首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study compositional trends associated with open-system thermal metamorphism and shock-induced collisional breakup of L4-6 chondrite parent(s), we used inductively coupled plasma mass spectrometry and radiochemical neutron activation analysis to determine 49 trace elements in 62 falls. Trends for the 49 elements, especially of the 14 rare earth elements in 5 members of a putative L/LL group (Bjurböle, Cynthiana, Holbrook, Knyahinya, Sultanpur) and 9 additional L chondrites (Aïr, Aumieres, Bachmut, Forksville, Kandahar, Kiel, Milean, Narellan, Santa Isabel) differed markedly from those in the remaining normal 46 samples. Here, we report the data for the 14 L and putative L/LL chondrites and 7 LL (Appley Bridge, Athens, Bandong, Ensisheim, Mangwendi, Olivenza, Soko-Banja), analyzed to test the affinity of the putative L/LL suite to well-characterized LL chondrites.Compositional trends of the 14 atypical L chondrites (including Aïr’s unique and possibly contaminated signature) and Mangwendi, an LL6 chondrite, indicate that each is compositionally unrepresentative of well-sampled, whole-rock chondrites. Indeed, half of the unrepresentative chondrites were ≤ 2-g samples. Compositionally, members of the putative L/LL chondrites demonstrate no affinities to normal LL chondrite falls. To establish compositional trends accompanying open-system, thermal episodes involving the L chondrite parent(s), we should ignore data for the 14 unrepresentative L chondrites reported here.  相似文献   

2.
南极洲主要矿产资源   总被引:2,自引:0,他引:2  
陈廷愚 《地球学报》1996,17(1):65-77
南极洲蕴藏着丰富的矿产,但目前还研究得很不够。本文主要介绍了东南极南查尔斯王子山脉和恩德比地前寒武纪铁矿、毛德王后地不同时代的脉状铁矿及云母、石墨、绿柱石、水晶等非金属矿产。横贯南极山脉的U矿化、彭萨科拉山的杜费克杂岩体的Fe,Ti,铂族金属及CU,Ni等矿化、西南极包括南极半岛地区在内中─新生代的Cu矿化都是有潜力的矿产资源。横贯南极山脉地区的二叠纪煤系分布很广。南极洲的石油与天然气以威德尔海及罗斯海最有潜力。  相似文献   

3.
Petrography and mineral chemistry of 24 ordinary chondrites from the Grove Mountains, Antarctica, have been studied in order to identify their chemical-petrographic types. These samples were selected from a total of 4448 Grove Mountains (GRV) meteorites collected during the 19th Chinese Antarctic Research Expedition so as to make an estimation of the large GRV meteorite collection. The chemical-petrographic types of these meteorites are presented below: 1 H3,2 H4, 4 H5, 2 H6, 1 L4, 7 L5, 5 L6, 1 LL4 and 1 LL6. The new data weaken the previous report that unequilibrated ordinary chondrites are unusually abundant in the Grove Mountains region. However, this work confirms significant differences in distribution patterns of chemical-petrographic types between the Grove Mountains and other  相似文献   

4.
在南极格罗夫山普通球粒陨石的风化等级划分中出现了和Wlotzka(1993)标准矛盾的现象。部分普通球粒陨石的金属和陨硫铁氧化不足20%,然而硅酸盐却发生了蚀变。如果考虑金属的氧化量,这种风化程度应为W1,如果考虑硅酸盐的蚀变,这种风化程度应为W5。对于存在如此大的差异本文给出了折衷的解决办法——对金属和硅酸盐同时进行风化等级划分。金属的风化等级划分为W_m0-W_m4五个,硅酸盐风化等级划分为W_s0-W_s3四个。依据新方案,GRV 021588、021636、021772和021957等4块无法用Wlotzka(1993)标准来确定风化等级的陨石的风化等级均为W_m1-W_s1。而陨石GRV 023312的风化等级为W_m3-W_s0,其相当于Wlotzka(1993)标准中的W3。  相似文献   

