首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Indian Ocean sea surface salinity variations in a coupled model   总被引:2,自引:0,他引:2  
The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff into the Bay of Bengal due to higher rainfall over the Himalayan–Tibetan regions which drain into the Bay of Bengal through Ganga–Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is too strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.  相似文献   

2.
印度洋海气热通量交换研究   总被引:13,自引:0,他引:13  
周天军  张学洪 《大气科学》2002,26(2):161-170
基于综合海洋大气资料集(COADS)资料的研究表明,热带印度洋的海气热通量交换具有明显的区域性特征,在部分海域,如冬季热带印度洋的中东部、夏季的热带西印度洋和北印度洋,它主要表现为海洋对大气的强迫.海洋对大气的这种强迫,主要是通过潜热加热实现的.与潜热加热相比,感热加热尽管是一个小量,但感热异常与表层海温的显著相关,较之潜热明显超前.无论冬季还是夏季,热带印度洋都存在大面积海域,其SST变化难以通过海气热通量交换来解释.  相似文献   

3.
On the interannual variability of surface salinity in the Atlantic   总被引:1,自引:1,他引:0  
The mechanisms controlling the interannual variability of sea surface salinity (SSS) in the Atlantic are investigated using a simulation with the ECHAM4/OPA8 coupled model and, for comparison, the NCEP reanalysis and an observed SSS climatology. Anomalous Ekman advection is found to be as important as the freshwater flux in generating SSS anomalies, in contrast to sea surface temperature (SST) anomalies which are primarily caused by surface heat flux fluctuations. Since the surface heat flux feedback does not damp the SSS anomalies but generally damps existing SST anomalies, SSS anomalies have a larger characteristic time scale. As a result, they are more influenced by the mean currents and the geostrophic variability, which dominate the SSS changes at low frequency over much of the basin. The link between SSS anomalies and the dominant patterns of atmospheric variability in the North Atlantic sector is also discussed. It is shown that the North Atlantic Oscillation generates SSS anomalies much more by Ekman advection than by freshwater exchanges. At least in the coupled model, there is little one-to-one correspondence between the main atmospheric and SSS anomaly patterns, unlike what is found for SST anomalies.  相似文献   

4.
利用1979—2017年TropFlux海气热通量资料、ERA5再分析资料及HadISST资料,分析了冬季北大西洋涛动(North Atlantic Oscillation,NAO)与同期热带印度洋海气热通量的关系。结果表明,NAO指数与热带印度洋海气净热通量整体上呈负相关,意味着NAO为正位相时,海洋向大气输送热量,其显著区域主要位于热带西印度洋(50°~70°E,10°S~10°N)。净热通量的变化主要依赖于潜热通量和短波辐射的变化;潜热通量和短波辐射在NAO正(负)位相事件期间的贡献率分别为72.96%和61.48%(71.72%和57.06%)。NAO可通过Rossby波列影响印度洋地区局地大气环流,进而影响海气热通量;当NAO为正位相时,波列沿中低纬路径传播至印度洋地区,在阿拉伯海北部对流层高层触发异常反气旋环流。该异常反气旋性环流加强了阿拉伯高压,使得北印度洋偏北风及越赤道气流加强。伴随风速的加强,海面蒸发增强,同时加强的越赤道气流导致热带辐合带强度偏强,深对流加强引起对流层水汽和云量增多,进而引起海表下行短波辐射减少。  相似文献   

5.
Utilizing the NCEP/NCAR reanalysis monthly datasets,and based on the filter and standard deviation calculation,the interannual variability of sea surface temperature (SST) and 1000 hPa wind field for the tropical Pacific,Indian and Atlantic Oceans is investigated for the past 20 years (1979-1998).The characters of space-time evolution in SST anomalies (SSTA) for each ocean and corresponding wind anomaly field are acquired by using rotated principal component (RPC) and linear regression analysis methods.Using the method of correlation analysis.the characters of three tropical oceans correlated with ENSO are investigated.The contemporary correlation between the SSTA in the Indian Ocean and in the equatorial eastern Pacific is positive,and there is a weak negative correlation between the SSTA in the equatorial east Atlantic Ocean and in the equatorial eastern Pacific.The lead-lag correlation analysis indicates that the SSTA in the equatorial Indian Ocean lags the dominant Pacific ENSO mode by 3 months,and the SSTA in the equatorial Atlantic Ocean leads ENSO mode by 6 months.The ENSO-correlated components in tropical Indian Ocean and tropical Atlantic Ocean display much the same amount of total variance in each ocean,i.e..14% in the Indian Ocean and 12% in the Atlantic Ocean and the maximums are all above 40%.  相似文献   

