首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In this paper, we present a probabilistic seismic hazard analysis (PSHA) for mainland Spain that takes into account recent new results in seismicity, seismic zoning, and strong ground attenuation not considered in the latest PSHA of the Spanish Building Code. Those new input data have been obtained as a three-step project carried out in order to improve the existing hazard map for mainland Spain. We have produced a new earthquake catalogue for the area, in which the earthquakes are given in moment magnitude through specific deduced relationships for our territory based on intensity data (Mezcua et al. in Seismol Res Lett 75:75–81, 2004). In addition, we included a new seismogenetic zoning based on the recent partial zoning studies performed by different authors. Finally, as we have developed a new strong ground motion model for the area García Blanco (2009), it was considered in the hazard calculation together with other attenuations gathered from different authors using data compatible with our region. With this new data, a logic tree process is defined to quantify the epistemic uncertainty related to those parts of the process. A sensitivity test has been included in order to analyze the different models of ground motion and seismotectonic zonation used in this work. Finally, after applying a weighting scheme, a mean hazard map for PGA, based on rock type condition for 10% exceedance probability in 50 years, is presented, including 15th and 85th percentile hazard maps. The main differences with the present official building code hazard map are analyzed.  相似文献   

2.
A semi-probabilistic approach to the seismic hazard assessment of Greece is presented. For this reason, a recent seismotectonic model for shallow and intermediate depth earthquake sources, based on historical as well as on instrumental data, was used. Different attenuation formulae were proposed for the macroseismic intensity and the strong ground motion parameters for the shallow and the intermediate focal depth shocks. The data were elaborated in terms of McGuire's computer program, which is based on the Cornell's method.A grid of equally spaced points at 20 km distance was made and the seismic hazard recurrence curves for various parameters of the seismic intensity was estimated for each point. Finally, seismic hazard maps for the area of Greece were compiled utilizing the entire range of recurrence curves. These maps depict areas of equal seismic hazard and for every area the analytical relations of the typeSI =f(Tm), whereSI is a seismic intensity parameter andTm is the mean return period, were determined.  相似文献   

3.
A first generation of probabilistic seismic hazard maps of the Italian country are presented. They are based on seismogenic zoning deriving from a kinematic model of the structural tectonic units and on an earthquake catalogue with the foreshock and aftershock events filtered out. The following ground motion parameters have been investigated and mapped using attenuation equations based on strong-motion recordings of Italian earthquakes: peak ground acceleration and velocity; Arias intensity; strong motion duration; and the pseudovelocity and pseudoacceleration spectral values at 14 fixed frequencies both for the vertical and the largest horizontal component. A Poissonian model of earthquake occurrence is assumed as a default and the hazard maps are presented in terms of ground motion values expected to be exceeded at a 10% probability level in 50 years (return period 475 years) according to the requirement of Eurocode 8 for the seismic classification of national territories, as well as in terms of exceedance probabilities of selected ground motion values. Finally, as a tentative study, the use of hybrid methods (implementing both seismogenic zones and structures), renewal processes (including earthquake forecasting) and the influence of site effects (as the basis for the planning of earthquake scenarios) were explored.  相似文献   

4.
The creation of earthquake hazard maps requires various datasets with selected attenuation relations. Based on the selected attenuation relation, the calculation time varies from half an hour to a couple of days. The length of time needed to create an earthquake hazard map also depends on the resolution of the resulting map. The time gets longer as the resolution of the resulting earthquake hazard map gets higher. The basic form of an attenuation relation requires complex calculation algorithms including geospatial information related to the region of interest. Nowadays, next-generation attenuation (NGA) models are introduced to generate more realistic earthquake hazard maps. However, the more complex the attenuation relation is, the longer time will be required to create a hazard map. This paper offers a new method to create high-resolution earthquake hazard maps, faster than using traditional attenuation relation methods, by using an analytic hierarchy process of spatial multi-criteria decision analysis and geographic information systems. This method has been generated and tested for the city of Istanbul. The resulting maps are compared with the earthquake hazard maps created for the city of Istanbul by using the NGA model of Boore and Atkinson (in Boore–Atkinson NGA ground motion relations for the geometric mean horizontal component of peak and spectral ground motion parameters (trans: Engineering Co, University of California B). Pacific Earthquake Engineering Research Center 2007). A second output of this paper is a map of the elements at risk (EaR) for the population and buildings of Istanbul, and the introduction of a new approach of net elements at risk (NEaR).  相似文献   

