首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
地球物理   7篇
地质学   9篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Landslides constitute the most widespread and damaging natural hazards in the Constantine city. They represent a significant constraint to development and urban planning. In order to reduce the risk related to potential landslide, there is a need to develop a comprehensive landslide hazard map (LHM) of the area for an efficient disaster management and for planning development activities. The purpose of this research is to prepare and compare the LHMs of the Constantine city, by applying frequency ratio (FR), weighting factor (Wf), logistic regression (LR), weights of evidence (WOE), and analytical hierarchy process (AHP) methods used in a framework of the geographical information system (GIS). Firstly, a landslide inventory map has been prepared based on the interpretation of aerial photographs, high resolution satellite images, fieldwork, and available literature. Secondly, eight landslide-conditioning factors such as lithology, slope, exposure, rainfall, land use, distance to drainage, distance to road, and distance to fault have been considered to establish LHMs using the FR, Wf, LR, WOE, and AHP models in GIS. For verification, the obtained LHMs have been validated comparing the LHMs with the known landslide locations using the receiver operating characteristics curves (ROC). The validated results indicate that the FR method provides more accurate prediction (86.59 %) of LHMs than the WOE (82.38 %), AHP (77.86 %), Wf (77.58 %), and LR (70.45 %) models. On the other hand, the obtained results showed that all the used models in this study provided a good accuracy in predicting landslide hazard in Constantine city. The established maps can be used as useful tools for risk prevention and land use planning in the Constantine region.  相似文献   
2.
We study the surface deformation associated with the 22 December 1999 earthquake, a moderate sized but damaging event at Ain Temouchent (northwestern Algeria) using Interferometric Satellite Aperture Radar images (InSAR). The mainshock focal mechanism solution indicates reverse faulting with a NE–SW trending rupture comparable to other major seismic events of this section of the Africa–Eurasia plate boundary. Previously, the earthquake fault parameters were, however, poorly known because no aftershocks were precisely determined and no coseismic surface ruptures were observed in the field. Using a pair of ERS data with small baseline and short temporal separation in the ascending orbit we obtained an interferogram that shows the coseismic surface displacement field despite poor coherence. The interferogram measures four fringes and displays an ellipse-shaped lobe with ∼11 cm peak line-of-sight displacement. The elastic modeling using a boundary element method (Poly3Dinv) indicate coseismic slip reaching up to 1 m at 5 km depth on the N 57° E trending, dipping 32° NW Tafna thrust fault. The geodetic estimate of seismic moment is 4.7 × 1017 N m. (Mw 5.7) in is good agreement with seismological results. The elliptical shape of the surface displacement field coincides with the NE–SW trending Berdani fault-related fold. The consistency between the geological observations and InSAR solution shed light on the precise earthquake location and related Tafna fault parameters.  相似文献   
3.
Evidence of ancient liquefaction-in duced features is presented in the area of the 2003 Zemmouri earthquake (M w 6.8). This earthquake was related to an offshore unknown 50-km long fault. A 0.55-m coseismic coastal uplift was generated and extensive liquefaction has been induced in the most susceptible area which correspond to the seaside and along the hydrographic network, mainly the Sebaou and Isser valley rivers. Field investigations allowed us to identify past liquefaction traces in the Quaternary deposits. The observed features are represented by sand dikes, sills, and sand vents as well as well-preserved sand boiled volcanoes. In this work, we also describe the alluvial environment, the hosted localized stratigraphic layer, the morphology and the geometry of the observed features, as well as the observed deformation (settlement) of the hosted layers that are among characteristics of the seismically induced features as described in worldwide examples. Our observations represent a step towards paleoseismological studies in the region knowing that the May 21st 2003 Zemmouri earthquake is produced by an offshore fault where a direct study of the seismogenic fault is inaccessible.  相似文献   
4.
Coastal Quaternary deposits of western Oranie show typical soft-sediment deformations including sedimentary dykes, sand volcanoes, sismoslumps, thixotropic bowls, thixotropic wedges, diapir-like structures, and faults grading. Field observations indicate that these deformations exist at several levels of the studied deposits along the west Oranian coast. This study demonstrated that these structures are earthquakes-related, by analysis of potential trigger sources. Several arguments demonstrate the seismic origin: the depositional environment rich in water that located in an active tectonic region, the thixotropic nature of deformations and their large vertical and horizontal diffusion in the Quaternary series consistent with a seismic recurrence. This allows characterizing these Quaternary soft-sediment deformations as seismites that were triggered by earthquakes.  相似文献   
5.
The murdjadjo (Oran) geological structure which consists of an asymmetricfold has been studied. The anticline has a length of about 32 km and isN050 trending. Its relationship with the relatively high historical seismicityof the region is analysed. New critical investigations of contemporary documents enabled us to re-evaluate the December, 12, 1959(Ms = 4.7) and the May 12, 1889 (Ms = 4.6) earthquakes. Fieldobservations reveal the existence of a fault which affect the south-easternflank of the Murdjadjo anticline. The fault dips 60° to the NW andcut the tilted Neogene deposits which juxtaposes the Quaternary tilteddeposits. A NE-SW-trending direction of stream pattern underlies thefaulted flank of the anticline. Furthermore, offset of stream patternindicate a strike lateral slip component of the fault. Marine terracesmapped along the Oran coast indicates a uniform uplift rate of0.18 mm/yr which may be compared to the coseismic rate obtained inthe chelif region. Also, development of secondary small plain on theuplifted flank, the high subsidence in the Mleta quaternary plain whichjuxtaposes the faulted flank constitute evidence of recent tectonicmovements. The Murdjadjo fault, composed by two segments, mayproduce in the future strong earthquakes of magnitude equal or greaterthan 6.5. This fact suggests that the Oran earthquake of October 9, 1790(M = 7.5) which produced sea waves along the Spanish coast is likelygenerated by the Murdjadjo fault- related fold. Recurrence of earthquakedetermined on the basis of historical seismicity suggests a return period ofabout 1000 years for an earthquake of M = 7.3 which seem underestimatedcompared to the paleoseismic data available in The Tell atlas of Algeria.  相似文献   
6.
