首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Classification of and elemental fractionation among ureilites   总被引:2,自引:0,他引:2  
Concentrations of Ni, Zn, Ga, Ge, Cd, In, Ir and Au in five ureilites can be combined with petrographie evidence to yield a well-defined suite extending from Goalpara (heavily shocked, low Ir concentration, low Ir/Ni ratio) through Haverö, Dyalpur, Novo-Urei to Kenna (moderately shocked, high Ir concentration, high Ir/Ni ratio). Arguments are presented indicating that this suite represents the sampling of a vertical section within the ureilitic parent body. The large range in Ir/Ni and Ir/Au ratios indicates greater efficiency of extraction of primitive, refractory metal in the Goalpara region than in the Kenna region, and implies that higher maximum temperatures prevailed in the former during the production of ureilitic ultramafic silicates by a partial melting process.

A major impact event injected a deposit of C-rich material into the ultramafic silicates. This C-rich material had a moderately high content of metal; there is no direct evidence that it contained volatiles other than the rare gases. High Ca contents of the ferromagnesian minerals indicate that the ultramafics were hot at the time the injection occurred; the zoning of these mineral grains also indicates high temperatures (ca. 1400 K) and low pressures (S 10atm) such that reaction between C and Fe2SiO4 could occur, but that cooling occurred too quickly to allow complete equilibration. The ureilitic C-rich material appears to represent an important type of primitive material.

Two siderophile-rich components are necessary to explain the relative siderophile trends in ureilites. We interpret the high-Ir component to be a refractory nebular condensate or residue that was retained during the partial melting event. The low-Ir component, which roughly resembles E4 chondrite siderophiles, is attributed to metal injected together with the vein material.  相似文献   


2.
Four ureilites (Dyalpur, Goalpara, Haverö, and Novo Urei) were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Rb, Re, Sb, Se, Te, Tl, and U. An attempt has been made to resolve the data into contributions from the parent ultramafic rock and the injected, carbon- and gas-rich vein material. Interelement correlations, supported by analyses of separated vein material (WANKE et al, 1972), suggest that the vein material is enriched about 10-fold in refractory Ir and Re over moderately volatile Ni and Au, and is low in volatiles except Ge, C, and noble gases. It appears to be a refractory-rich nebular condensate that precipitated carbon by surface catalytic reactions at ˜500K and trapped noble gases but few other volatiles. The closest known analogue is a Cr- and C-rich fraction from the Allende meteorite, highly enriched in heavy noble gases and noble metals. By analogy with Allende, the gas-bearing phase in ureilites may have been an Fe, Cr-sulfide.

The ultramafic rock contains siderophiles and chalcophiles (Ni, Au, Ge, S, Se) at ˜0.05 of Cl chondrite level, and highly volatile elements (Rb, Cs, Bi, Tl, Br, Te, In, Cd) at ˜0.01 Cl level. It probably represents the residue from partial melting of a C3V-like chondrite body, under conditions where phase separation was incomplete so that some liquid was retained. The vein material was injected into this rock at some later time.  相似文献   


3.
Twenty-three samples from the Ries crater, representing a wide range of shock metamorphism, were analyzed for seven siderophile elements (Au, Ge, Ir, Ni, Os, Pd, Re) and five volatile elements (Ag, Cd, Sb, Se, Zn). Taking Ir as an example, we found siderophile enrichments over the indigenous level of 0.015 ppb Ir occur in only eight samples. The excess is very modest; even the most enriched samples (a weakly shocked biotite gneiss and a metal-impregnated amphibolite) have Ir, Os corresponding to ~4 × 10?4 C1 chondrite abundances. Of five flädle glasses analyzed only one shows excess Ir. Suevite matrix and vesicular glass have slight enrichment, but homogenous glass from the same rock does not. In flädle glasses, Ni and Se are strongly correlated and apparently reside in Ir, Os-poor Sulfides [pyrrhotite, chalcopyrite, pentlandite(?)]of terrestrial, probably sedimentary, origin. The Ir, Os and Ni enrichments of the metal-bearing amphibolite are compatible with chondritic ratios, but these are ill-defined because of uncertainty in Ni. In the other samples enriched in siderophiles Ir(Os), Ni and Se are mutually correlated; NiIr and NiOs ~ 11 × C1 and are much higher than any chondritic ratios; SeNi ~ 2 × C1 and suggests a sulfide phase, rather than metal may be the host of the correlated elements. Lacking a plausible local source, this material is apparently meteoritic in origin. The unusual elemental ratios, coupled with the very low enrichments, tend to exclude chondrites and most irons as likely projectile material. Of the achondrites, aubrites seem slightly preferable. Ratios of excess siderophiles in Ries materiel match tolerably those of an aubrite (possibly atypical) occurring as an inclusion in the Bencubbin meteorite, Australia. The Hungaria group of Mars-crossing asteroids may be a source of aubritic projectiles.  相似文献   