5.
Microzonation is an effort to evaluate and map potential hazards found in an area, urban area in particular, that could be induced by strong ground shaking during an earthquake. These hazards include: ground motion amplification, liquefaction, and slope failure. The microzonation maps, depicting ground-motion amplification, liquefaction, and landslide potentials, can be produced if the ground motion on bedrock (input) and the site conditions are known. These maps, in combination with ground-motion hazard maps (on bedrock), can be used to develop a variety of hazard mitigation strategies such as seismic risk assessment, emergency response and preparedness, and land-use planning. However, these maps have certain limitations that result from the nature of regional mapping, data limitations, generalization, and computer modeling. These microzonations show that when strong ground shaking occurs, damage is more likely to occur, or be more severe, in the higher hazard areas. The zones shown on the hazard maps should not serve as a substitute for site-specific evaluations.  相似文献   

6.
It has been known that ground motion amplitude will be amplified at mountaintops; however, such topographic effects are not included in conventional landslide hazard models. In this study, a modified procedure that considers the topographic effects is proposed to analyze the seismic landslide hazard. The topographic effect is estimated by back analysis. First, a 3D dynamic numerical model with irregular topography is constructed. The theoretical topographic amplification factors are derived from the dynamic numerical model. The ground motion record is regarded as the reference motion in the plane area. By combining the topographic amplification factors with the reference motions, the amplified acceleration time history and amplified seismic intensity parameters are obtained. Newmark’s displacement model is chosen to perform the seismic landslide hazard analysis. By combining the regression equation and the seismic parameter of peak ground acceleration and Arias intensity, the Newmark’s displacement distribution is generated. Subsequently, the calculated Newmark’s displacement maps are transformed to the hazard maps. The landslide hazard maps of the 99 Peaks region, Central Taiwan are evaluated. The actual landslide inventory maps triggered by the 21 September 1999, Chi-Chi earthquake are compared with the calculated hazard maps. Relative to the conventional procedure, the results show that the proposed procedures, which include the topographic effect can obtain a better result for seismic landslide hazard analysis. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
The earthquake hazard in Jordan and its vicinity is assessed on the basis of probabilistic methods. For this purpose, an updated earthquake catalog is compiled which covers the period between AD 1–1989. The earthquakes lie between latitudes 27.0°-35.5° N and longitudes 32.0°-39.0° E. Thirteen seismic zones are defined on a regional seismic and tectonic map presented for the area. Point-source and line-source models are used. The seismic hazard parameters, namely, theb-parameter (of the Gutenberg-Richter relation),m 1 (the upper bound magnitude), and 4 (the annual rate of occurrence of earthquakes with local magnitudeM L 4.0) are calculated for each zone. The results of the seismic hazard assessment are displayed as iso-acceleration contours expected to be exceeded during typical economic life times of structures, i.e. 50 and 100 years. For each model, two seismic hazard maps are derived. In order to determine the importance of the South-eastern Mediterranean zone and the north part of the Red Sea zone from a seismic hazard point of view for Jordan, one seismic hazard map which corresponds to 50 years' economic life for every model, excluding the seismicity of these zones, is derived.  相似文献   

8.
The assessment of local site effects on seismic ground motions is of great importance in earthquake engineering practice. Several destructive earthquakes in the past have demonstrated that the amplification of ground motion and associated damage to structures due to local site conditions is a significant consideration in earthquake hazard analysis. A recent paper published in this journal highlights the hazard posed by earthquakes in the megacity of Kolkata in India due to its seismic and geological settings. The seismic hazard assessment study speculates that the deep alluvial deposit in the city may increase the seismic hazard probably due to the amplification of the seismic energies. This paper focuses on the seismic response studies of the various soil strata (i.e. for local subsurface conditions) obtained from various construction sites in the city for predicted earthquake. It is very well recognized that site response studies (a part of seismic microhazard zonation for urban areas) are the first step towards performance-based foundation design or seismic risk analysis and mitigation strategy. One of the problems for carrying out site-specific study in Kolkata is the lack of recorded strong motion data in the city. Hence, this paper outlines a methodology to carry out site-specific study, where no strong motion data or seismic data are available. The methodology uses wavelet-based spectrum compatibility approach to generate synthetic earthquake motions and equivalent linear method for seismic site response analysis. The Mega City of Kolkata has been considered to explain the methodology. Seismic hazard zonation map by the Bureau of Indian Standards classifies the City of Kolkata as moderate seismic zone (Zone III) with a zone factor 0.16. On the other hand, GSHAP(Global Seismic Hazard Assessment Program) map which is based on 10% probability of exceedance in 50 years specifies a maximum peak ground acceleration (PGA) of 1.6 m/s2 (0.163 g) for this region. In the present study, the seismic response has been carried out based on GSHAP. The results of the analysis indicate the amplification of ground motion in the range of 4.46–4.82 with the fundamental period ranging from 0.81 to 1.17 s. Furthermore, the maximum spectral accelerations vary in the range of 0.78–0.95 g.  相似文献   

