首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The accuracy of nearshore infragravity wave height model predictions has been investigated using a combination of the spectral short wave evolution model SWAN and a linear 1D SurfBeat model (IDSB). Data recorded by a wave rider located approximately 3.5 km from the coast at 18 m water depth have been used to construct the short wave frequency-directional spectra that are subsequently translated to approximately 8 m water depth with the third generation short wave model SWAN. Next the SWAN-computed frequency-directional spectra are used as input for IDSB to compute the infragravity response in the 0.01 Hz–0.05 Hz frequency range, generated by the transformation of the grouped short waves through the surf zone including bound long waves, leaky waves and edge waves at this depth. Comparison of the computed and measured infragravity waves in 8 m water depth shows an average skill of approximately 80%. Using data from a directional buoy located approximately 70 km offshore as input for the SWAN model results in an average infragravity prediction skill of 47%. This difference in skill is in a large part related to the under prediction of the short wave directional spreading by SWAN. Accounting for the spreading mismatch increases the skill to 70%. Directional analyses of the infragravity waves shows that outgoing infragravity wave heights at 8 m depth are generally over predicted during storm conditions suggesting that dissipation mechanisms in addition to bottom friction such as non-linear energy transfer and long wave breaking may be important. Provided that the infragravity wave reflection at the beach is close to unity and tidal water level modulations are modest, a relatively small computational effort allows for the generation of long-term infragravity data sets at intermediate water depths. These data can subsequently be analyzed to establish infragravity wave height design criteria for engineering facilities exposed to the open ocean, such as nearshore tanker offloading terminals at coastal locations.  相似文献   

2.
A ten-year data set for fetch- and depth-limited wave growth   总被引:1,自引:0,他引:1  
This paper presents the key results from a ten-year data set for Lake IJssel and Lake Sloten in The Netherlands, containing information on wind, storm surges and waves, supplemented with SWAN 40.51 wave model results. The wind speeds U10, effective fetches x and water depths d for the data set ranged from 0–24 m s 1, 0.8–25 km and 1.2–6 m respectively. For locations with non-sloping bottoms, the range in non-dimensional fetch x? ( = gxU10 2) was about 25–80,000, while the range in dimensionless depth d? ( = g d U10 2) was about 0.03–1.7. Land–water wind speed differences were much smaller than the roughness differences would suggest. Part of this seems due to thermal stability effects, which even play a role during near-gale force winds. For storm surges, a spectral response analysis showed that Lake IJssel has several resonant peaks at time scales of order 1 h. As for the waves, wave steepnesses and dimensionless wave heights H? ( = gHm0U10 2) agreed reasonably well with parametric growth curves, although there is no single curve to which the present data fit best for all cases. For strongly depth-limited waves, the extreme values of d? (0.03) and Hm0 / d (0.44) at the 1.7 m deep Lake Sloten were very close to the extremes found in Lake George, Australia. For the 5 m deep Lake IJssel, values of Hm0 / d were higher than the depth-limited asymptotes of parametric wave growth curves. The wave model test cases of this study demonstrated that SWAN underestimates Hm0 for depth-limited waves and that spectral details (enhanced peak, secondary humps) were not well reproduced from Hm0 / d = 0.2–0.3 on. SWAN also underestimated the quick wave response (within 0.3–1 h) to sudden wind increases. For the remaining cases, the new [Van der Westhuysen, A.J., Zijlema, M., and Battjes, J.A., 2007. Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water, Coast. Eng., 54, 151–170] SWAN physics yielded better results than the standard physics of Komen, G.J., Hasselmann, S., Hasselmann, K., 1984. On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr. 14, 1271–1285, except for persistent overestimations that were found for short fetches. The present data set contains many interesting cases for detailed model validation and for further studies into the evolution of wind waves in shallow lakes.  相似文献   