4.
Major element and REE, Cr, Sc, V, Ni, Co, Ir, Au, Sr, Ba abundances were determined in three ureilites and the unique achondrite, Chassigny. Chondritic-normalized REE abundance patterns for the ureilites are v-shaped, similar to pallasites, indicating a possible deep-seated origin. The lithophile trace element abundances and v-shaped REE patterns of the ureilites are consistent with a two-stage formation process, the first of which is an extensive partial melting of chondrite-like matter to yield ureilite precursors in the residual solid, which is enriched in Lu relative to La. The second step consists of an admixture of small and variable amounts of material enriched in the light REE. Such contaminating material may be magmas derived from the first formed melt of partial melting of chondrite-like matter.

In contrast to the ureilites, Chassigny has a chondritic-normalized REE pattern which decreases smoothly from La(1.8 × ) to Lu(0.4 × ) and is parallel to and ˜0.25 × the REE pattern in the nakhlitic achondrites. The composition of the magma from which Chassigny crystallized was highly enriched in the light REE; e.g. chondritic normalized La/Lu ˜ 7. The similarity in the fractionated REE patterns (no Eu anomalies) for the olivine-pyroxene Chassigny and for the nakhlites suggests a genetic relationship.

Siderophile trace element relationships in ureilites can be interpreted by three components: (1) ultramafic silicates enriched in Co relative to Ni, (2) an indigenous metal phase remaining after the partial melting event, and (3) a component of the carbon-rich vein material added after the partial melting.  相似文献   


5.
Twenty-one iron meteorites with Ge contents below 1 μg/g, including nine belonging to groups IIIF and IVB, have been analyzed by instrumental neutron activation analysis (INAA) for the elements Co, Cr, As, Au, Re, Ir and W. Groups IIIF and IVB show positive correlations of Au, As and Co (IIIF only) with published Ni analyses, and negative correlations of Ir, Re, Cr (IVB only) and W (IIIF only) with Ni. On element-Ni plots, the gradients of the least squares lines are similar to those of many other groups, excluding IAB and IIICD. With the inclusion of a new member, Klamath Falls, group IIIF has the widest range of Au, As and Co contents of any group and the steepest gradients on plots of these elements against Ni. It is likely that these trends in groups IIIF and IVB were produced by fractionation of elements between solid and liquid metal, probably during fractional crystallization.It has been suggested that some of the 15 irons with <l μg/g Ge which lie outside the groups might be related. However, the INAA data indicate that no two are as strongly related as two group members. These low-Ge irons and the members of groups IIIF, IVA and IVB tend to have low concentrations of As, Au and P, low CoNi ratios and high Cr contents. The depletion of the more volatile elements probably results from incomplete condensation into the metal from the solar nebula.The structures of low-Ge irons generally reflect fast cooling rates (20–2000 K Myr?1). When data for all iron meteorites are plotted on a logarithmic graph of cooling rate against Ge concentration and results for related irons are averaged, there is a significant negative correlation. This suggests that metal grains which inefficiently condensed Ge and other volatile elements tended to accrete into small parent bodies.  相似文献   