5.
The Varre-Sai meteorite fell along the border of the states of Espirito Santo and Rio de Janeiro, Brazil; on 19 June 2010 at 5:40 pm. Petrography and X-ray powder diffraction (XRD) indicate that the rock is an L5 S4 chondrite, with blastoporphyritic texture that has not been previously described. Geochemical data based on major and rare-earth elements (REEs) show that Varre-Sai is highly similar to the other L chondrites. In Harker diagrams, Varre-Sai, L, and LL chondrites form a single group, suggesting no significant chemical differences between them and contributing to the long-standing debate of whether LL chondrites form a distinct group or whether they are a subset of the L group. Harker diagrams also define a trend from E to H and L/LL chondrites, similar to the cosmochemical trends suggested by other authors. The behaviour of Fe2O3t and NiO indicates a relationship with Fe-Ni alloys, and their trend in the diagram suggests some chemical differentiation in the ordinary chondrite parental bodies. The REE content in Varre-Sai, normalized to C chondrites, falls in the field of L chondrites and others, but with slight REE enrichment. The chemical differences in chondrites, mainly in REEs, Fe2O3t and NiO could be alternatively interpreted as variations in the inherited agglutinated materials as chondrules, Ca–Al-rich inclusions and Fe–Ni nodules.  相似文献   

6.
随着国际横穿南极科学考察计划的实施, 近年来开展了沿中山站-Dome A考察路线的冰芯研究, 获得了伊丽莎白公主地250 a来气候环境变化的高分辨率记录. 通过与Lambert冰川流域西侧有关研究结果的对比, 揭示了该冰川谷地为东南极洲重要气候分界线的特征. 综合南极地区其它地点冰芯记录和冰盖变化研究结果, 发现以小冰期为代表的寒冷期在东南极洲较为明显, 在西南极洲则不明显, 甚或恰好相反, 表现为温暖阶段. 就东南极洲来说, 也存在明显的区域差异: 以Lambert冰川谷地为界, 东部地区, 如Wilkes Land (Law Dome), Victoria Land北部(Hercules Neve)等地, 小冰期冷期比较突出;西部地区, 如Dronning Maud Land和Mizuho高原, 情况不是很明确. Lambert冰川流域是非常特殊的地方, 虽然小冰期冷期也存在, 但1850年前后的显著高温和近100多年来的降温与南极洲其它地方都不一样, 而与南极半岛北侧一冰芯所给出的400 a温度变化记录极为相似, 我们尚不能解释为何如此遥远的两个地点具有很好的一致性而与其它地方则不一致.  相似文献   

7.
Precise determination of REE and Ba abundances in three carbonaceous (Orgueil Cl, Murchison C2 and Allende C3) and seven olivine-bronzite chondrites were carried out by mass spectrometric isotope dilution technique. Replicate analyses of standard rock and the three carbonaceous chondrites demonstrated the high quality of the analyses (accuracies for REE are ±1–2 per cent). Certain carbonaceous chondrite specimens showed small positive irregularities in Yb abundance. The Yb ‘anomaly’ (approximately + 5 per cent relative to the average of 10 ordinary chondrites) in Orgueil may relate to high temperature components. The REE pattern of Guareña (H6) exhibits comparatively extensive fractionation (about factor 2) with a negative anomaly for Eu (17 ± 1 percent) compared to the average H chondrite. This could be interpreted in terms of extensive thermal metamorphism leading to melting.Apart from absolute abundance differences, there appears to be small but recognizable fractionation among the average relative REE abundances of Cl, E, H and L chondrites. However, individual chondrites within these groups showed more or less fractionated REE patterns relative to each other. The distinction between H and L chondrites was well demonstrated in Eu-Sm correlation curves and absolute abundance differences of REE and major elements.Si-normalized atomic ratios of the REE abundances in different kinds of chondrites to those in Orgueil (Cl) chondrite were 0.58 (E), 0.75 (H), 0.81 (L), 1.07 (C2) and 1.32 (C3).  相似文献   

8.
Siderophile element abundances in individual metal grains in the ungrouped chondrite Grosvenor Mountains (GRO) 95551 and in the ordinary chondrites Tieschitz H3.6, Soko-Banja LL4, and Allegan H5 were measured with laser ablation-inductively coupled plasma mass spectrometry. Matrix metal in GRO 95551 falls into two distinct compositional groups, a high-Ni group with 7.2 ± 0.4 wt% Ni and a low-Ni group with 3.7 ± 0.1 wt% Ni, indicating that kamacite/taenite equilibration at ∼1020 K was followed by rapid cooling. The nonrefractory siderophile elements P, Co, Cu, Ga, Ge, As, Pd, and Au also partition between the high-Ni and low-Ni metal in a manner consistent with kamacite/taenite fractionation, but the refractory siderophiles Ru, Re, Os, Ir, and Pt show correlated variations that are unrelated to kamacite/taenite partitioning and indicate that variations in refractory components of the metal were not completely erased during equilibration at ∼1020 K. The Ni-normalized bulk metal composition of GRO 95551 is refractory depleted and volatile rich relative to Bencubbin and related metal-rich chondrites but bears strong similarities to equilibrated ordinary chondrite metal. GRO 95551 represents a new chondrite type with chemical affinity to the ordinary chondrites. Individual metal grains in unequlibrated ordinary chondrites also have correlated variations in refractory siderophile contents that cannot be produced by redox processes alone; these variations span three orders of magnitude and diminish with increasing metamorphic grade of the ordinary chondrites.  相似文献   