9.
10.
Modeling of seismic hazard for Turkey using the recent neotectonic data   总被引:1,自引:0,他引:1  
Kamil Kayabali   《Engineering Geology》2002,63(3-4):221-232
Recent developments in the neotectonic framework of Turkey introduced new tectonic elements necessitating the reconstruction of Turkey's seismic hazard map. In this regard, 14 seismic source zones were delineated. Maximum earthquake magnitudes for each seismic zones were determined using the fault rupture length approximation. Regression coefficients of the earthquake magnitude–frequency relationships for the seismic zones were compiled mostly from earlier works. Along with these data, a strong ground motion attenuation relationship developed by Joyner and Boore [Joyner, W.B., Boore, D.M., 1988. Measurement, characterization, and prediction of strong ground motion. Earthquake Engineering and Soil Dynamics, 2. Recent Advances Ground Motion Evaluation, pp. 43–102.] was utilized to model the seismic hazard for Turkey using the probabilistic approach. For the modeling, the “earthquake location uncertainty” concept was employed. A grid of 5106 points with 0.2° intervals was constituted for the area encompassed by the 25–46°E longitudes and 35–43°N latitudes. For the return periods of 100 and 475 years, the peak horizontal ground acceleration (pga) in bedrock was computed for each grid point. Isoacceleration maps for the return periods of 100 and 475 years were constructed by contouring the pga values at each node.  相似文献   

11.
A methodology to model seismic microzonation maps is required in the hazard mitigation decision plans of the earthquake prone areas. The stage of disaster preparedness for new residential places is of great importance for detailed seismic microzonation models. The effects of local geological and geotechnical site conditions were considered in order to establish site characterization as the initial stage of the models in this study. Dynamic soil properties based on the empirical correlations between shear wave velocity (V s) and standard penetration test blow counts were taken into account in order to define representative soil profiles extending down to the engineering bedrock. One-dimensional site response analyses were performed to analyze earthquake characteristics on the ground surface. The layers for soil classification, geology, depth to groundwater level, amplification, distance to fault, slope and aspect, and liquefaction-induced ground deformation potential of the study area were prepared in seismic microzonation models. The study area, Erbaa, is placed along the seismically active North Anatolian Fault Zone. Final seismic microzonation map of the study area was evaluated applying different GIS-based Multi-Criteria Decision Analysis (MCDA) techniques. Two of the MCDA techniques, simple additive weighting and analytical hierarchical process (AHP), are considered during the evaluation step of the final seismic microzonation map. The comparison is made in order to distinguish two different maps based on these MCDA techniques. Eventually, AHP-based seismic microzonation map is more preferable for the seismic design purposes in this study.  相似文献   

12.
以穿越汶川震区的成兰铁路龙门山关键段为例, 探索提出了强震扰动背景下重大工程场区多尺度滑坡危险性评估方法。利用信息量模型反演评估了汶川地震诱发的同震滑坡空间分布特征, 以此为前提开展了区域和局地两种空间尺度的滑坡危险性预测评估。在区域廊带尺度上, 分别利用可能最大降雨量预测方法和信息量模型, 进行了日超越概率10%的最大降雨量时空分布预测及其诱发滑坡的危险性评估; 同时, 结合地震危险性区划成果, 开展了50年超越概率10%的基本地震动诱发滑坡的危险性评估。在局地场站尺度上, 利用基于崩塌运动过程模拟的Rockfall Analyst软件, 开展了柿子园大桥周边崩塌运动学特征(Runout)模拟和危险性评估。滑坡和崩塌危险性评估的结果分别为铁路规划选线和场站防护设计提供了不同尺度的地质安全依据。   相似文献   