6.
There is strong evidence that Indian Ocean sea surface temperatures (SSTs) influence the climate variability of Southern Asia and Africa; hence, accurate prediction of these SSTs is a high priority. In this study, we use canonical correlation analysis (CCA) to design empirical models to assess the predictability of tropical Indian Ocean SST from sea level pressure (SLP) and SST themselves with lead-times up to one year. One model uses the first twelve empirical orthogonal functions (EOFs) of SLP over the Indian Ocean using different lead-times to predict SST. A CCA model with EOFs of SST as the predictor at the same lead-times is compared to SLP as a predictor and shows the auto-correlation of the system. A CCA using the first five extended empirical orthogonal functions (EEOFs) of sea level pressure over the Indian Ocean basin for an interval of two years combined with SST EOFs as predictors is found to produce the greatest correlation between forecast and observed SSTs. This model obtains higher skill by explicitly considering the development in time of SLP anomalies in the region. The skill of this model, assessed from retroactive forecasts of an 18 year period, shows improvement relative to other empirical forecasts particularly for the central and eastern Indian Ocean and boreal autumn months preceding the Southern Hemisphere summer rainfall season. This is likely due to the limited domain of this model identifying modes of variability that are more pronounced in these areas during this season. Finally, a nonlinear canonical correlation analysis (NLCCA) derived from a neural network is used to analyze the leading nonlinear modes. These nonlinear modes differ from the linear CCA modes with distinct cold and warm SST phases suggesting a nonlinear relationship between SST and SLP over the tropical Indian Ocean.  相似文献   

7.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

8.
基于1982—2015年高分辨率海气资料,从海表面温度(Sea Surface Temperature, SST)和海表面风速相关关系的角度研究了年际尺度上赤道印度洋的海气关系。结果表明,印度洋的海气关系具有明显区域性和季节性特征,即整个印度洋除赤道东南印度洋和赤道西印度洋SST与海表风速在夏季(7—9月)为显著正相关关系,主要表现为海洋影响大气;其他地区和月份均为负相关关系,主要表现为大气对海洋的强迫作用。回归分析发现,夏季赤道西印度洋SST异常可能通过海平面气压调整机制影响海表面风场,即海温增温使边界层空气增暖,海表面风场辐合增强;反之则相反。此外,还利用AM2.1模式进行模拟试验,试验结果成功地再现了夏季赤道西印度洋海表面温度与海表风速之间的正相关关系。  相似文献   

9.
利用NCEP/NCAR与ERA-40再分析资料分析了南半球冬季(JJA)马斯克林高压的年际和年代际变化特征,并重点讨论了不同年代际背景下影响马斯克林高压年际变化因子的变化。结果表明,冬季(JJA)马斯克林高压的强度在1976年前后发生了显著的年代际转折,1976年以前强度偏弱,1976年以后强度明显增强。进一步分析显示,影响马斯克林高压年际变化的因子同样也发生了年代际转折。在1976年以前,冬季马斯克林高压与印度洋局地海温和南极涛动(Ant Arctic Oscillation,AAO)表现出显著的相关性;而在1976年以后,冬季马斯克林高压与ENSO和AAO表现出显著的相关性。同时,印度洋局地海温与马斯克林高压的相关性减弱,而ENSO与马斯克林高压的相关性则显著增强。  相似文献   

