geothermometers and geobarometers and average P–T  calculations using the program Thermocalc suggest that peak metamorphic conditions were 705–810 °C and 8–12 kbar. Partial melting of both metasedimentary and meta-igneous rocks, forming garnet-bearing restites, occurred under peak metamorphic conditions. Comparison with partial melting experiments suggests that vapour-absent melting in metabasic and metapelitic rocks with compositions close to those of rocks in the Mallee Bore area occurs at 800–875 °C and >9–10 kbar. The lower temperatures obtained from geothermometry imply that mineral compositions were reset during cooling. Following the metamorphic peak, the rocks underwent local mylonitization at 680–730 °C and 5.8–7.7 kbar. After mylonitization ceased, garnet retrogressed locally to biotite, which was probably caused by fluids exsolving from crystallizing melts. These three events are interpreted as different stages of a single, continuous, clockwise P–T  path. The metamorphism at Mallee Bore probably occurred during the 1745–1730 Ma Late Strangways Orogeny, and the area escaped significant crustal reworking during the Anmatjira and Alice Springs events that locally reached amphibolite facies conditions elsewhere in the Harts Ranges.  相似文献   

13.
Abstract Partitioning of Fe and Mg between garnet and phengitic muscovite was calibrated as a geothermometer by Green & Hellman (1982) using experimental data at 25–30 kbar. When the thermometer is applied to pelites regionally metamorphosed at pressures of between 3 and 7 kbar it yields temperatures much higher than those from the garnet–biotite thermometer. A new empirical calibration is proposed for use with such rocks, with particular application where garnet occurs at lower grades than biotite. The new calibration is where K is given by: In K = In K d and X ii are mole fractions in the garnets.
The calibration was derived from comparison with the garnet–biotite thermometer of Ferry & Spear (1978), assuming no pressure-dependence for the partitioning between garnet and muscovite, no ferric iron partitioning, ideal mixing in muscovite, and the garnet mixing model of Ganguly & Saxena (1984) modified for a non-linear Ca effect. This latter garnet mixing model was selected because it gave the geologically most reasonable results. It has not proved possible to distinguish a pressure effect from a ferric-iron effect.
Despite the simplifying assumptions used to derive the calibration, it yields temperatures generally within 15°C of those given by the garnet–biotite thermometer, and has been used to supply thermometric data in a low-grade region of the Canadian Rockies.  相似文献   

14.
A large mass of dolomitic marble including many eclogite blocks occurs in orthogneisses of the Rongcheng area of the Su-Lu province, eastern China. The marble consists mainly of dolomite, calcite (formerly aragonite), graphite, forsterite, diopside, talc, tremolite and phlogopite. Aggregates of talc and calcite occur at the boundary between dolomite and diopside. Tremolite is a reaction product between talc and calcite. Eclogite blocks are rimmed by dark green amphibolite. The primary mineral assemblage in the core of eclogite is Na-bearing garnet (up to 0.2  wt% Na2O), omphacitic pyroxene, clintonite and rutile. Secondary minerals are pargasitic/edenitic amphibole, plagioclase, sodic diopside, chlorite, zoisite and titanite. The peak metamorphic conditions, based on stability of the dolomite+forsterite+aragonite (now calcite)+graphite assemblage, under conditions where tremolite is unstable, are estimated at T  =610–660 °C and P =2.5–3.5  GPa (for X CO=0.001). A reaction between dolomite and diopside to form talc under tremolite-unstable conditions indicates a temperature decrease under ultra-high-pressure conditions ( P >2.4  GPa, X CO<0.0013). The formation of secondary tremolite is consistent with a nearly adiabatic pressure decrease post-dating the ultra-high-pressure metamorphism. The temperature decrease under ultra-high-pressure conditions preceding decompression may reflect the underplating of a cold slab, and the rapid decompression probably corresponds to the upwelling stage promoted by the delamination of a downwelling lithospheric root. The P – T  conditions of the amphibolitization stage are estimated at <0.9  GPa and <460 °C, and are similar to conditions recorded by the surrounding orthogneisses.  相似文献   

