首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Rates of magmatic processes in a cooling magma chamber wereinvestigated for alkali basalt and trachytic andesite lavaserupted sequentially from Rishiri Volcano, northern Japan, bydating of these lavas using 238U–230Th radioactive disequilibriumand 14C dating methods, in combination with theoretical analyses.We obtained the eruption age of the basaltic lavas to be 29·3± 0·6 ka by 14C dating of charcoals. The eruptionage of the andesitic lavas was estimated to be 20·2 ±3·1 ka, utilizing a whole-rock isochron formed by U–Thfractionation as a result of degassing after lava emplacement.Because these two lavas represent a series of magmas producedby assimilation and fractional crystallization in the same magmachamber, the difference of the ages (i.e. 9 kyr) is a timescaleof magmatic evolution. The thermal and chemical evolution ofthe Rishiri magma chamber was modeled using mass and energybalance constraints, as well as quantitative information obtainedfrom petrological and geochemical observations on the lavas.Using the timescale of 9 kyr, the thickness of the magma chamberis estimated to have been about 1·7 km. The model calculationsshow that, in the early stage of the evolution, the magma cooledat a relatively high rate (>0·1°C/year), and thecooling rate decreased with time. Convective heat flux fromthe main magma body exceeded 2 W/m2 when the magma was basaltic,and the intensity diminished exponentially with magmatic evolution.Volume flux of crustal materials to the magma chamber and rateof convective melt exchange (compositional convection) betweenthe main magma and mush melt also decreased with time, from 0·1 m/year to 10–3 m/year, and from 1 m/yearto 10–2 m/year, respectively, as the magmas evolved frombasaltic to andesitic compositions. Although the mechanism ofthe cooling (i.e. thermal convection and/or compositional convection)of the main magma could not be constrained uniquely by the model,it is suggested that compositional convection was not effectivein cooling the main magma, and the magma chamber is consideredto have been cooled by thermal convection, in addition to heatconduction. KEY WORDS: convection; magma chamber; heat and mass transport; timescale; U-series disequilibria  相似文献   

2.
The caldera-forming 26·5 ka Oruanui eruption (Taupo,New Zealand) erupted 530 km3 of magma, >99% rhyolitic, <1%mafic. The rhyolite varies from 71·8 to 76·7 wt% SiO2 and 76 to 112 ppm Rb but is dominantly 74–76 wt% SiO2. Average rhyolite compositions at each stratigraphiclevel do not change significantly through the eruption sequence.Oxide geothermometry, phase equilibria and volatile contentsimply magma storage at 830–760°C, and 100–200MPa. Most rhyolite compositional variations are explicable by28% crystal fractionation involving the phenocryst and accessoryphases (plagioclase, orthopyroxene, hornblende, quartz, magnetite,ilmenite, apatite and zircon). However, scatter in some elementconcentrations and 87Sr/86Sr ratios, and the presence of non-equilibriumcrystal compositions imply that mixing of liquids, phenocrystsand inherited crystals was also important in assembling thecompositional spectrum of rhyolite. Mafic compositions comprisea tholeiitic group (52·3–63·3 wt % SiO2)formed by fractionation and crustal contamination of a contaminatedtholeiitic basalt, and a calc-alkaline group (56·7–60·5wt % SiO2) formed by mixing of a primitive olivine–plagioclasebasalt with rhyolitic and tholeiitic mafic magmas. Both maficgroups are distinct from other Taupo Volcanic Zone eruptivesof comparable SiO2 content. Development and destruction by eruptionof the Oruanui magma body occurred within 40 kyr and Oruanuicompositions have not been replicated in vigorous younger activity.The Oruanui rhyolite did not form in a single stage of evolutionfrom a more primitive forerunner but by rapid rejuvenation ofa longer-lived polygenetic, multi-age ‘stockpile’of silicic plutonic components in the Taupo magmatic system. KEY WORDS: Taupo Volcanic Zone; Taupo volcano; Oruanui eruption; rhyolite, zoned magma chamber; juvenile mafic compositions; eruption withdrawal systematics  相似文献   