9.
Petrographic, mineralogical and chemical analysis of naturally weathered equilibrated ordinary chondrites collected from ‘ hot’ deserts and Antarctica has revealed striking similarities and also pronounced differences in weathering between the two environments. Terrestrial weathering in all meteorites studied is dominated by oxidation and hydration of Fe,Ni metal, producing Fe-oxides and oxyhydroxides that have partially replaced the metal grains and have also occluded primary intergranular pores to form veins. Troilite weathers readily in ‘ hot’ desert environments but undergoes very little alteration under Antarctic conditions. Most of the primary porosity of ordinary chondrites has been occluded by the time that ∼ 15 to 25% of the initial Fe0 and Fe2+ has been oxidised to Fe3+ in both environments. Results from modelling the volume changes upon alteration of primary minerals to a range of weathering products demonstrates that the primary porosity of most meteorites is sufficient to accommodate weathering products. Dilation of primary pores and brecciation, which has been observed in parts of some meteorites, will only occur if the meteorite is especially metal-rich, or has a low primary porosity. These weathering products are absent from recent falls but have formed in a fall after ∼ 100 yr of museum storage.Cl-bearing akaganéite and hibbingite are common weathering products in Antarctic finds but occur in abundance in only one ‘ hot’ desert meteorite, Daraj 014. The majority of Fe-rich weathering products in meteorites from both environments contain low, but variable concentrations of Si, Mg and Ca. In most meteorites a proportion of these elements are inferred to be present as a very finely crystalline mineral with a ∼ 1.0-nm lattice fringe spacing; where seen within intragranular fractures this mineral has a topotactic relationship with olivine and orthopyroxene. In the heavily-weathered Antarctic finds ALHA 78045 and 77002, Si is concentrated in cronstedtite, a Fe-rich phyllosilicate. An unidentified hydrous Si-Fe-Ni-Mg mineral or gel has also partially replaced taenite in ALHA 78045. In addition to Fe-rich weathering products, ‘ hot’ desert meteorites contain sulphates, Ca-carbonate and silica, whereas such minerals are largely absent from Antarctic finds. The abundance of silicate weathering products in Antarctic meteorites is unexpected and indicates that olivine and pyroxene undergo significant chemical weathering in these environments. As preterrestrial cronstedtite is abundant in CM2 carbonaceous chondrites, the Antarctic environment may be a powerful analog for aqueous alteration in the asteroidal parent bodies of primitive meteorites.  相似文献   

10.
Osmium isotopic compositions, abundances of highly siderophile elements (HSE: platinum group elements, Re and Au), the chalcogen elements S, Se and Te and major and minor elements were analysed in physically separated size fractions and components of the ordinary chondrites WSG 95300 (H3.3, meteorite find) and Parnallee (LL3.6, meteorite fall). Fine grained magnetic fractions are 268-65 times enriched in HSE compared to the non-magnetic fractions. A significant deviation of some fractions of WSG 95300 from the 4.568 Ga 187Re-187Os isochron was caused by redistribution of Re due to weathering of metal. HSE abundance patterns show that at least four different types of HSE carriers are present in WSG 95300 and Parnallee. The HSE carriers display (i) CI chondritic HSE ratios, (ii) variable Re/Os ratios, (iii) lower than CI chondritic Pd/Ir and Au/Ir and (iv) higher Pt/Ir and Pt/Ru than in CI chondrites. These differences between components clearly indicate the loss of refractory HSE carrier phases before accretion of the components. Tellurium abundances correlate with Pd and are decoupled from S, suggesting that most Te partitioned into metal during the last high-temperature event. Tellurium is depleted in all fractions compared to CI chondrite normalized Se abundances. The depletion of Te is likely associated with the high temperature history of the metal precursors of H and LL chondrites and occurred independent of the metal loss event that depleted LL chondrites in siderophile elements. Most non-magnetic and slightly magnetic fractions have S/Se close to CI chondrites. In contrast, the decoupling of Te and Se from S in magnetic fractions suggests the influence of volatility and metal-silicate partitioning on the abundances of the chalcogen elements. The influence of terrestrial weathering on chalcogen element systematics of these meteorites appears to be negligible.  相似文献   