6.
New bulk-compositional data, including trace siderophile elements such as Ir, Os, Au, and Ni, are presented for 25 ureilites. Without exception, ureilites have siderophile abundances too high to plausibly have formed as cumulates. Ureilites undoubtedly underwent a variety of “smelting,” by which C was oxidized to CO gas while olivine FeO was reduced to Fe-metal. However, pressure-buffered equilibrium smelting is not a plausible model for engendering the wide range (75-96 mol%) of mafic-silicate core mg among ureilites. The smelting reaction produces too much CO gas. Even supposing a disequilibrium process with the smelt-gas leaking out of the mantle, none of the ureilites, least of all the ureilite with the most “reduced” (highest) olivine-core mg (ALH84136), has the high Fe-metal abundance predicted by the smelted-cores model. In principle, the Fe-metal generated by smelting could have been subsequently lost, but siderophile data show that ureilites never underwent efficient depletion of Fe-metal. Ureilites display strong correlations among siderophile ratios such as Au/Ir, Ni/Ir, Co/Ir, As/Ir, Se/Ir, and Sb/Ir. Ureilite siderophile depletion patterns loosely resemble siderophile fractionations, presumably nebular in origin, among carbonaceous chondrites. However, Zn, for an element of moderate volatility, is anomalously high in ureilites. A tight correlation between Au and Ni extrapolates to the low-Ni/Au side of the compositional range of carbonaceous chondrites. From this mismatch, mild but nonetheless significant depletions of refractory siderophile elements such as Ir and Os, and moderate depletions of strongly siderophile, weakly chalcophile elements such as Ni and Au, we infer that the ureilite siderophile fractionations are largely the result of a non-nebular process, i.e., removal of S-rich metallic melt, possibly with minor entrainment of Fe-metal. Several lines of trace-element evidence indicate that melt porosity during ureilite anatexis was at least moderate. The ureilite pattern of very mild depletions of extremely siderophile elements, but much deeper depletions of moderately siderophile, chalcophile elements, suggests that asteroidal core formation probably occurs in two discrete stages. In general, separation of a considerable proportion (several wt%) of S-rich metallic melt probably occurs long before, and at a far lower temperature than, separation of the remaining S-poor Fe-metal. Apart from the Fe-metal itself, only extremely siderophile elements wait until the second stage to sequester mainly into the core.  相似文献   

7.
Eleven impact melt and 6 basement rock samples from 4 craters were analyzed by neutron activation for Au, Co, Cr, Fe, Ge, Ir, Ni, Os, Pd, Re and Se. Wanapitei Lake, Ontario: the impact melts show uniform enrichments corresponding to 1–2% C1-chondrite material. Interelement ratios (CoCr, NiCr, NiIr) suggest that the impacting body was a Cl-, C2-, or LL-chondrite. Nicholson Lake, North West Territory: Ni, Cr and Co are distinctly more enriched than Ir and Au which tentatively suggests an olivine-rich achondrite (nakhlite or ureilite). Gow Lake, Saskatchewan and Mistastin, Labrador: small enrichments in Ir and Ni; both the low IrNi ratios and low Cr content suggest iron meteorites, but the signals are too weak for conclusive identification.A tentative comparison of meteoritic signatures at 10 large, ≥4km craters and their presumed celestial counterparts (13 Apollo and Amor asteroids) shows more irons and achondrites among known projectile types, and a preponderance of S-type objects, having no known meteoritic equivalent, among asteroids. It is not yet clear that these differences are significant, in view of the tentative nature of the crater identifications (achondrites in particular), and the limited statistics.  相似文献   