15.
In the Austroalpine Mont Mary nappe (Italian Western Alps) discrete zones of mylonites–ultramylonites developed from coarse-grained, upper amphibolite facies metapelites of pre-Alpine age. The syn–mylonitic mineral assemblage is quartz–biotite–muscovite–plagioclase–garnet–sillimanite–ilmenite–graphite, and formed via the model hydration reaction: Grt1+Kfs+H2O=Bt2+Ilm2+Qtz+Ms± Sil .Grain-size reduction of about three orders of magnitude was accompanied by extensive recrystallization of all minerals except sillimanite, and by compositional changes of garnet and biotite. Deformation took place at temperatures of 510–580  °C under low-pressure conditions (0.25–0.45 GPa) and corresponds to the latest stages of pre-Alpine metamorphic evolution. The pre-Alpine mylonitization conditions were close to the brittle-ductile transition, as indicated by syn–mylonitic generation of pseudotachylytes and high differential stress inferred from quartz grain-size piezometry. The brittle-ductile behaviour at a relatively high temperature, and the absence of annealing textures in quartz aggregates, are suggestive of water-deficient conditions during mylonitization. These were accomplished through progressive consumption of water by syn–kinematic hydration reaction and by adsorption onto the greatly increased grain boundary area resulting from dynamic recrystallization.  相似文献   

16.
Caledonian orogenesis in NE Greenland resulted from the collision of Laurentia and Baltica during the Ordovician–Silurian. Anatectic pelites within the metasedimentary Smallefjord Sequence record a clockwise P – T  path, the result of early crustal thickening at c . 445–440 Ma and subsequent exhumation of the high-grade metamorphic core by a combination of ductile extension and tectonic denudation. The early prograde segment of the path followed a shallow, near-isothermal trajectory and attained a metamorphic peak of c . 9.0–10.0 kbar at >790 and <850 °C. Prograde metamorphism initiated anatexis of pelites in the kyanite stability field and continued with sillimanite stable. Inclusion trails in the garnet cores are textural remnants of early deformation, which occurred either before or during prograde metamorphism. The peak metamorphic conditions are anomalously high in the context of thermal models and P – T  paths for continental collision zones. The additional heat input required to promote migmatization may have been provided by advection as lower crustal high-pressure rocks and the uppermost mantle were uplifted following lithospheric thinning at an early stage in the orogeny. The prograde path was interrupted by the development of retrograde extensional shear fabrics defined by biotite+sillimanite and associated with garnet breakdown. Field observations indicate that ductile extension was accompanied by melt extraction, transport and emplacement of intracrustal granites dated at c . 430 Ma. Regional ductile extension and exhumation probably resulted from the development of gravitational instabilities within the overthickened crust during continental collision.  相似文献   

17.
The Okiep Copper District, part of the 1.2–1.0 Ga high-grade terrane in western Namaqualand, is composed of a mid-Proterozoic supracrustal sequence and several pre- to post-orogenic intrusive suites affected by two high-grade events (M2a/M2b, M3) of Kibaran and one low-grade event (M4) of Pan-African age. Peak assemblages in quartz-bearing pelites are characterized either by garnet+cordierite coexisting with sillimanite/biotite, or by biotite+sillimanite±garnet; a difference controlled by bulk composition and variation in water activities (0.1–0.7) during dehydration melting. Maximum P–T conditions were reached during M2a coevally with the major deformational event (D2a) and are estimated at 750–820  °C and 5–6  kbar. A counterclockwise P–T  path is indicated by regionally occurring pseudomorphs of sillimanite after andalusite and by prograde reaction textures preserved as relics in M2a porphyroblasts. Two stages of retrograde metamorphism are distinguished: M2a garnet+cordierite-bearing assemblages were retrogressed to biotite+sillimanite+quartz (M2b) along discontinuous foliation planes and shear zones (D2b). Retrograde M3 corona assemblages formed at similar P–T  conditions (580–660  °C and 5.8±0.5  kbar) to the M2b assemblages but M3 crystallization postdates penetrative D2 deformation, intrusion of 1.06 Ga granitoids and formation of associated W–Mo deposits. It is concluded that: (a) Kibaran high-grade metamorphism in the Okiep Copper District is thermally punctuated and (b) reaction textures documenting apparent isobaric cooling of this low- P high- T  terrane must be interpreted with caution.  相似文献   