11.
We report petrologic data and contents of Ag, Bi, Cd, Co, Cs, Ga. In, Rb, Se, Te, Tl and Zn-trace elements spanning the volatility/mobility range-in light and dark portions of H chondrite regolith breccias and L chondrite fragmental breccias. The chemical/petrologic characteristics of H chondrite regolith breccias differ from those of non-brecciated chondrites or fragmentai breccias. Petrologic characteristics and at least some trace element contents of H chondrite regolith breccias reflect primary processes; contents of the most volatile/mobile elements may reflect either primary or secondary processing, possibly within layered H chondrite parent object(s). Chemical/petrologic differences existed in different regions of the parents). Regolith formation and gardening and meteoroid compaction were not so severe as to alter compositions markedly.  相似文献   

12.
Lower to upper Middle Ordovician quartz-rich turbidites form the bedrock of the Lachlan Orogen in the southern Tasmanides of eastern Australia and occupy a present-day deformed volume of ~2–3 million km3. We have used U–Pb and Hf-isotope analyses of detrital zircons in biostratigraphically constrained turbiditic sandstones from three separate terranes of the Lachlan Orogen to investigate possible source regions and to compare similarities and differences in zircon populations. Comparison with shallow-water Lower Ordovician sandstones deposited on the subsiding margin of the Gondwana craton suggests different source regions, with Grenvillian zircons in shelf sandstones derived from the Musgrave Province in central Australia, and Panafrican sources in shelf sandstones possibly locally derived. All Ordovician turbiditic sandstone samples in the Lachlan Orogen are dominated by ca 490–620 Ma (late Panafrican) and ca 950–1120 Ma (late Grenvillian) zircons that are sourced mainly from East Antarctica. Subtle differences between samples point to different sources. In particular, the age consistency of late Panafrican zircon data from the most inboard of our terranes (Castlemaine Group, Bendigo Terrane) suggests they may have emanated directly from late Grenvillian East Antarctic belts, such as in Dronning Maud Land and subglacial extensions that were reworked in the late Panafrican. Changes in zircon data in the more outboard Hermidale and Albury-Bega terranes are more consistent with derivation from the youngest of four sedimentary sequences of the Ross Orogen of Antarctica (Cambrian–Ordovician upper Byrd Group, Liv Group and correlatives referred to here as sequence 4) and/or from the same mixture of sources that supplied that sequence. These sources include uncommon ca 650 Ma rift volcanics, late Panafrican Ross arc volcanics, now largely eroded, and some <545 Ma Granite Harbour Intrusives, representing the roots of the Ross Orogen continental-margin arc. Unlike farther north, Granite Harbour Intrusives between the Queen Maud and Pensacola mountains of the southern Ross Orogen contain late Grenvillian zircon xenocrysts (derived from underlying relatively juvenile basement), as well as late Panafrican magmatic zircons, and are thus able to supply sequence 4 and the Lachlan Ordovician turbidites with both these populations. Other zircons and detrital muscovites in the Lachlan Ordovician turbidites were derived from relatively juvenile inland Antarctic sources external to the orogen (e.g. Dronning Maud Land, Sør Rondane and a possible extension of the Pinjarra Orogen) either directly or recycled through older sedimentary sequences 2 (Beardmore and Skelton groups) and 3 (e.g. Hannah Ridge Formation) in the Ross Orogen. Shallow-water, forearc basin sequence 4 sediments (or their sources) fed turbidity currents into outboard, deeper-water parts of the forearc basin and led to deposition of the Ordovician turbidites ~2500–3400 km to the north in backarc-basin settings of the Lachlan Orogen.  相似文献   