3.
Leucocratic and Gabbroic Xenoliths from Hualalai Volcano, Hawai'i   总被引:1,自引:0,他引:1  
A diverse range of crustal xenoliths is hosted in young alkalibasalt lavas and scoria deposits (erupted 3–5 ka) at thesummit of Huallai. Leucocratic xenoliths, including monzodiorites,diorites and syenogabbros, are distinctive among Hawaiian plutonicrocks in having alkali feldspar, apatite, zircon and biotite,and evolved mineral compositions (e.g. albitic feldspar, clinopyroxeneMg-number 67–78). Fine-grained diorites and monzodioritesare plutonic equivalents of mugearite lavas, which are unknownat Huallai. These xenoliths appear to represent melt compositionsfalling along a liquid line of descent leading to trachyte—amagma type which erupted from Huallai as a prodigious lava flowand scoria cone at 114 ka. Inferred fractionating assemblages,MELTS modeling, pyroxene geobarometry and whole-rock norms allpoint to formation of the parent rocks of the leucocratic xenolithsat 3–7 kbar pressure. This depth constraint on xenolithformation, coupled with a demonstrated affinity to hypersthene-normativebasalt and petrologic links between the xenoliths and the trachyte,suggests that the shift from shield to post-shield magmatismat Huallai was accompanied by significant deepening of the activemagma reservoir and a gradual transition from tholeiitic toalkalic magmas. Subsequent differentiation of transitional basaltsby fractional crystallization was apparently both extreme—culminatingin >5·5 km3 of trachyte—and rapid, at 2·75x 106 m3 magma crystallized/year. KEY WORDS: geothermobarometry; magma chamber; xenolith; cumulate; intensive parameters  相似文献   

4.
The Violet Town Volcanics (Lachlan Fold Belt, Australia) arean S-type ignimbrite suite containing microgranitoid enclaves,basaltic andesite enclaves and enclaves of high-silica rhyolite.The microgranitoid enclaves are similar to those in peraluminousgranites. They typically have lower initial 87Sr/86Sr and higherNd than the host, and represent globules of a mafic, mantle-derivedmagma, which was hybridized by mixing and diffusional exchangewith the host magma. The basaltic andesite enclaves were incorporatedinto the ignimbrite as xenoliths, but their parental magma mayhave been similar to that of the microgranitoid enclaves. Theyare isotopically less depleted than other mantle-derived rocksfrom the Lachlan Fold Belt, reflecting contamination by crustalmaterial, or derivation from less depleted mantle sources. Thehigh-silica rhyolite enclaves, previously interpreted to berelated to the ignimbrite by crystal fractionation, have Ndvalues up to 3 units higher than their host, and cannot be relatedto their host by crystal fractionation or assimilation-fractionalcrystallization (AFC) processes. The coexistence of S-type magmasand mantle-derived magmas suggests that the latter may haveplayed a role in the Palaeozoic magmatism of the Lachlan FoldBelt, acting as a heat source for melting and perhaps also contributingchemical components to the crustally derived magmas. KEY WORDS: enclaves; magma mingling; magma mixing; S-type *Present address: Department of Geology and Geophysics, University of Adelaide, Adelaide, S.A. 5005, Australia. Telephone: +-61-8-3035973. Fax: +-61-8-3034347. e-mail: melburg{at}geology.adelaide.edu.au  相似文献   

5.
The Campanian Ignimbrite is a > 200 km3 trachyte–phonolitepyroclastic deposit that erupted at 39·3 ± 0·1ka within the Campi Flegrei west of Naples, Italy. Here we testthe hypothesis that Campanian Ignimbrite magma was derived byisobaric crystal fractionation of a parental basaltic trachyandesiticmelt that reacted and came into local equilibrium with smallamounts (5–10 wt%) of crustal rock (skarns and foid-syenites)during crystallization. Comparison of observed crystal and magmacompositions with results of phase equilibria assimilation–fractionationsimulations (MELTS) is generally very good. Oxygen fugacitywas approximately buffered along QFM + 1 (where QFM is the quartz–fayalite–magnetitebuffer) during isobaric fractionation at 0·15 GPa ( 6km depth). The parental melt, reconstructed from melt inclusionand host clinopyroxene compositions, is found to be basaltictrachyandesite liquid (51·1 wt% SiO2, 9·3 wt%MgO, 3 wt% H2O). A significant feature of phase equilibria simulationsis the existence of a pseudo-invariant temperature, 883 °C,at which the fraction of melt remaining in the system decreasesabruptly from 0·5 to < 0·1. Crystallizationat the pseudo-invariant point leads to abrupt changes in thecomposition, properties (density, dissolved water content),and physical state (viscosity, volume fraction fluid) of meltand magma. A dramatic decrease in melt viscosity (from 1700Pa s to 200 Pa s), coupled with a change in the volume fractionof water in magma (from 0·1 to 0·8) and a dramaticdecrease in melt and magma density acted as a destabilizingeruption trigger. Thermal models suggest a timescale of 200kyr from the beginning of fractionation until eruption, leadingto an apparent rate of evolved magma generation of about 10–3km3/year. In situ crystallization and crystal settling in density-stratifiedregions, as well as in convectively mixed, less evolved subjacentmagma, operate rapidly enough to match this apparent volumetricrate of evolved magma production. KEY WORDS: assimilation; Campanian Ignimbrite; fractional crystallization; magma dynamics; phase equilibria  相似文献   