3.
A cross-system analysis of bulk sediment composition, total organic carbon (TOC), atomic C/N ratio, and carbon isotope composition (δ13C) in 82 surface sediment samples from natural and planted mangrove forests, bank and bottom of tidal creeks, tidal flat, and the subtidal habitat was conducted to examine the roles of mangroves in sedimentation and organic carbon (OC) accumulation processes, and to characterize sources of sedimentary OC of the mangrove ecosystem of Xuan Thuy National Park, Vietnam. Sediment grain sizes varied widely from 5.4 to 170.2 μm (mean 71.5 μm), with the fine sediment grain size fraction (< 63 μm) ranging from 11 to 99.3% (mean 72.5%). Bulk sediment composition suggested that mangroves play an important role in trapping fine sediments from river outflows and tidal water by the mechanisms of tidal current attenuation by vegetation and the ability of fine roots to bind sediments. The TOC content ranged from 0.08 to 2.18% (mean 0.78%), and was higher within mangrove forests compared to those of banks and bottoms of tidal creeks, tidal flat, and subtidal sediments. The sedimentary δ13C ranged from − 27.7 to − 20.4‰ (mean − 24.1‰), and mirrored the trend observed in TOC variation. The TOC and δ13C relationship showed that the factors of microbial remineralization and OC sources controlled the TOC pool of mangrove sediments. The comparison of δ13C and C/N ratio of sedimentary OC with those of mangrove and marine phytoplankton sources indicated that the sedimentary OC within mangrove forests and the subtidal habitat was mainly composed of mangrove and marine phytoplankton sources, respectively. The application of a simple mixing model showed that the mangrove contribution to sedimentary OC decreased as follows: natural mangrove forest > planted mangrove forest > tidal flat > creek bank > creek bottom > subtidal habitat.  相似文献   

4.
Patterns in community structure and functioning of motile epibenthic fauna were investigated in shallow (0–1 m) sediment habitats along the Skagerrak–Baltic estuarine gradient (salinity range from 4 to 34). The study area was divided into five regions, reflecting different sea-basins along the 1260 km coastline, and fauna was collected at six sites within each region. Ten replicate samples of motile epibenthic fauna were taken randomly at each site with a portable drop trap (bottom area 1 m2) in June and September in 2004.  相似文献   

5.
Field experiments were conducted on a low-gradient, high-energy sandy beach (Truc Vert, France) and a steep, low-energy gravel beach (Slapton, UK) to examine alongshore-directed currents within the swash zone. At Truc Vert, data were collected over 33 tidal cycles with offshore significant wave heights of 1–4 m and periods of 5–12 s. At Slapton data were collected during 12 tides with wave heights of 0.3–1 m and periods of 4–9 s. The swash motion was predominantly at infragravity frequencies at Truc Vert and incident frequencies at Slapton.  相似文献   

6.
The results of field measurements of velocity pulsations in the near-bottom layer generated by internal waves (IW) propagating in the thermocline close to the bottom are reported. It is shown that the power of velocity pulsations in the frequency range 0.5–6 Hz can vary more than 1000 times during the passage of various phases of IW. As a result of the interaction with the bottom, internal waves are transformed into solitary soliton-type waves and these transformations are followed by intense turbulence generated in the near-bottom layer.Translated by M. M. Trufanov.  相似文献   

7.
The range expansion patterns of Spartina alterniflora and the roles which sexual reproduction and asexual propagation play in range expansion were investigated at the Chongming Dongtan nature reserve in the Yangtze Estuary, China. Two range expansion patterns of S. alterniflora at its advancing fronts could be found (1) S. alterniflora–mudflat front (S–M) and (2) S. alternifloraScirpus mariqueter–mudflat front (S–S–M). One feature revealed by this study was that a flush of seedling recruitment and establishment in spring was a crucial way for S. alterniflora to colonize new habitats and achieve a fast rate of range expansion. The mean number of seedlings recruited at the S–M front was much higher than that at the S–S–M front. Once established, the survivorship of seedlings was high, both at the S–M and S–S–M fronts. The established seedlings formed new tussocks quickly by vegetative tillering and growth of rhizomes and these finally merged into dense meadows. The mean distance of range expansion of S. alterniflora, after one growing season at the S–M front, was 25.4 ± 3.1 m yr−1 and 2.7 ± 0.5 m yr−1 at the S–S–M front. Sexual reproduction by seedlings and asexual propagation by tillering and growth of rhizomes were the two main means by which S. alterniflora could maintain a fast rate of range expansion on the salt marshes of the Yangtze Estuary. The colonization behaviors of S. alterniflora on advancing fronts differed as a reaction to various external and internal factors. The impact of abiotic and biotic factors governing the range expansion of S. alterniflora and its implications for the spatial structure of tidal wetlands are discussed.  相似文献   