8.
Sixteen crater samples were analyzed by radiochemical neutron activation analysis for Ge, Ir, Ni, Os, Pd and Re. Two impact melt rock samples from Clearwater East (22 km) showed strong, uniform enrichments in all elements except Ge, corresponding to 7.4% C1 chondrite material. Interelement ratios suggest that the meteorite was a C1 (or C2) chondrite, not an iron, stony iron, or chondrite of another type. An Ivory Coast tektite (related to the 10 km Bosumtwi crater) was enriched in Ir + Os and Ni to about 0.04 and 1.6% of C1 chondrite levels, but in the absence of data on country rocks, the meteorite cannot yet be characterized.Impact melt rock samples from Clearwater West (32km), Manicouagan (70km), and Mistastin (28 km) showed no detectable meteoritic component. Upper limits, as Cl chondrite equivalent, were Os ≤ 2 × 10?3% (~0.01 ppb), Ni ≤ 2 × 10?1% (~20ppm). Possible causes are high impact velocity and/or a chemically inconspicuous meteorite (achondrite, Ir,Os-poor iron or stony iron). However, a more likely reason is that some fraction of the impact melt remains meteorite-free, especially at craters with central peaks.Clearwater East is the first terrestrial impact crater found to be associated with a stony meteorite. Apparently the consistent absence of stony projectiles at small craters (< 1 km diameter) reflects their destruction in the atmosphere, as proposed by Öpik.  相似文献   

9.
We have measured diffusion coefficients for P, Cr, Co, Ni, Cu, Ga, Ge, Ru, Pd, Ir, and Au in Fe metal from 1150 to 1400°C and at 1 bar and 10 kbar. Diffusion couples were prepared from high-purity Fe metal and metal from the IIA iron meteorite Coahuila (single crystal kamacite) or the pallasite Springwater (polycrystalline kamacite) and held at run conditions for 3.5 to 123 h. Diffusion profiles were measured using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) or the electron microprobe. Many elements were measured from the same experimental runs so interelemental comparisons are improved over other data sets in which data for different elements come from different experiments. Some literature diffusion coefficients (D) for Ni and Co in taenite can be up to a factor of 3 higher for Ni than Co, yet our results show no difference (e.g., DNi and DCo ∼ 2.2 × 10-15 m2/s at 1150°C). Thus, diffusion of Ni and Co in single crystal taenite will not measurably fractionate the Ni/Co ratio. On the other hand, the large difference in DNi and DIr (DIr is ∼5 times lower) and the similarity of DNi and DRu at all temperatures investigated indicates that Ni/Ir and Ni/Ru ratios in zoned metal grains will be useful discriminators of processes controlled by diffusion vs. volatility. In zoned metal grains in primitive chondrites, deviations of the Ni/Ru and Ni/Ir ratios from a condensation curve are opposite to a diffusion-controlled process, but consistent with a volatility-controlled process. The new multielement diffusion coefficients will also be useful in evaluating a variety of other processes in planetary science.  相似文献   

10.
The abundances of the highly siderophile elements (HSE) Ru, Pd, Re, Os, Ir, and Pt were determined by isotope dilution mass spectrometry for 22 ureilite bulk rock samples, including monomict, augite-bearing, and polymict lithologies. This report adds significantly to the quantity of available Pt and Pd abundances in ureilites, as these elements were rarely determined in previous neutron activation studies. The CI-normalized HSE abundance patterns of all ureilites analyzed here except ALHA 81101 show marked depletions in the more volatile Pd, with CI chondrite-normalized Pd/Os ratios (excluding ALHA 81101) averaging 0.19 ± 0.23 (2σ). This value is too low to be directly derived from any known chondrite group. Instead, the HSE bulk rock abundances and HSE interelement ratios in ureilites can be understood as physical mixtures of two end member compositions. One component, best represented by sample ALHA 78019, is characterized by superchondritic abundances of refractory HSE (RHSE—Ru, Re, Os, Ir, and Pt), but subchondritic Pd/RHSE, and is consistent with residual metal after extraction of a S-bearing metallic partial melt from carbonaceous chondrite-like precursor materials. The other component, best represented by sample ALHA 81101, is RHSE-poor and has HSE abundances in chondritic proportions. The genesis of the second component is unclear. It could represent regions within the ureilite parent body (UPB), in which metallic phases were completely molten and partially drained, or it might represent chondritic contamination that was added during disruption and brecciation of the UPB. Removal of carbon-rich melts does not seem to play an important role in ureilite petrogenesis. Removal of such melts would quickly deplete the ureilite precursors in Re/Os and As/Au, which is inconsistent with measured osmium isotope abundances, and also with literature As/Au data for the ureilites. Removal of 26Al during silicate melting may have acted as a switch that turned off further metal extraction from ureilite source regions.  相似文献   