6.
A suite of dolerite dykes from the Ahlmannryggen region of westernDronning Maud Land (Antarctica) forms part of the much moreextensive Karoo igneous province of southern Africa. The dykecompositions include both low- and high-Ti magma types, includingpicrites and ferropicrites. New 40Ar/39Ar age determinationsfor the Ahlmannryggen intrusions indicate two ages of emplacementat 178 and 190 Ma. Four geochemical groups of dykes have beenidentified in the Ahlmannryggen region based on analyses of60 dykes. The groups are defined on the basis of whole-rockTiO2 and Zr contents, and reinforced by rare earth element (REE),87Sr/86Sr and 143Nd/144Nd isotope data. Group 1 were intrudedat 190 Ma and have low TiO2 and Zr contents and a significantArchaean crustal component, but also evidence of hydrothermalalteration. Group 2 dykes were intruded at 178 Ma; they havelow to moderate TiO2 and Zr contents and are interpreted tobe the result of mixing of melts derived from an isotopicallydepleted source with small melt fractions of an enriched lithosphericmantle source. Group 3 dyke were intruded at 190 Ma and formthe most distinct magma group; these are largely picritic withsuperficially mid-ocean ridge basalt (MORB)-like chemistry (flatREE patterns, 87Sr/86Sri 0·7035, Ndi 9). However, theyhave very high TiO2 (4 wt %) and Zr (500 ppm) contents, whichis not consistent with melting of MORB-source mantle. The Group3 magmas are inferred to be derived by partial melting of astrongly depleted mantle source in the garnet stability field.This group includes several high Mg–Fe dykes (ferropicrites),which are interpreted as high-temperature melts. Some Group3 dykes also show evidence of contamination by continental crust.Group 4 dykes are low-K picrites intruded at 178 Ma; they havevery high TiO2–Zr contents and are the most enriched magmagroup of the Karoo–Antarctic province, with ocean-islandbasalt (OIB)-like chemistry. Dykes of Group 1 and Group 3 aresub-parallel (ENE–WSW) and both groups were emplaced at190 Ma in response to the same regional stress field, whichhad changed by 178 Ma, when Group 2 and Group 4 dykes were intrudedalong a dominantly NNE–SSW strike. KEY WORDS: flood basalt; depleted mantle; enriched mantle; Ahlmannryggen; Karoo dyke  相似文献   

7.
Usu volcano, located in northern Japan, has erupted seven timessince AD 1663. Before these seven eruptions, the volcano hada long repose period ( 5000 yr). The 1663 eruption was thefirstand by far the largest among the seven, producing nearlyaphyric rhyolitic pumice. Small mafic inclusions (‘micro-clots’J,consisting of glass, quenched crystals and abundant vesiclesoccur in the pumice. On the basis of petrological studies ofthe microclots, it is concluded that these are quenched meltsof a mafic magma injected into the rhyolite. The products ofthe 1769 eruption (and those of the following five eruptions)were dacites with abundant (10–15 vol %) microphenocrysts.According to crystal size distribution (CSD) analysis, the newmicrophenocrysts appear to have crystallized at a considerablyhigher cooling rate ( 300 times) than the phenocrysts in the1663 eruptive products. The contrasting petrologic featuresof the aphyric rhyolite and the following microphenocryst-richdacites can be explained by mixing and rapid cooling of a maficmagma injected during the 1663 eruption. We estimate the sizeof the magma chamber beneath Usu volcano just after the 1663eruption, using numerical calculations for a cooling magma chamber.If the magma chamber was sill-like, its thickness is estimatedto have been several hundreds of meters. KEY WORDS: Usu volcano; Japan; magma chamber evolution *Corresponding author. Present address: Geomechanics, Earthquake Research Institute, The University of Tokyo, I-I-I Yayoi, Bunkyo-ku, Tokyo 113, Japan  相似文献   