13.
CK chondrites constitute the most oxidized anhydrous carbonaceous chondrite group; most of the Fe occurs in magnetite and in FeO-rich mafic silicates. The two observed CK falls (Karoonda and Kobe), along with thirteen relatively unweathered CK finds, have unfractionated siderophile-element abundance patterns. In contrast, a sizable fraction of CK finds (9 of 24 investigated) shows fractionated siderophile abundance patterns including low abundances of Ni, Co, Se and Au; the most extreme depletions are in Ni (0.24 of normal CK) and Au (0.14 of normal CK). This depletion pattern has not been found in other chondrite groups. Out of the 74 CK chondrites listed in the Meteoritical Bulletin Database (2006; excluded considerably paired specimens; see http://tin.er.usgs.gov/meteor/metbull.php) we analyzed 24 and subclassified the CK chondrites in terms of their chemical composition and sulfide mineralogy: sL (siderophiles low; six samples) for large depletions in Ni, Co, Se and Au (>50% of sulfides lost); sM (siderophiles medium; two CKs) for moderately low Ni and Co abundances (sulfides are highly altered or partly lost); sH (siderophiles high; one specimen) for enrichments in Ni, Co, Se and Au; ‘normal’ for unfractionated samples (13 samples). The sole sH sample may have obtained additional sulfide from impact redistribution in the parent asteroid. We infer that these elements became incorporated into sulfides after asteroidal aqueous processes oxidized nebular metal; thermal metamorphism probably also played a role in their mineral siting. The siderophile losses in the sL and sM samples are mainly the result of oxidation of pentlandite, pyrite and violarite by terrestrial alteration followed by leaching of the resulting phases. Some Antarctic CK chondrites have lost most of their sulfides but retained Ni, Co, Se and Au, presumably as insoluble weathering products.  相似文献   

14.
我国南极陨石研究与展望   总被引:2,自引:0,他引:2  
继1998~2000年我国第15、16次南极科考队在南极格罗夫山发现32块陨石之后,2002~2003年第19次科考队成立了以回收陨石为中心任务的格罗夫山综合考察分队,在同一地区成功回收4448块陨石。我国的南极陨石回收工作不但实现了零的突破,而且成为继日本和美国之后拥有南极陨石数量最多的国家之一。通过对第15、16次队回收的32块陨石以及第19次队4448块陨石中的38块代表性样品的化学一岩石类型划分工作,除平衡型普通球粒陨石外,发现了2块火星陨石、2块橄辉无球粒陨石、6块非平衡L3型陨石、4块碳质球粒陨石和1块非平衡型顽辉石球粒陨石等特殊类型陨石。本文主要介绍了南极陨石的回收和研究进展,以及我国在南极格罗夫山回收陨石的情况和已取得的初步研究成果。同时对我国今后的陨石回收与研究工作提出初步设想。  相似文献   

15.
Fine structures of mutually normalized rare-earth patterns of chondrites   总被引:2,自引:0,他引:2  
REE abundances in ten chondrites (nine falls and one find) were determined very accurately by mass-spectrometric stable isotope dilution techniques. All of the chondrites have different relative and absolute REE patterns. Except for Eu and, rarely, for Ce, the REE abundances in chondrites are smoothly fractionated from sample to sample. Notwithstanding differences in the abundances of common REE, four of five L6 chondrites have very similar absolute Eu abundances; their mutually-normalized REE patterns are not curved, but are composed of two rectilinear segments.The Leedey-normalized REE pattern for St. Séverin (LL6) is composed of two concave curves. Yonozu's (H4,5) pattern shows negligibly concave curvature on both sides of Eu. Kesen's (H4) pattern is unusual in its overall pattern but also in irregularities for particular elements. The irregularity may be connected with the unusually high vapor pressure of metallic Yb. The REE pattern for the Allende bulk sample shows a discontinuity, presumably reflecting its considerable heterogeneity of composition and structure. It is evident that any pattern of ordinary chondrites cannot be produced from the Allende bulk pattern. A comparison is also made with the results on the chondrite composites previously investigated.  相似文献   

16.
Iodine, bromine, and chlorine concentrations were determined in different Antarctic meteorite specimens (eucrites, high-iron and low-iron chondrites) with isotope dilution mass spectrometry. In all Antarctic meteorites I-overabundances have been analysed compared with the concentrations for non-Antarctic meteorites of the same class. Half of the Antarctic specimens show especially high concentrations of more than 1 μ/g. A similarly high enrichment effect in Antarctic meteorites was not found for Br and Cl, but smaller Cl excesses could be observed in some eucrites and high-iron chondrites.By analysing different types of Antarctic rocks, a significant decrease of the I concentration—but not of the Br and Cl concentration-was determined from the surfaces to the centers of the rocks. This shows that atmospheric I compounds interact with the surfaces of Antarctic rocks and, therefore, with those of Antarctic meteorites as well. Analyses of atmospheric halogens show that the gaseous compound CH3I is probably responsible for the I-overabundance in Antarctic meteorites and rocks. Chloride and bromide are found in particles derived from sea-spray in Antarctic aerosols. Deposition of halogens in Antarctic snow near the coast shows I/Cl ratios 10–190 higher than the average value for seawater. The corresponding Br/Cl ratios are in the same range as seawater. On the basis of our results and of other reported data we construct a preliminary hypothesis for a geochemical I cycle in Antarctica, taking into consideration long-distance and short-distance transportation of different I compounds from the coast to inland Antarctica.  相似文献   