11.
Laser ablation inductively coupled plasma mass spectrometry was used to measure abundances of P, Cr, Fe, Co, Ni, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt, and Au in metal grains in the Bencubbin-like chondrites Bencubbin, Weatherford, and Gujba to determine the origin of large metal aggregates in bencubbinites. A strong volatility-controlled signature is observed among the metal grains. The refractory siderophiles Ru, Rh, Re, Os, Ir, and Pt are unfractionated from one another, and are present in approximately chondritic relative abundances. The less refractory elements Fe, Co, Ni, Pd, and Au are fractionated from the refractory siderophiles, with a chondritic Ni/Co ratio and a higher than chondritic Pd/Fe ratio. The moderately volatile siderophile elements Ga, Ge, As, Sn, and Sb are depleted in the metal, relative to chondritic abundances, by up to 3 orders of magnitude. The trace siderophile element data are inconsistent with the following proposed origins of Bencubbin-Weatherford-Gujba metal: (1) condensation from the canonical solar nebula, (2) oxidation of an initially chondritic metal composition, and (3) equilibration with a S-rich partial melt. A condensation model for metal-enriched (×107 CI) gas is developed. Formation by condensation or evaporation in such a high-density, metal-enriched gas is consistent with the trace element measurements. The proposed model for generating such a gas is protoplanetary impact involving a metal-rich body.  相似文献   

12.
Reported in this paper are structural and compositional data as the basis for the classification of 35 iron meteorites. The Xingjiang iron meteorite, previously labelled IIIAB, is reclassified as IIIE on the basis of its lower Ga/Ni and Ge/Ni ratios, its wider and swollen kamacite bands and the ubiquitous presence of haxonite, (Fe, Ni)23C. IIICD Dongling appears not to be a new meteorite, but to be paired with Nandan. Four Antarctic iron meteorites IAB Allan Hills A77250, A77263, A77289 and A77290 are classified as paired meteorites based on their similarities in structure, and the concentrations of Cr, Co, Ni, Cu, Ga, Ge, As, Sb, W, Re, Ir and Au. It is found that Cu shares certain properties with Ga and Ge, which makes it an excellent taxonomic parameter. BecauseK Cu is near unity, Cu displays a small range of variation within most magmatic groups (less than a factor of 2.2) and, because of its high volatility, large variations can be noticed among groups.  相似文献   

13.
We have attempted to clarify the nature of “mysterite”, a material that had been postulated to explain the overabundance of Tl, Bi and Ag in certain chondrites. Four dark clasts and a vein sample from the H6 chondrite Supuhee were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Os, Rb, Re, Sb, Se, Te, Tl and Zn. One of the clasts is enriched in all volatile elements, while the other 4 samples are enriched only in the siderophile volatiles Ag, Bi and Tl. The enrichments range up to 100 times typical H6 chondrite abundances. The proportions of Ag, Bi, Tl suggest the presence of at least two, Tl-rich and Tl-poor, varieties of mysterite (TlBi = 7.2 and <0.1). The former seems to dominate in Supuhee and Krymka, and the latter in Mezö-Madaras. Apparently mysterite is a late condensate from the solar nebula that collected volatiles left behind by earlier generations of chondrites. It was incorporated in Supuhee and perhaps in other chondrites (mainly of low petrologic types) during brecciation events.  相似文献   