10.
利用1960-2010年江西省81个台站月平均气温观测资料和NOAA全球月平均海表温度资料(ERSST-V3),分析了江西省冬季气温异常与海温异常的相互联系,并运用超前-滞后相关分析和奇异值分解(SVD)方法初步探讨了关键区海温异常之间的相互作用.结果表明:①影响江西省冬季气温异常的海温关键区和关键时段分别为同期印度洋(10°S~20°N,54°~90°E)、同期西北太平洋(20°~40°N,120°~180°E)和前期8-9月北大西洋中部(24°~44°N,20°~60°W)海域;②西北太平洋关键区暖水年预示暖冬年好于印度洋区,而印度洋区冷水年预示冷冬年稍好于西北太平洋区,冬季西北太平洋与印度洋海温异常可以修正前期8-9月北大西洋中部海温异常对江西省冬季气温的影响.  相似文献   

11.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole(IOD) events and the synchronous autumn precipitation in the Huaxi region(western China), China,based on daily precipitation, sea surface temperature(SST), and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of the Huaxi region's autumn precipitation indicated a behavioral change in the 1970 s. Between 1960 and 1979, when the IOD was in a positive phase during autumn, circulations changed from a "W"shape to an "M"shape at 500 hPa in the middle-high latitude region in Asia. A northwest flow allowed a cold flux to reach Sichuan province. The positive anomaly of water vapor flux transported from the western Pacific to Huaxi region strengthened, causing a precipitation increase in the east Huaxi region. Between 1980 and 1999,when the IOD in autumn was also in the positive phase, the atmospheric circulation was a "W"shape at 500 hPa. In this scenario, the positive anomaly of the water vapor flux transported from the Bay of Bengal to Huaxi region strengthened, causing a precipitation increase in the west Huaxi region. In summary, the Indian Ocean switched from a cold phase to a warm phase during the 1970 s, causing the instability of the inter-annual relationship between IOD and the autumn rainfall in Huaxi region.  相似文献   

12.
The seasonal change in the relationship between El Nino and Indian Ocean dipole (IOD) is examined using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40), and the twentieth century simulations (20c3m) from the Geophysical Fluid Dynamics Laboratory Coupled Model, version 2.1. It is found that, both in ERA-40 and the model simulations, the correlation between El Nino (Nino3 index) and the eastern part of the IOD (90?C110°E; 10°S-equator) is predominantly positive from January to June, and then changes to negative from July to December. Correlation maps of atmospheric and oceanic variables with respect to the Nino3 index are constructed for each season in order to examine the spatial structure of their seasonal response to El Nino. The occurrence of El Nino conditions during January to March induces low-level anti-cyclonic circulation anomalies over the southeastern Indian Ocean, which counteracts the climatological cyclonic circulation in that region. As a result, evaporation decreases and the southeastern Indian Ocean warms up as the El Nino proceeds, and weaken the development of a positive phase of an IOD. This warming of the southeastern Indian Ocean associated with the El Nino does not exist past June because the climatological winds there develop into the monsoon-type flow, enhancing the anomalous circulation over the region. Furthermore, the development of El Nino from July to September induces upwelling in the southeastern Indian Ocean, thereby contributing to further cooling of the region during the summer season. This results in the enhancement of a positive phase of an IOD. Once the climatological circulation shifts from the boreal summer to winter mode, the negative correlation between El Nino and SST of the southeastern Indian Ocean changes back to a positive one.  相似文献   

13.
In this study, the processes affecting the temperature variability over the Southeastern Tropical Indian Ocean (STIO) during 1958–2000, accomplishing the positive and negative Indian Ocean Dipole (IOD) events are analyzed. The upper ocean heat budget analysis of the STIO has been carried out to understand the oceanic process during the termination of the recent strongest IOD events. The three recent strongest positive IOD events (1961, 1994 and 1997) and a strong negative IOD event (1996) are considered for detailed analysis. The heat budget analysis revealed that the positive net-surface heat flux and vertical advection played dominant roles in the termination of 1997 IOD event, whereas horizontal and vertical advections are responsible for the termination of IOD events during 1961 and 1994. The anomalous negative surface heat flux and horizontal advection caused the dipole termination during the negative dipole year 1996. The findings are well supported by the analysis of anomaly correlation between model upper ocean heat content tendency and heat budget components. Significant intra-seasonal oscillations (ISOs) in sea surface temperature (SST) anomaly are seen during the initial phase of termination in the eastern equatorial Indian Ocean during 1961 and 1994 IOD events. The influence of ISOs in SST is not so evident during the IOD termination in 1997. It is found that the termination processes have started more than a month prior to the actual IOD termination.  相似文献   