8.
The Skye igneous centre, forming part of the British Tertiarymagmatic province, developed over a 7 Myr period (61–54Ma) and is characterized by a complex suite of lavas, hypabyssaland intrusive rocks of picritic to granitic composition. Theintrusion of magma from mantle to crust at 2x10–3km3/yr(6 Mt/yr) advected magmatic heat of roughly 0·2 GW averagedover the period of magmatism supporting an ‘excess’heat flux of about 130 mW/m2, or about twice the present-dayaverage continental heat flow. The volume of new crust generatedat Skye (15000 km3) spread over the present-day area of Skyecorresponds to 9 km of new crust. The geochemical evolutionof the Skye magmatic system is constrained using the Energy-ConstrainedRecharge, Assimilation, and Fractional Crystallization (EC-RAFC)model to understand variations in the Sr- and Pb-isotopic andSr trace-element composition of the exposed magmatic rocks withtime. The character (composition and specific enthalpy) of bothassimilant and recharge magma appears to change systematicallyup-section, suggesting that the magma reservoirs migrated toprogressively shallower levels as the system matured. The modelof the magma transport system that emerges is one in which magmabatches are stored initially at lower-crustal levels, wherethey undergo RAFC evolution. Residual magma from this stagethen migrates to shallower levels, where mid-crustal wall rockis assimilated; the recharge magma at this level is characterizedby an increasingly crustal signature. For some of the stratigraphicallyyoungest rocks, the data suggest that the magma reservoirs ascendedinto, and interacted with, upper-crustal Torridonian metasediments. KEY WORDS: assimilation; EC-RAFC model; geochemical modelling; magma recharge; Skye magmatism  相似文献   

9.
The Jozini and Mbuluzi rhyolites and Oribi Beds of the southernLebombo Monocline, southeastern Africa, have geochemical characteristicsthat indicate they were derived by partial melting of a mixtureof high-Ti/Zr and low-Ti/Zr Sabie River Basalt Formation types.Compositional variations within the different rhyolite typescan largely be explained by subsequent fractional crystallization.The Sr- and Nd-isotope composition of the rhyolites is uniqueamongst Gondwana silicic large igneous provinces, having Ndvalues close to Bulk Earth (–0·94 to 0·35)and low, but more variable, initial 87Sr/86Sr ratios (0·7034–0·7080).Quartz phenocryst 18O values indicate that the rhyolite magmashad 18O values between 5·3 and 6·7, consistentwith derivation from a basaltic protolith with 18O values between4·8 and 6·2. The low-18O rhyolites (< 6·0)come from the same stratigraphic horizon and are overlain andunderlain by rhyolites with more ‘normal’ 18O magmavalues. These low-18O rhyolites cannot have been produced byfractional crystallization or partial melting of mantle-derivedbasaltic material. The rhyolites have low water contents, makingit unlikely that the low 18O values are the result of post-emplacementalteration. Modification of the source by fluid–rock interactionat elevated temperatures is the most plausible mechanism forlowering the 18O magma value. It is proposed that the low-18Orhyolites were derived by melting of earlier altered rhyolitein calderas situated to the east, which were not preserved afterGondwana break-up. KEY WORDS: rhyolite; Lebombo; stable and radiogenic isotopes; low-18O magmas; partial melting  相似文献   

10.
Mount Galunggung is a historically active volcano in southwesternJava that has erupted four times in the last two centuries.During the most recent event, which occurred during a 9–monthinterval in 1982– 83, some 305 106 m3 of medium–K,calc–alkaline magma was erupted. This eruption was unusualbecause of its duration, the diversity of eruption dynamicsand products, and the range of lava compositions produced. Thecomposition of juvenile material changed gradually during thecourse of the eruption from initial plagioclase (An60–75)and two–pyrozene bearing andesites with 58% SiO2 to finalplagioclase (An85–90), diopside, and olivine (Fo85–90)bearing primitive magnesium basalts with 47% SiO2 Mineralogicaland compositional relationships indicate a magmatic evolutioninvolving differentitation of high–Mg parental melt. Theeruptive volumes of 35 106 m3 andesite, 120 106 m3 maficandesite, and 150 106 m3 basalt are consistent with the ideathat the 1982– 83 eruption progressively tapped and draineda magma chamber that had become chemically stratified throughextensive crystal fractionation. Separates of plagioclase and pyroxene have 18O( SMO W) rangesof + 5. 6 to + 6.0 and + 5.3 to + 5.6, respectively, with 18Oplag–pxvalues of + 0.4 to + 0.6o, indicating internal O–isotopeequiliburium at temperature of 1100–850 C. The magenesianbasalts have magmatic 18O/ 16O ratios similar to those of mid–oceanridge basalt, and the O–isotope ratios of compositionallyevolved derivative melts show no evidence for contaminationof the galunggung magmas by 18O–rich crust during differentiation.Andesites and transitional mafic and sites have a more variableO–isotope character, with laves and phenocrysts havingboth higher and lower 18O values than observed in the parentalmagnesium basalts. These features are interpreted to reflectintramagma chamber processes affecting the upper portions ofthe differentiating Galunggung magma body before the 1982–83eruption.  相似文献   