14.
The Avebury Ni deposit, which has a resource of 260,000 tons of Ni at a grade of 0.9%, is a unique example of a significant Ni sulfide deposit associated with an ophiolite sequence; the deposit is unique because it was formed by hydrothermal processes and also because ophiolites are generally considered unprospective for magmatic Ni sulfide mineralization. The deposit is hosted by Middle Cambrian cumulate peridotite and dunite rocks that were most probably formed from S-poor boninitic magmas. The mineralization, which consists principally of pentlandite, occurs in both serpentinites and skarns in the ultramafic cumulates. The ultramafic rocks are variably metasomatised as the result of the intrusion of the Late Devonian Heemskirk granite. Sulfide-rich and sulfide-poor portions of the ultramafic rocks are variably enriched in W, Bi, U, Pb, Mo, Sn and Sb relative to the primitive mantle. Modest to strong correlations between Cu, Au, Pd, REE, Sn, Mo, W and Ni provide strong evidence that the mineralization is hydrothermal in origin. In situ metasomatism of a magmatic Ni sulfide deposit is ruled out on the basis of poor or negative correlations between Ir, Ru, Rh and Pt when compared to Ni. Although the sulfide-free ultramafic rocks have high Ni contents, this Ni would have been unavailable to the ore-forming fluids as it was hosted in inaccessible sites, such as oxides and silicates. The strong correlations between Au, Pd and Ni suggest that the source of the Ni was magmatic sulfides somewhere at depth that not only have high Ni but also elevated Pd and Au contents.  相似文献   

15.
We have analyzed by RNAA 3 EH and 3 EL chondrites for 20 trace elements. Interelement correlations were examined visually and by factor analysis, to assess the effects of nebular fractionation and metamorphism.Refractory siderophiles (Ir, Os, Re) correlate with “normal siderophiles” (Ni, Pd, Au, Sb, and Ge) in EL's but not EH's; presumably these two element groups originally condensed on separate phases (CAI and metal), but then concentrated in metal during metamorphism. Sb and Ge are more depleted than the other three elements of the “normal” group, presumably by volatilization during chondrule formation.Volatiles are consistently more depleted in EL's than EH's, by factors >10× for the more volatile elements. Some of the stronger correlations are found for In-Tl, Tl-Bi, and Zn-Cd-In. These correlations are about equally consistent with predicted condensation curves for the solar nebula (especially for host phases with negative heats of solution, or for P = 0.1?1 atm) and with volatilization curves for artificially heated Abee, as determined by M E. Lipschutz and coworkers at Purdue. No decisive test between these alternatives is available at present, but the close correlation of Zn, Cd, In may eventually provide a crucial test.Factor analysis shows that 3 factors account for 93% of the variance; they seem to reflect volatile (F1), siderophile (F2), and chalcophile (F3) behavior. The element groupings agree largely with those recognized visually; they are listed with the inferred host phases. F1 (minor sulfide, probably ZnS): Zn, Cd, In, Br; F2 (CAI, later metal): Ir, Os. Re; F1, F2 (metal): Ni, Pd, Au, Ge, Sb; F3, F1 (FeS): Se, Te, Bi, Tl. These correlations differ to some extent from those obtained by Shaw (1974) in an earlier factor analysis, presumably because the new data are more homogeneous and extensive, especially for siderophiles. The new correlations also show that the cosmochemical behavior of some volatiles in E-chondrites differs from that predicted for ordinary chondrites, so that condensation curves for the latter are not strictly applicable.  相似文献   

16.
Six C2M chondrites (Boriskino, Cold Bokkeveld, Erakot, Essebi, Haripura and Santa Cruz) and the C2R chondrite Al Rais were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Cd, Cs, Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Sn, Te, Tl, U, and Zn. Abundances (relative to Cl chondrites) show a systematic dependence on volatility, apparently reflecting volatile loss during formation of chondrules and other high-T components. Elements of nebular condensation temperature (Tc) > 1200 K are undepleted, those of Tc < 700 K are depleted by a constant factor (0.482 ± 0.049 for C2M's) and elements of intermediate volatility are depleted by intermediate factors. The abundances do not “tend to fall monotonically as a function of [Tc],” as previously claimed by Wai and Wasson (1977) for a more restricted temperature range. For meteorites that have suffered little aqueous alteration (Mighei, Murchison, Murray), the mean abundance of volatiles agrees with the matrix content, but for the more altered meteorites, matrix contents are 20–30% higher. Only a few meteorites deviate appreciably from the mean abundance pattern. Al Rais, a C2R chondrite with a significant metal content, is systematically lower in 12 volatiles, but is enriched in Ni and Pd. Haripura and Erakot are enriched in Bi and Tl, possibly from the late condensate, mysterite.  相似文献   