14.
使用江西省82站1959—2016年6月降水资料和NCEP/NCAR逐月再分析资料,研究了南印度洋大气垂直环流与江西6月降水的关系,并运用大尺度局地涡度倾向变化方程诊断了年际、年代际变化引起的局地涡度倾向异常对江西6月降水的贡献,解释了南印度洋大气垂直环流与江西6月降水年际关系发生年代际改变的原因。结果表明南印度洋大气垂直环流与江西6月降水有密切的关系,且两者的年际关系存在年代际变化:(1)二者关系在1960年代末和1990年代初发生了两次转变,1969年前为显著正相关,1969—1989年相关性不明显,1990年后又转变为显著正相关。(2)江西6月降水偏多年,500 hPa上东亚地区从中高纬到低纬为“+ - +”距平符号分布,江西区域异常正涡度,低层南北风距平在江西上空交汇;降水偏少年环流异常则相反。(3)南印度洋大气垂直环流可引起东亚环流异常,使江西区域涡度正异常;但其影响与背景场的变化有关。动力诊断表明,1969—1989年南印度洋大气垂直环流年际异常对江西局地涡度为正贡献,但年代际异常为负贡献,削弱了年际异常的作用;1990—2016年阶段年际异常为正贡献,同时年代际异常也为正贡献,加强了年际异常的作用,使得其与江西6月降水的正相关显著。   相似文献   

15.
A robust decadal Indian Ocean dipolar variability(DIOD) is identified in observations and found to be related to tropical Pacific decadal variability(TPDV).A Pacific Ocean–global atmosphere(POGA) experiment,with fixed radiative forcing,is conducted to evaluate the DIOD variability and its relationship with the TPDV.In this experiment,the sea surface temperature anomalies are restored to observations over the tropical Pacific,but left as interactive with the atmosphere elsewhere.The TPDV-forced DIOD,represented as the ensemble mean of 10 simulations in POGA,accounts for one third of the total variance.The forced DIOD is triggered by anomalous Walker circulation in response to the TPDV and develops following Bjerknes feedback.Thermocline anomalies do not exhibit a propagating signal,indicating an absence of oceanic planetary wave adjustment in the subtropical Indian Ocean.The DIOD–TPDV correlation differs among the 10 simulations,with a low correlation corresponding to a strong internal DIOD independent of the TPDV.The variance of this internal DIOD depends on the background state in the Indian Ocean,modulated by the thermocline depth off Sumatra/Java.  相似文献   

16.
于雷  郜永祺  王会军 《大气科学》2009,33(1):179-197
利用卑尔根海洋-大气-海冰耦合气候模式(Bergen Climate Model, 简称BCM), 研究在北冰洋及北欧海淡水强迫增强的背景下, 大西洋经向翻转环流(Atlantic Meridional Overturning Circulation, 简称AMOC)的响应及其机制, 着重讨论了海表热力性质、北大西洋深层水 (North Atlantic Deep Water, 简称NADW) 的生成率、 海洋内部等密度层间的垂直混合 (Diapycnal Mixing, 简称DM) 以及大气风场等物理过程随AMOC的响应所发生的时间演变特征。结果显示, 在持续150年增强 (强度为0.4 Sv) 的淡水强迫下 (淡水试验, FW1), AMOC的强度表现为前50年的快速减弱和在接下来100年中的逐渐恢复。同时, 在淡水试验的前50年北大西洋高纬度海表盐度 (Sea Surface Salinity, 简称SSS) 减小, 海水密度降低, 冬季对流混合减弱, 导致NADW生成率快速减弱; 在接下来的100年中, 尽管增强的淡水强迫依然维持, 由于海洋内部自身的调节和海气相互作用, 导致了AMOC的逐渐恢复。恢复机制可以概括为: (1) 随着向南的NADW的减少, 大西洋中低纬度海水垂直层结逐渐减弱, DM随之逐渐增强, 有利于中低纬度海盆内深层水的上升; (2) 南半球西风应力增强与东风应力的减弱及北半球东风的增强使得大西洋向北的埃克曼体积通量净传输恢复; (3) 大西洋向北的盐度传输逐渐恢复及次极地回旋区降水的减弱, 导致SSS和NADW生成率的恢复, 与之对应, AMOC逐渐恢复。研究还发现, 淡水试验中, NADW的恢复主要以厄尔明格海 (Irminger Sea) 为主, 冬季北大西洋海平面气压场 (SLP) 呈现类似正北大西洋涛动 (NAO+) 的模态, 热带降水中心移到赤道以南, 大西洋热带SSS增强。  相似文献   