11.
Marbles and metapelites from the Reynolds Range Group (centralAustralia) were regionally metamorphosed at low pressure duringM2 at 1.6 Ga, M2 ranged in grade from greenschist to granulitefacies along the length of the Reynolds Range, and overprinted1.78 Ga granites and their contact aureoles in the ReynoldsRange Group metasediments. At all M2 grades the marbles andmetapelites have highly variable oxygen isotope ratios [marbles:18O(carb) 14–20%; metapelites: 18O 6–14%). Similarly, 1.78 Ga granites have highly variable oxygen isotope ratios(18O 5–13%), with the lowest values occurring at thegranite margins. In all rock types, the lowest oxygen isotopevalues are consistent with the infiltration of channelled magmaticand/or meteoric fluids. The variable lowering of oxygen isotopevalues resulted from pre-M2 contact metamorphism and fluid—rockinteraction around the 1.78 Ga granites. In contrast, mineralassemblages in the marbles define a trend of increasing XCO2with increasing grade from <0.05 (greenschist facies) to0.7–1.0 (granulite facies). This, together with the lackof regionally systematic resetting of oxygen isotope ratios,implies that there was little fluid—rock interaction duringprograde regional metamorphism. KEY WORDS: low pressure; polymetamorphism; fluids; stable isotopes; petrology *Corresponding author Fax: 61–3–94791272. e-mail: geoisb{at}lure.latrobe.edu.au  相似文献   

12.
New 18O values for plagioclase, pyroxene and olivine, and limitedwhole-rock D values are presented for samples from the RustenburgLayered Suite of the Bushveld Complex, South Africa. In combinationwith existing data, these provide a much more complete compositeO-isotope stratigraphy for the intrusion. Throughout the layeredsuite, mineral 18O values indicate that the magmas from whichthey crystallized had 18O values that were about 7·1,that is, 1·4 higher than expected for mantle-derivedmagmas, suggesting extensive crustal contamination. More limitedH-isotope data suggest that the OH present within whole rocks,regardless of the degree of alteration, is of magmatic originand not an alteration phenomenon. There appears to be no systematicchange in 18O value with stratigraphic height and this requiresthe contamination to have taken place in a ‘staging chamber’before emplacement of the magma(s) into the present chamber.Large amounts (30–40%) of contamination by the lower tomiddle crust are needed to explain these 18O values, which isin general agreement with previous estimates based on Sr- andNd-isotope data. Alternatively, smaller amounts of contamination(20%) by sedimentary rocks, or their partial melts, representedby the country rock can explain the data, but it is not apparenthow such material could have been present at the depth of the‘staging chamber’ in the lower to middle crust. KEY WORDS: Bushveld Complex; Rustenburg Layered Suite; oxygen isotopes; hydrogen isotopes; crustal contamination  相似文献   

13.
Klauea historical summit lavas have a wide range in matrix 18OVSMOWvalues (4·9–5·6) with lower values in rockserupted following a major summit collapse or eruptive hiatus.In contrast, 18O values for olivines in most of these lavasare nearly constant (5·1 ± 0·1). The disequilibriumbetween matrix and olivine 18O values in many samples indicatesthat the lower matrix values were acquired by the magma afterolivine growth, probably just before or during eruption. BothMauna Loa and Klauea basement rocks are the likely sources ofthe contamination, based on O, Pb and Sr isotope data. However,the extent of crustal contamination of Klauea historical magmasis probably minor (< 12%, depending on the assumed contaminant)and it is superimposed on a longer-term, cyclic geochemicalvariation that reflects source heterogeneity. Klauea's heterogeneoussource, which is well represented by the historical summit lavas,probably has magma 18O values within the normal mid-ocean ridgebasalt mantle range (5·4–5·8) based on thenew olivine 18O values. KEY WORDS: Hawaii; Klauea; basalt; oxygen isotopes; crustal contamination  相似文献   