17.
Fossil particle tracks and spallation-produced He and Ne in the Kenna ureilite indicate that it existed in space as a small object for 23 m.y. In our study of Kenna, we found no evidence of trapped He or Ne. Large amounts of heavy rare gases occur in Kenna in concentrations typical of ureilites. In a step-wise release of gases, the isotopic compositions of Kr and Xe were found to be constant above 600°C, revealing the presence of a single retentively sited component. The Xe isotopic abundances are characterized by 124:126:128:129:130:131:132:134:136 = 0.471:0.414:8.280:103.61: 16.296:81.92:100:37.70:31.23. This isotopic composition is distinct from AVCC (average carbonaceous chondritic), but similar to compositions known for some time in certain temperature fractions of Renazzo, Murray and Murchison. Kenna-type Xe appears to be one of the several components found in carbonaceous chondrites.

Binz et al. (Geochim. Cosmochim. Acta 39, 1576–1579, 1975) have recently found that many volatile trace elements are strongly depleted in ureilites. Thus, the relatively large amounts of heavy rare gases present in ureilites did not result from a mixture of a volatile-rich component with the ureilite host. It appears that some material rich in carbon and heavy rare gases was incorporated into a differentiated ureilite host. All current hypotheses which purport to explain the origin of trapped gases in meteorites encounter difficulty in accounting for trapped gases in ureilites in a straightforward manner.  相似文献   


18.
We have analyzed by RNAA 25 aubrite and 9 diogenite samples for 13 to 29 siderophile, volatile, and lithophile trace elements. Both meteorite classes show a typically igneous siderophile element pattern, with Ir, Os, Re, Ge more depleted than Au, Ni, Pd, Sb. But aubrites tend to have about 10 × higher abundances (10?3 ? 10 ? 4 × Cl for the first 4 and 10?2?10?3 × Cl for the last 4 siderophiles), apparently reflecting smaller metal/silicate distribution coefficients at lowerf(O2), or less complete segregation of metal. Se is surprisingly abundant in aubrites (up to 0.4 × Cl), but Te is less so (SeTe ? 5 × Cl), apparently due to its stronger siderophile character. Other volatiles (Ag, Zn, In, Cd, Bi, T1) show depletions intermediate between lunar dunite and the Earth's mantle.Of 7 aubrites analyzed for REE (Ce, Nd, Eu, Tb, Yb, Lu), 6 are depleted in REE (0.08?0.5 × Cl) and 5 show negative Eu anomalies (the exceptions are Bishopville and Mt. Egerton silicate). This supports an igneous origin, as already noted by Boynton and Schmitt (1972). No samples of the complementary, basaltic and feldspathic rocks have been found thus far, but one of our samples of Khor Temiki dark is a candidate for the basalt. It is 5?7 × enriched in REE and only slightly less so in Rb, Cs, and U. Though shocked and enriched in siderophiles to ~0.05 × Cl, it apparently represents a new meteorite class.Three diogenites analyzed for REE show very diverse patterns, from strongly depleted in light REE for Tatahouine (Ce = 0.01 × Cl) to flat for Garland (~2.5 × Cl). The data confirm the trends found by Fukuokaet al. (1977) as well as their interpretations.Factor analysis shows several parallel groupings for aubrites and diogenites: siderophiles (Re, Ir, Os, Pd, Ge), chalcophiles (Se, Te), volatiles (Ag, In, Tl) and incompatibles (U, REE, and Cs or Rb). But there are some differences for elements such as Ni, Sb, Cd, Bi, Au, and Zn, most of which behave more sensibly in aubrites than in diogenites.Several element pairs that differ greatly in volatility (Cs-U, Ge-Ir) correlate closely in aubrites, in approximately Cl-chondrite proportions. These correlations, and other lines of evidence, suggest strongly that aubrites originated by igneous processes in their parent body, not by direct nebular condensation. The source material may have resembled EL chondrites in oxidation state and depletion of refractories, metal, and volatiles.  相似文献   