Earthquake Hazard Assessment in the Oran Region (Northwest Algeria)   总被引:4,自引:1,他引:4  
Bouhadad  Youcef  Laouami  Nasser 《Natural Hazards》2002,26(3):227-243
This paper deals with the probabilistic seismic hazard analysis carried out in the Oran region, situated in the Northwest of Algeria. This part of Algeriawas historically struck by strong earthquakes. It was particularly affected during theOctober 9, 1790 Oran earthquake of intensity X. The main purpose of this work is to assessseismic hazard on rocks in order to provide engineers and planners with a basic tool for seismicrisk mitigation. The probabilistic approach is used in order to take into account uncertaintiesin seismic hazard assessment. Seismic sources are defined in the light of the most recentresults obtained from seismotectonics analyses carried out in North Algeria.Source parameters such as b-values, slip rate and maximum magnitude are assessed for eachseismic source. The attenuation of ground shaking motion with distance is estimated byusing attenuation relationships developed elsewhere throughout the world (Sadigh et al., 1993; Ambraseys and Bommer, 1991). The two relationships agree well with the local data. Differentchoices of source parameter values and attenuation relationships are assigned weights in alogic tree model. Results are presented as relationships between values of peak groundacceleration (PGA) and annual frequency of exceedance, and maps of hazard for returnperiods of 200 years and 500 years. A maximum peak ground acceleration of 0.42 g is obtainedfor the Oran site for a return period of 500 years.  相似文献   
7.
On Thursday, 22 of May 2014, at 6 h 22 min 0.3.3 s (GMT?+?1) a moderate-sized earthquake struck the Mostaganem, Western Algeria, region. The main shock, recorded by many international and national seismological stations, was preceded by a foreshock, 3 hours before, on May 22, 2014 (Ml?=?4.1) at 3 h 57 min 41.4 s and followed by four well-felt aftershocks (M?>?3.0) that lasted about 1 year. The main shock did not cause loss of lives but serious panic among the population was reported. The main shock, however, caused cracks in walls and roofs, sometimes destroyed, the old non-engineered and precarious adobe dweller corresponding to I0?=?VI–VII (Msk scale). We used accelerograph records to (i) determine the epicenter location (longitude?=?0.3537 E, latitude?=?35.8598 N, (ii) perform waveforms inversion to calculate the earthquake parameters. The obtained results are, respectively, the seismic moment (M0)?=?2.71 E + 16, the Mw?=?4.9 and the focal depth?=?6 km. The obtained focal mechanism solution shows reverse faulting with small right lateral component with the following nodal plans: NP1, strike?=?193.5, dip?=?49.5, slip?=?57.6 and NP2, strike?=?57.8, dip?=?50, slip?=?122.1. On the other hand, the seismotectonic framework of the Dahra area exhibits a serie of NE-SW trending “en echelon” faulted folds that may be active as suggested by this study.  相似文献   
8.
Earthquakes constitute the natural hazard that is one of the main natural threats to the northern part of Algeria because of its geographical setting at the Eurasia–Africa plate boundary. Several active multi-segment reverse faults have been identified near urban areas that may rupture during characteristic earthquakes and produce earthquakes of magnitudes ≥7.0. Characteristic earthquakes are extreme seismic events characterized by long return periods, which can have great societal impact. Earthquakes in northern Algeria are destructive for two main reasons: firstly, the shallow character of the faults and secondly, the vulnerability of the building stock built essentially prior to the implementation of seismic design codes that take into account the level of the seismic hazard. That is why even moderate earthquakes are disastrous in this area.  相似文献   
9.
On March 20th, 2006, a moderate earthquake (Mw = 5.2) struck the Laalam (NE-Algeria). The damage was centred in the Laalam village where four deaths, 68 injured and more than 40 housing units destroyed making dozens of peoples homeless. Damage and casualties are directly related to an earthquake-induced landslide occurred at 10 km far from the epicenter (ISC relocation). The landslide rupture, mapped by using a ground based survey, is striking NE-SW along a 1-km length rupture with a 45 cm of lateral displacement. The rupture plan is dipping 40° at the surface and showing horizontal striations. A 75 cm of pre-2006 lateral displacement is also observed indicating a repetitive behaviour of the landslide. The last time where the landslide was activated extends back to 1974 following another moderate earthquake. This landslide reminds us the high level hazard of induced ground failures due slope instabilities in mountainous zones of seismically active areas.  相似文献   
10.
Geotechnical and Geological Engineering - The city of Constantine (NE Algeria), the third largest city of the country (2.374 inhabitants/km2) is facing frequent damaging landslides that constitute...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号