14.
The origin of large-volume Yellowstone ignimbrites and smaller-volumeintra-caldera lavas requires shallow remelting of enormous volumesof variably 18O-depleted volcanic and sub-volcanic rocks alteredby hydrothermal activity. Zircons provide probes of these processesas they preserve older ages and inherited 18O values. This studypresents a high-resolution, oxygen isotope examination of volcanismat Yellowstone using ion microprobe analysis with an averageprecision of ± 0·2 and a 10 µm spot size.We report 357 analyses of cores and rims of zircons, and isotopeprofiles of 142 single zircons in 11 units that represent majorYellowstone ignimbrites, and post-caldera lavas. Many zirconsfrom these samples were previously dated in the same spots bysensitive high-resolution ion microprobe (SHRIMP), and all zirconswere analyzed for oxygen isotope ratios in bulk as a functionof grain size by laser fluorination. We additionally reportoxygen isotope analyses of quartz crystals in three units. Theresults of this work provide the following new observations.(1) Most zircons from post-caldera low-18O lavas are zoned,with higher 18O values and highly variable U–Pb ages inthe cores that suggest inheritance from pre-caldera rocks exposedon the surface. (2) Many of the higher-18O zircon cores in theselavas have U–Pb zircon crystallization ages that postdatecaldera formation, but pre-date the eruption age by 10–20kyr, and represent inheritance of unexposed post-caldera sub-volcanicunits that have 18O similar to the Lava Creek Tuff. (3) Youngand voluminous 0·25–0·1 Ma intra-calderalavas, which represent the latest volcanic activity at Yellowstone,contain zircons with both high-18O and low-18O cores surroundedby an intermediate-18O rim. This implies inheritance of a varietyof rocks from high-18O pre-caldera and low-18O post-calderaunits, followed by residence in a common intermediate-18O meltprior to eruption. (4) Major ignimbrites of Huckleberry Ridge,and to a lesser extent the Lava Creek and Mesa Falls Tuffs,contain zoned zircons with lower-18O zircon cores, suggestingthat melting and zircon inheritance from the low-18O hydrothermallyaltered carapace was an important process during formation ofthese large magma bodies prior to caldera collapse. (5) The18O zoning in the majority of zircon core–rim interfacesis step-like rather than smoothly inflected, suggesting thatprocesses of solution–reprecipitation were more importantthan intra-crystalline oxygen diffusion. Concave-downward zirconcrystal size distributions support dissolution of the smallercrystals and growth of rims on larger crystals. This study suggeststhat silicic magmatism at Yellowstone proceeded via rapid, shallow-levelremelting of earlier erupted and hydrothermally altered Yellowstonesource rocks and that pulses of basaltic magma provided theheat for melting. Each post-caldera Yellowstone lava representsan independent homogenized magma batch that was generated rapidlyby remelting of source rocks of various ages and 18O values.The commonly held model of a single, large-volume, super-solidus,mushy-state magma chamber that is periodically reactivated andproduces rhyolitic offspring is not supported by our data. Rather,the source rocks for the Yellowstone volcanism were cooled belowthe solidus, hydrothermally altered by heated meteoric watersthat caused low 18O values, and then remelted in distinct pocketsby intrusion of basic magmas. Each packet of new melt inheritedzircons that retained older age and 18O values. This interpretationmay have significance for interpreting seismic data for crustallow-velocity zones in which magma mush and solidified areasexperiencing hydrothermal circulation occur side by side. Newbasalt intrusions into this solidifying batholith are requiredto form the youngest volcanic rocks that erupted as independentrhyolitic magmas. We also suggest that the Lava Creek Tuff magmawas already an uneruptable mush by the time of the first post-calderaeruption after 0·1 Myr of the climactic caldera-formingeruption. KEY WORDS: Yellowstone; oxygen isotopes; geochronology; isotope zoning; zircon; U–Pb dating; caldera; rhyolite; ion microprobe  相似文献   

15.
Okmok volcano is situated on oceanic crust in the central Aleutianarc and experienced large (15 km3) caldera-forming eruptionsat 12 000 years BP and 2050 years BP. Each caldera-forming eruptionbegan with a small Plinian rhyodacite event followed by theemplacement of a dominantly andesitic ash-flow unit, whereaseffusive inter- and post-caldera lavas have been more basaltic.Phenocryst assemblages are composed of olivine + pyroxene +plagioclase ± Fe–Ti oxides and indicate crystallizationat 1000–1100°C at 0·1–0·2 GPain the presence of 0–4% H2O. The erupted products followa tholeiitic evolutionary trend and calculated liquid compositionsrange from 52 to 68 wt % SiO2 with 0·8–3·3wt % K2O. Major and trace element models suggest that the moreevolved magmas were produced by 50–60% in situ fractionalcrystallization around the margins of the shallow magma chamber.Oxygen and strontium isotope data (18O 4·4–4·9,87Sr/ 86Sr 0·7032–0·7034) indicate interactionwith a hydrothermally altered crustal component, which led toelevated thorium isotope ratios in some caldera-forming magmas.This compromises the use of uranium–thorium disequilibria[(230Th/ 238U) = 0·849–0·964] to constrainthe time scales of magma differentiation but instead suggeststhat the age of the hydrothermal system is 100 ka. Modellingof the diffusion of strontium in plagioclase indicates thatmany evolved crystal rims formed less than 200 years prior toeruption. This addition of rim material probably reflects theremobilization of crystals from the chamber margins followingreplenishment. Basaltic recharge led to the expansion of themagma chamber, which was responsible for the most recent caldera-formingevent. KEY WORDS: Okmok; caldera; U-series isotopes; Sr-diffusion; time scales; Aleutian arc  相似文献   