17.
The paper addresses the current understanding of the inner structure of the layered intrusions at Dufek Massif in the Pensacola Mountains and the Utpostane and Muren intrusions in Queen Maud Land, Antarctica, which are still poorly known to Russian geologists. The magmatic events at approximately 180 Ma, including the emplacement of layered intrusions, are thought to had predated the breakup of the Gondwana supercontinent. The spatiotemporal similarities of the intrusions determine the importance of the problem of whether they were produced by a single or more than one parental magmas, which are thought to have been derived under the effect of a superplume.  相似文献   

18.
Cosmic ray exposure ages of Rumuruti chondrites from North Africa   总被引:1,自引:0,他引:1  
We analyzed noble gases and determined 3He, 21Ne, and 38Ar cosmic ray exposure ages (CREAs) of Rumuruti chondrites from North West Africa (NWA) to rule on potential pairings and/or source pairings of North Africa R chondrite samples. The 21Ne exposure ages range between 10 and 74 Ma, with NWA 2897 and 1668 having the highest known exposure ages among R chondrites. We also include other R chondrites from North Africa (Schultz et al., 2005) and, based on their noble gas characteristics and their 21Ne CREAs, propose pairings of the following samples: NWA 2198, 5069, 755, 4615, 845, 851, 978, 1471, and possibly DaG 013 belonging to one fall with a CREA of ∼10 Ma, and NWA 753, 4360, 4419, 5606, 1472, 1476, 1477, 1478, and 1566 representing one fall with a CREA of ∼14 Ma. NWA 2821, 2503, 2289, 3364, 3146, 4619, 4392, 3098, and 2446 seem to belong to one single fall with a CREA of ∼20 Ma, and NWA 2897 and 1668 seem to be paired and show a common CREA of ∼66 Ma. Overall, all R chondrite samples from North Africa analyzed for noble gases so far represent ∼16 individual falls. Comparing falls from North Africa to literature CREAs of R chondrites worldwide, it seems possible that a significant number of all R chondrite falls studied for noble gases were ejected from the R chondrite parent body during one large collisional event between 15 and 25 Ma ago. However, the database is still too small to draw definitive conclusions. The large portion of brecciated R chondrites in collections suggests severe impact brecciation of the R chondrite parent body.  相似文献   

19.
The Ningqiang meteorite is a fall carbonaceous chondrite, containing various Ca-, Al-rich inclusions that usually escaped from secondary events such as high-temperature heating and low- temperature alteration. However, it has not yet been classified into any known chemical group. In order to address this issue, 41 elements of the bulk Ningqiang meteorite were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atom emission spectrometry (ICP-AES) in this study. The Allende (CV3) carbonaceous chondrite and the Jilin (H5) ordinary chondrite were also measured as references, and our analyses are consistent with the previous results. Rare earth and other refractory lithophile elements are depleted in Ningqiang relative to both Allende and mean CK chondrites. In addition, the REE pattern of Ningqiang is nearly flat, while that of Allende shows slight enrichment of LREE relative to HREE. Siderophile elements of Ningqiang are close to those of mean CK chondrites, but lower than those of Allende. Our new analyses indicate that Ningqiang cannot be classified into any known group of carbonaceous chondrites, consistent with previous reports.  相似文献   

20.

A fragment of the Sverdlovsk Meteorite, which was found in 1985 in the Central Urals, is studied by modern analytical methods. It belongs to H chondrites of petrologic type 4–5; shock stage of meteorite is S1-2, terrestrial weathering is W1. The composition of minerals of the meteorite is studied. It is found for the first time that the metal and sulfides are concentrated in fine veinlets of the recrystallized matrix of the chondrite and are accompanied by segregations of metal and troilite inside these veinlets. The distribution of trace elements of the metal phase of the meteorite is studied.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号