18.
The dominant foliation (S2) in the metapelites of the Southalpine basement, near the western side of the Tertiary Adamello intrusive stock, is a Variscan greenschist facies planar fabric, slightly reworked during thick-skin Alpine tectonics. S2 is defined by muscovite and chlorite and was formed by decrenulation of pre-existing foliations, which are confined to metre-size, less-deformed domains and defined by biotite and white mica. The pre-S2 fabric is composite (D1a & D1b) and defined by contrasting amphibolite facies metamorphic assemblages in different residual sites. Cld+BtI+Grt+MsI+Pl+Qtz and St+BtII+Grt+MsII+Pl+Qtz assemblages mark D1a and D1b fabrics respectively; these developed during successive steps of a single, temperature-prograde polyphase event, rather than during separate tectonometamorphic imprints affecting different tectonic units, later coupled during a D2 greenschist facies stage. Thermobarometric estimates of assemblages formed during D1a, D1b and D2 show a transition from T  =480–540  °C (during D1a) to T  =570–660  °C (during D1b), corresponding to a slight pressure-increase from 0.75–0.95  GPa to 0.85–1.15  GPa. D2 greenschist retrogression corresponds to a pressure and temperature decrease ( T  <400–550  °C and P <0.3–0.4  GPa). This P–T– deformation–time path is inferred to be the result of uplift from a depth of c. 35  km, after Palaeozoic subduction and continental collision; it is consistent with models postulated for other metamorphic units of the Variscan Belt in Europe. This is the first documented example in the Southern Alps of temperature-prograde metamorphism before Palaeozoic collision.  相似文献   

19.
Magnesian metapelites of probable Archaean age from Forefinger Point, SW Enderby Land, East Antarctica, contain very-high-temperature granulite facies mineral assemblages, which include orthopyroxene (8–9.5 wt% Al2O3)–sillimanite ± garnet ± quartz ± K-feldspar, that formed at 10 ± 1.5 kbar and 950 ± 50°C. These assemblages are overprinted by symplectite and corona reaction textures involving sapphirine, orthopyroxene (6–7 wt% Al2O3), cordierite and sometimes spinel at the expense of porphyroblastic garnet or earlier orthopyroxene–sillimanite. These textures mainly pre-date the development of coarse biotite at the expense of initial mesoperthite, and the subsequent formation of orthopyroxene (4–6 wt% Al2O3)–cordierite–plagioclase rinds on late biotite.
The early reaction textures indicate a period of near-isothermal decompression at temperatures above 900°C. Decompression from 10 ± 1.5 kbar to 7–8 kbar was succeeded by biotite formation at significantly lower temperatures (800–850°C) and further decompression to 4.5 ± 1 kbar at 700–800°C.
The later parts of this P–T evolution can be ascribed to the overprinting and reworking of the Forefinger Point granulites by the Late-Proterozoic ( c . 1000 Ma) Rayner Complex metamorphism, but the age and timing of the early high-temperature decompression is not known. It is speculated that this initial decompression is of Archaean age and therefore records thinning of the crust of the Napier Complex following crustal thickening by tectonic or magmatic mechanisms and preceding the generally wellpreserved post-deformational near-isobaric cooling history of this terrain.  相似文献   

20.
Garnet‐bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high‐temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60–120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ‘mantle’ peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ‘subduction zone peridotites’ intrude during the subsequent subduction of continental crust. Low‐pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20–50 km) may be carried to deeper levels within the host slab and undergo high‐pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet‐bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50–120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 °C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 °C), subcontinental mantle (‘relict peridotites’) and seem to require the development of major intra‐cratonic faults to effect their intrusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号