19.
We have compared RNAA analyses of 18 trace elements in 25 low-Ti lunar and 10 terrestrial oceanic basalts. According to Ringwood and Kesson, the abundance ratio in basalts for most of these elements approximates the ratio in the two planets.Volatiles (Ag, Bi, Br, Cd, In, Sb, Sn, Tl, Zn) are depleted in lunar basalts by a nearly constant factor of 0.026 ± 0.013, relative to terrestrial basalts. Given the differences in volatility among these elements, this constancy is not consistent with models that derive the Moon's volatiles from partial recondensation of the Earth's mantle or from partial degassing of a captured body. It is consistent with models that derive planetary volatiles from a thin veneer (or a residuum) of C-chondrite material; apparently the Moon received only 2.6% of the Earth's endowment of such material per unit mass.Chalcogens (Se and Te) have virtually constant and identical abundances in lunar and terrestrial basalts, probably reflecting saturation with Fe(S, Se, Te) in the source regions.Siderophiles show diverse trends. Ni is relatively abundant in lunar basalts (4 × 10?3 × Cl-chondrites), whereas Ir, Re, Ge, Au are depleted to 10?4?10?5× Cl. Except for Ir, these elements are consistently enriched in terrestrial basalts: Ni 3 × , Re 370 ×, Ge 330 × , Au 9 × . This difference apparently reflects the presence of nickel-iron phase in the lunar mantle, which sequesters these metals. On Earth, where such metal is absent, these elements partition into the crust to a greater degree. Though no lunar mantle rock is known, an analogue is provided by the siderophile-rich dunite 72417 (~0.1% metal) and the complementary, siderophile-poor troctolite 76535. The implied metal-siderophile distribution coefficients range from 104 to 106, and are consistent with available laboratory data.The evidence does not support the alternative explanation advanced by Ringwood—that Re was volatilized during the Moon's formation, and is an incompatible element (like La or W4+) in igneous processes. Re is much more depleted than elements of far greater volatility: (Re/U)Cl~- 4 × 10?6 vs (T1/U)Cl = 1.3 × 10?4, and Re does not correlate with La or other incompatibles.Heavy alkalis (K, Rb, Cs) show increasing depletion with atomic number. Cs/Rb ratios in lunar basalts, eucrites, and shergottites are 0.44, 0.36, and 0.65 × Cl, whereas the value for the bulk Earth is 0.15–0.26. These ratios fall within the range observed in LL and E6 chondrites. supporting the suggestion that the alkali depletion in planets, as in chondrites, was caused by localized remelting of nebular dust (= chondrule formation). Indeed, the small fractionation of K, Rb and Cs, despite their great differences in volatility, suggests that the planets, like the chondrites, formed from a mixture of depleted and undepleted material, not from a single, partially devolatilized material.  相似文献   

20.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was used to measure distributions of the siderophile elements V, Fe, Co, Ni, Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, and Au in Fremdlinge with a spatial resolution of 15 to 25 μm. A sulfide vein in a refractory inclusion in Allende (CV3-oxidized) is enriched in Rh, Ru, and Os with no detectable Pd, Re, Ir, or Pt, indicating that Rh, Ru, and Os were redistributed by sulfidation of the inclusion, causing fractionation of Re/Os and other siderophile element ratios in Allende CAIs. Fremdlinge in compact Type-A inclusions from Efremovka (CV3-reduced) exhibit subsolidus exsolution into kamacite and taenite and minimal secondary formation of V-magnetite and schreibersite. Siderophile element partitioning between taenite and kamacite is similar to that observed previously in iron meteorites, while preferential incorporation of the light PGEs (Ru, Rh, Pd) relative to Re, Os, Ir, and Pt by schreibersite was observed. Fremdling EM2 (CAI Ef2) has an outer rim of P-free metal that preserves the PGE signature of schreibersite, indicating that EM2 originally had a phosphide rim and lost P to the surrounding inclusion during secondary processing. Most Fremdlinge have chondrite-normalized refractory PGE patterns that are unfractionated, with PGE abundances derived from a small range of condensation temperatures, ∼1480 to 1468 K at Ptot = 10−3 bar. Some Fremdlinge from the same CAI exhibit sloping PGE abundance patterns and Re/Os ratios up to 2 × CI that likely represent mixing of grains that condensed at various temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号