13.
Particularly in the last decade, landslide susceptibility and hazard maps have been used for urban planning and site selection of infrastructures. Most of the procedures for preparing of landslide susceptibility maps need high-quality landslide inventory map. Although the rainfall and seismic activities are accepted as triggering factor for landslides, designation of the triggering factor for each landslide in the inventory is almost impossible when well-documented records are unavailable. Therefore, during preparation of landslide susceptibility map, whole landslide records in the inventory map are used together without classifying based on the triggering factors. Although seismic activity is accepted as a triggering factor, possible effect of the use of seismic activity on production of landslide susceptibility map was investigated in this study, and the subject is open to discussion. For this purpose, a series of stability analyses based on circular failure and infinite slope model were performed considering different pseudostatic conditions. The results of analyses show that gentle slopes have higher susceptibility to failure than steeper ones, even if their stability conditions (susceptibilities) are similar for static condition. The seismic forces acting on failure surfaces may not be sufficiently taken into consideration in the conventionally prepared landslide susceptibility maps. Employing the general decreasing trend in stability condition based on slope face angle and the seismic acceleration, a new procedure was introduced for preparing of the landslide susceptibility map for a scenario earthquake. The prediction performance of occurring landslides increased after the procedure was applied to the conventionally prepared landslide susceptibility map. According to the threshold independent spatial performance analyses of the proposed methodology and the produced landslide susceptibility maps, the area under ROC curve values were calculated as 0.801, 0.933, and 0.947 for the maps prepared by considering conventional method and scenario earthquakes having M w values of 5.5 and 7.5, respectively.  相似文献   

14.
The region of interest is characterized by incomplete data sets and little information about the tectonic features. Therefore, two methodologies for estimating seismic hazard were used in order to elucidate the robustness of the results: the method of spatially smoothed seismicity introduced by Frankel (1995) and later extended by Lapajne et al. (1997) and a Monte Carlo approach presented by Ebel and Kafka (1999). In the first method, fault-rupture oriented elliptical Gaussian smoothing was performed to estimate future activity rates along the causative structures. Peak ground accelerations were computed for a grid size of 15 km × 415 km assuming the centre of the grids as epicentres, from which the seismic hazard map was produced. The attenuation relationship by Ambraseys et al. (1996) was found suitable for the region under study. PGA values for 10% probability of exceedence in 50 years (return period of 475 years) were computed for each model and a combined seismic hazard map was produced by subjectively assigning weights to each of these models. A worst-case map is also obtained by picking the highest value at each grid point from values of the four hazard maps. The Monte Carlo method is used to estimate seismic hazard, for comparison to the results from our previous approach. Results obtained from both methods are comparable except values in the first set of maps estimate greater hazard in areas of low seismicity. Both maps indicate a higher hazard along the main tectonic features of the east African and Red Sea rift systems. Within Eritrea, the highest PGA exceeded a value 25% of g, located north of Red Sea port of Massawa. In areas around the capital, Asmara, PGA values exceed 10% of g.  相似文献   

15.
Probabilistic seismic hazard of Pakistan, Azad-Jammu and Kashmir   总被引:2,自引:2,他引:0  
The seismic hazard study for Pakistan and Azad Jammu and Kashmir has been conducted by using probabilistic approach in terms of peak ground acceleration (PGA) in m/s2 and also seismic hazard response spectra for different cities. A new version of Ambraseys et al. (Bull Earthq Eng 3:1–53, 2005) ground acceleration model is used, and parameterization is based on most recent updated earthquake catalogs that consisted of 14,000 events. The threshold magnitude was fixed at M w 4.8, but seismic zones like northern Pakistan–Tajikistan, Hindukush and northern Afghanistan–Tajikistan border had M w 5.2. The average normalized ‘a’ and ‘b’ values for all zones are 6.15 and 0.95, respectively. Seismicity of study area was modeled, and ground motion was computed for eight frequencies (0.025, 0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5 s) for different annual exceedance rates of 0.02, 0.01, 0.005, 0.002 and 0.001 (return periods 50, 100, 200, 500 and 1,000 years) for stiff rocks at the gridding of 0.1° × 0.1°. Seismic hazard maps based on computed PGA for 0.02, 0.01 and 0.002 annual exceedance are prepared. These maps indicate the earthquake hazard of Pakistan and surrounding areas in the form of acceleration contour lines, which are in agreement with geological and seismotectonic characteristics of the study area. The maximum seismic hazard values are found at Muzaffarabad, Gilgit and Quetta areas.  相似文献   

16.
The development of the new seismic hazard map of metropolitan Tehran is based on probabilistic seismic hazard computation using the non-Poisson recurrence time model. For this model, two maps have been prepared to indicate the earthquake hazard of the region in the form of iso-acceleration contour lines. They display the non-Poisson probabilistic estimates of peak ground accelerations over bedrock for 10 and 63 % probability of exceedance in 50 years. To carry out the non-Poisson seismic hazard analysis, appropriate distributions of interoccurrence times of earthquakes were used for the seismotectonic provinces which the study region is located and then the renewal process was applied. In order to calculate the seismic hazard for different return periods in the probabilistic procedure, the study area encompassed by the 49.5–54.5°E longitudes and 34–37°N latitudes was divided into 0.1° intervals generating 1,350 grid points. PGA values for this region are estimated to be 0.30–0.32 and 0.16–0.17 g for 10 and 63 % probability of exceedance, respectively, in 50 years for bedrock condition.  相似文献   