16.
Young (<65 ka) explosive silicic volcanism at Taupo volcano,New Zealand, has involved the development and evacuation ofseveral crustal magmatic systems. Up to and including the 26·5ka 530 km3 Oruanui eruption, magmatic systems were contemporaneousbut geographically separated. Subsequently they have been separatedin time and have vented from geographically overlapping areas.Single-crystal (secondary ionization mass spectrometry) andmultiple-crystal (thermal ionization mass spectrometry) zirconmodel-age data are presented from nine representative eruptiondeposits from 45 to 3·5 ka. Zircon yields vary by threeorders of magnitude, correlating with the degrees of zirconsaturation in the magmas, and influencing the spectra of modelages. Two adjacent magma systems active up to 26·5 kashow wholly contrasting model-age spectra. The smaller systemshows a simple unimodal distribution. The larger system, usingdata from three eruptions, shows bimodal model-age spectra.An older 100 ka peak is interpreted to represent zircons (antecrysts)derived from older silicic mush or plutonic rocks, and a youngerpeak to represent zircons (phenocrysts) that grew in the magmabody immediately prior to eruption. Post-26·5 ka magmabatches show contrasting age spectra, consistent with a mixtureof antecrysts, phenocrysts and, in two examples, xenocrystsfrom Quaternary plutonic and Mesozoic–Palaeozoic metasedimentaryrocks. The model-age spectra, coupled with zircon-dissolutionmodelling, highlight contrasts between short-term silicic magmageneration at Taupo, by bulk remobilization of crystal mushand assimilation of metasediment and/or silicic plutonic basementrocks, and the longer-term processes of fractionation from crustallycontaminated mafic melts. Contrasts between adjacent or successivemagma systems are attributed to differences in positions ofthe source and root zones within contrasting domains in thequartzo-feldspathic (<15 km deep) crust below the volcano. KEY WORDS: zircon; U-series dating; rhyolite; Taupo Volcanic Zone; Taupo volcano  相似文献   

17.
BAKER  A. J. 《Journal of Petrology》1990,31(1):243-260
Stable isotope compositions of Ivrea Zone marbles and associatedlithologies are in general heterogeneous. The oxygen isotopecomposition of quartz in pelites ranges from 18O +9 to + 17(SMOW) and does not vary systematically with metamorphic grade.Peridotites retain oxygen isotope signatures close to mantlevalues. Marble calcites vary in isotopic composition from 13C + 2(PDB),180 +24(SMOW)to 13C –6(PDB), 18O + 13 (SMOW).Depletions in 18O and 13C may be explained dominantly by interactionwith fluids derived from within the observed metasedimentarysequence during prograde metamorphism. 18O and 13C show gradients of greater than 5/m across marblemargins and within marbles. The preservation of such isotopicgradients is not consistent with the long-term presence of grain-boundary-scaleinterconnected fluid films in and around marbles. There is ageneral lowering of 18O within individual marble bodies althoughlarge carbon and oxygen isotopic gradients are present. Calcitein marbles may attain oxygen isotope equilibrium, but rarelycarbon isotope equilibrium, with surrounding metapelites. Infiltrationof marbles must involve a component of channelized fluid flow. The general lack of isotopic equilibration within the sequencerequires channelized fluid flow and limited fluid-rock ratios.Large pervasive mantle to crust fluid fluxes are not consistentwith the observations. *Present address: Natural Environment Research Council, Polaris House, North Star Avenue, Swindon SN2 1EU, England  相似文献   

18.
Melt-Solid Dihedral Angles of Common Minerals in Natural Rocks   总被引:3,自引:0,他引:3  
The melt–solid dihedral angle has been measured in a rangeof igneous rock types, ranging in composition from picrite,through basalt, phonolite, andesite and rhyolite, for the mineralsquartz, leucite, plagioclase, olivine, amphibole and clinopyroxene.Populations of up to 104 true 3-D angles were measured in eachsample using a universal stage mounted on an optical microscope.The median and standard deviation of the angle populations foreach mineral are distinct (plagioclase 25°, with standarddeviation (SD) 11°; clinopyroxene 38°, with SD 14°;olivine 29°, with SD 13°; quartz 18°, with SD 9°;leucite 20°, with SD 11°), with no control by eithermelt composition or degree of approach of the grains to theirequilibrium shapes. KEY WORDS: dihedral angle; textural equilibrium; universal stage  相似文献   