17.
利用近三十年逐月的OISST和ERSST资料、NCEP2表面风场等资料和数据分析了南印度洋偶极子的形成原因、结构特征.结果表明:南印度洋偶极子形态的年际SST异常出现在10-12月,有两个明显的冷暖中心,达到极值是在次年的2月份,然后在4-5月份消亡;南印度洋偶极子的形成主要是风场、潜热通量起作用,另外,短波辐射通量也对其有重要的影响;SIOD在北半球春冬季出现,达到盛期是在次年的二月份或三月份,超前ENSO9-10个月,且具有季节锁相特征,在70年代中期的年代际气候突变后,SIOD与ENSO的关系显著增强.  相似文献   

18.
This study investigates how accurately the interannual variability over the Indian Ocean basin and the relationship between the Indian summer monsoon and the El Niño Southern Oscillation (ENSO) can be simulated by different modelling strategies. With a hierarchy of models, from an atmospherical general circulation model (AGCM) forced by observed SST, to a coupled model with the ocean component limited to the tropical Pacific and Indian Oceans, the role of heat fluxes and of interactive coupling is analyzed. Whenever sea surface temperature anomalies in the Indian basin are created by the coupled model, the inverse relationship between the ENSO index and the Indian summer monsoon rainfall is recovered, and it is preserved if the atmospherical model is forced by the SSTs created by the coupled model. If the ocean model domain is limited to the Indian Ocean, changes in the Walker circulation over the Pacific during El-Niño years induce a decrease of rainfall over the Indian subcontinent. However, the observed correlation between ENSO and the Indian Ocean zonal mode (IOZM) is not properly modelled and the two indices are not significantly correlated, independently on season. Whenever the ocean domain extends to the Pacific, and ENSO can impact both the atmospheric circulation and the ocean subsurface in the equatorial Eastern Indian Ocean, modelled precipitation patterns associated both to ENSO and to the IOZM closely resemble the observations.  相似文献   

19.
热带太平洋印度洋海温异常对亚洲夏季风影响的数值研究   总被引:1,自引:1,他引:1  
利用L9R15气候谱模式,就热带太平洋-印度洋夏季海温异常对亚洲夏季风的影响进行了数值研究。结果表明,夏季热带太平洋和印度洋海温正异常时,不仅能造成热带地区大气环流和降水的同时性响应,还能导致东亚夏季风和南亚夏季风的一致减弱,两者的影响是同号的,但并不是两者单独影响的线性叠加,由此给出了亚洲夏季风与热带太平洋-印度洋海气系统的同期关系。  相似文献   

20.
Tropical cyclone (TC) activities in the North Indian Ocean (NIO) peak in May during the pre-monsoon period, but the TC frequency shows obvious inter-annual variations. By conducting statistical analysis and dynamic diagnosis of long-term data from 1948 to 2016, the relationship between the inter-annual variations of Indian Ocean SST and NIO TC genesis frequency in May is analyzed in this paper. Furthermore, the potential mechanism concerning the effect of SST anomaly on TC frequency is also investigated. The findings are as follows: 1) there is a broadly consistent negative correlation between NIO TC frequency in May and SST in the Indian Ocean from March to May, with the key influencing area located in the southwestern Indian Ocean (SWIO); 2) the anomalies of SST in SWIO (SWIO-SST) are closely related to a teleconnection pattern surrounding the Indian Ocean, which can significantly modulate the high-level divergence, mid-level vertical motion and other related environmental factors and ultimately influence the formation of TCs over the NIO; 3) the increasing trend of SWIO-SST may play an essential role in the downward trend of NIO TC frequency over the past 69 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号