17.
The need to revise the current Indonesian Seismic Hazard Map contained in Indonesian Earthquake Resistant Building Code SNI 03-1726-2002 which partially adopts the concept of UBC 1997, was driven among others by the desire to better reflect the potential larger earthquake disasters faced by the nation in the future. The much larger than maximum predicted Aceh Earthquake (M w 9.0–9.3) of 2004, followed by the destruction observed during the 2005 Nias Earthquake (M w 8.7) urgently underline to need to consider the new conceptual approach and technological shift shown in the transition of UBC 1997 to IBC 2006. This paper presents research works for developing spectral hazard maps for Indonesia. Some improvements in seismic hazard analysis were implemented using recent seismic records. Seismic sources were modeled by background, fault, and subduction zones by considering a truncated exponential model, pure characteristic model or both models. A logic tree method was performed to account for the epistemic uncertainty and several attenuation functions were selected. Maps of PGA and spectral accelerations for a short period (0.2 s) and for a 1-s period were then developed using a probabilistic approach. The maps will be proposed as a revision for the current seismic hazard map in the Indonesian Seismic Building Code.  相似文献   

18.
This work involves updating the evaluation of seismic hazard in Northeast Algeria by a probabilistic approach. This reassessment attempts to resolve inconsistencies between seismic zoning in regional building codes and is further motivated by the need to refine the input data that are used to evaluate seismic hazard scenarios. We adopted a seismotectonic model that accounts for differences in interpretations of regional seismicity. We then performed a probabilistic assessment of regional seismic hazard in Northeast Algeria. Based on a homogeneous earthquake catalog and geological and seismotectonic data gathered in the first part of the study, a seismotectonic zoning map was created and seven risk areas were identified. For each area, peak ground acceleration hazard maps were produced. Details of the calculations are provided, including hazard curves at periods of 0.1, 0.2, 0.33, 0.5, 1.0, and 2.0 s and uniform hazard spectra at urban locations in the area, including Sétif, Constantine, Kherrata, Bejaia, and Jijel.  相似文献   

19.
Seismic hazard studies were conducted for Gaziantep city in the South Anatolia of Turkey. For this purpose, a new attenuation relationship was developed using the data of Zaré and Bard and accelerations were predicted employing this new equation. Deterministic approach, total probability theorem and GIS methodology were all together utilized for the seismic assessments. Seismic hazard maps with 0.25° grid intervals considering the site conditions were produced by the GIS technique. The results indicated that the acceleration values by the GIS hazard modelings were matched with the ones from the deterministic approach, however, they were underestimated comparing with the total probability theorem. In addition, the GIS based seismic hazard maps showed that the current seismic map of Turkey fairly yields conservative acceleration values for the Gaziantep region. Therefore, the constructed GIS hazard models are offered as a base map for a further modification of the current seismic hazard map.  相似文献   

20.
Earthquake Hazard Assessment in the Oran Region (Northwest Algeria)   总被引:4,自引:1,他引:4  
Bouhadad  Youcef  Laouami  Nasser 《Natural Hazards》2002,26(3):227-243
This paper deals with the probabilistic seismic hazard analysis carried out in the Oran region, situated in the Northwest of Algeria. This part of Algeriawas historically struck by strong earthquakes. It was particularly affected during theOctober 9, 1790 Oran earthquake of intensity X. The main purpose of this work is to assessseismic hazard on rocks in order to provide engineers and planners with a basic tool for seismicrisk mitigation. The probabilistic approach is used in order to take into account uncertaintiesin seismic hazard assessment. Seismic sources are defined in the light of the most recentresults obtained from seismotectonics analyses carried out in North Algeria.Source parameters such as b-values, slip rate and maximum magnitude are assessed for eachseismic source. The attenuation of ground shaking motion with distance is estimated byusing attenuation relationships developed elsewhere throughout the world (Sadigh et al., 1993; Ambraseys and Bommer, 1991). The two relationships agree well with the local data. Differentchoices of source parameter values and attenuation relationships are assigned weights in alogic tree model. Results are presented as relationships between values of peak groundacceleration (PGA) and annual frequency of exceedance, and maps of hazard for returnperiods of 200 years and 500 years. A maximum peak ground acceleration of 0.42 g is obtainedfor the Oran site for a return period of 500 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号