19.
Metapelitic migmatites at Brattstrand Bluffs, East Antarctica,preserve granulite assemblages and a complex deformational history.Crystallized granitic melt accounts for 25% of exposed rocks,and was produced by biotite dehydration-melting reactions inthe host metapelite. Variable degrees of melt production andextraction resulted in a range of bulk compositions in the residualmetapelite, from quartz-rich migmatites to restitic quartz-absentpelite. Decompressional reaction textures indicate 11 km ofexhumation after peak metamorphism at P—T conditions of6 kbar and 860C Decompression occurred during a single cycleof partial melting and melt crystallization at 500 Ma, and wassynchronous with tectonic unroofing of the Brattstrand Bluffsmigmatites along ductile shear zones. Exhumation has been proposedas a cause of dehydration melting in the Himalaya and elsewhere,but melting at Brattstrand Bluffs was ultimately driven by thetectonic perturbation and subsequent thermal relaxation responsiblefor high metamorphic temperatures. Exhumation did not drivemelting reactions, but it is likely that the presence of meltfocused deformation in the migmatites and thus promoted exhumation. KEY WORDS: decompression; exhumation; granulite; melting; migmalite *Corresponding author.  相似文献   

20.
Numerous dykes of ultramafic lamprophyre (aillikite, mela-aillikite,damtjernite) and subordinate dolomite-bearing carbonatite withU–Pb perovskite emplacement ages of 590–555 Ma occurin the vicinity of Aillik Bay, coastal Labrador. The ultramaficlamprophyres principally consist of olivine and phlogopite phenocrystsin a carbonate- or clinopyroxene-dominated groundmass. Ti-richprimary garnet (kimzeyite and Ti-andradite) typically occursat the aillikite type locality and is considered diagnosticfor ultramafic lamprophyre–carbonatite suites. Titanianaluminous phlogopite and clinopyroxene, as well as comparativelyAl-enriched but Cr–Mg-poor spinel (Cr-number < 0.85),are compositionally distinct from analogous minerals in kimberlites,orangeites and olivine lamproites, indicating different magmageneses. The Aillik Bay ultramafic lamprophyres and carbonatiteshave variable but overlapping 87Sr/86Sri ratios (0·70369–0·70662)and show a narrow range in initial Nd (+0·1 to +1·9)implying that they are related to a common type of parentalmagma with variable isotopic characteristics. Aillikite is closestto this primary magma composition in terms of MgO (15–20wt %) and Ni (200–574 ppm) content; the abundant groundmasscarbonate has 13CPDB between –5·7 and –5,similar to primary mantle-derived carbonates, and 18OSMOW from9·4 to 11·6. Extensive melting of a garnet peridotitesource region containing carbonate- and phlogopite-rich veinsat 4–7 GPa triggered by enhanced lithospheric extensioncan account for the volatile-bearing, potassic, incompatibleelement enriched and MgO-rich nature of the proto-aillikitemagma. It is argued that low-degree potassic silicate to carbonatiticmelts from upwelling asthenosphere infiltrated the cold baseof the stretched lithosphere and solidified as veins, therebycrystallizing calcite and phlogopite that were not in equilibriumwith peridotite. Continued Late Neoproterozoic lithosphericthinning, with progressive upwelling of the asthenosphere beneatha developing rift branch in this part of the North Atlanticcraton, caused further veining and successive remelting of veinsplus volatile-fluxed melting of the host fertile garnet peridotite,giving rise to long-lasting hybrid ultramafic lamprophyre magmaproduction in conjunction with the break-up of the Rodinia supercontinent.Proto-aillikite magma reached the surface only after coatingthe uppermost mantle conduits with glimmeritic material, whichcaused minor alkali loss. At intrusion level, carbonate separationfrom this aillikite magma resulted in fractionated dolomite-bearingcarbonatites (13CPDB –3·7 to –2·7)and carbonate-poor mela-aillikite residues. Damtjernites maybe explained by liquid exsolution from alkali-rich proto-aillikitemagma batches that moved through previously reaction-lined conduitsat uppermost mantle depths. KEY WORDS: liquid immiscibility; mantle-derived magmas; metasomatism, Sr–Nd isotopes; U–Pb geochronology  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号