8.
Biogenic bottom features, animal burrows and biological activities interact with the hydrodynamics of the sediment–water interface to produce altered patterns of sediment erosion, transport and deposition which have consequences for large-scale geomorphologic features. It has been suggested that depending on the hydrodynamic status of the habitat, the biological activity on the bottom may have a variety of effects. In some cases, different bioturbation activities by the same organism can result in different consequences. The burrowing crab Neohelice granulata is the most important bioturbator at SW Atlantic saltmarshes and tidal plains. Because of the great variety of habitats that this species may inhabit, it is possible to compare its bioturbation effects between zones dominated by different hydrodynamic conditions. Internal marsh microhabitats, tidal creeks bottoms and basins, and open mudflats were selected as contrasting zones for the comparison on a large saltmarsh at Bahía Blanca Estuary (Argentina). Crab burrows act as passive traps of sediment in all zones, because their entrances remain open during inundation periods at high tide. Mounds are generated when crabs remove sediments from the burrows to the surface and become distinctive features in all the zones. Two different mechanisms of sediment transport utilizing mounds as sediment sources were registered. In the first one, parts of fresh mound sediments were transported when exposed to water flow during flooding and ebbing tide, with higher mound erosion where currents were higher as compared to internal marsh habitats and open mudflats. In the second mechanism, mounds exposed to atmospheric influence during low tide became desiccated and cracked forming ellipsoidal blocks, which were then transported by currents in zones of intense water flow in the saltmarsh edge. Sedimentary dynamics varied between zones; crabs were promoting trapping of sediments in the internal saltmarsh (380 g m−2 day−1) and open mudflats (1.2 kg m−2 day−1), but were enhancing sediment removal in the saltmarsh edge (between 10 and 500 g m−2 day−1 in summer). The implication is that biologically mediated sedimentological changes could be different among microhabitats, potentially leading to contrasting geomorphologic effects within a particular ecosystem.  相似文献   

9.
The design and operation of mathematical models of solute mixing and sediment transport in estuaries rely heavily on the provision of good-quality field data. We present some observations of salinity, suspended sediment concentration and velocity at one of the tidal limits of a semi-enclosed tidal lagoon in Southern England (Pagham Harbour, West Sussex, UK) where the natural processes of tidal incursion and solute mixing have been heavily modified as a result of the construction of sea walls dating back to the 18th Century. These observations, made immediately downstream of two parallel tidal flap gates by conductivity-temperature-depth (CTD) profiler, and also using bed-mounted sensor frames to measure velocity at 2 fixed depths, have yielded a set of results covering 11 tidal cycles over the period 2002–04. It is clear from the results obtained that over a typical tidal cycle, the greatest vertical salinity gradients occur in the 1–2 h immediately after the onset of the flood tide, and that subsequently, energetic mixing acts to rapidly break down this stratification. Under moderate-to-high fresh water flows (>0.5 m3/s), the break-down in vertical salinity gradient is more gradual, while under low fresh water flows (<0.2 m3/s), the vertical salinity gradient is generally less pronounced. Estimates of Richardson number during the early flood-tide period reveal values that vary rapidly between <1 and about 20, with lower values occurring after around 1.5–2 h after low water. Observations of suspended sediment concentration vary widely even for similar tidal and fresh water flow conditions, revealing the possible influence of wind speed, the storage effects of the water in the lagoon downstream of the observation site, and the complexity of the hydrodynamics downstream of tidal flap gates. The data also show that most of the sediment transport is landward, and occurs during flood tides, with estimated total tidal landward flood tide flux of fine sediment of the order of 50–120 kg under low fresh water flow conditions. These observations, which reinforce the results presented in Warner et al. (2004) and elsewhere, can help to provide information about the appropriate techniques for managing sediments and pollutants, including nutrients from sewage effluent waters, in estuaries where hydraulic flap gates are used to control the entry of fresh water over the tidal cycle.  相似文献   

10.
Turbidity and sediment transport in a muddy sub-estuary   总被引:2,自引:0,他引:2  
Sub-estuaries, i.e. tidal creeks and also larger estuaries that branch off the stem of their main estuary, are commonplace in many estuarine systems. Their physical behaviour is affected not only by tributary inflows, winds and tides, but also by the properties and behaviour of their main estuary. Measurements extending over more than an annual cycle are presented for the Tavy Estuary, a sub-estuary of the Tamar Estuary, UK. Generally, waves are small in the Tavy because of the short wind fetch. A several-hour period of up-estuary winds, blowing at speeds of between 7 and 10 m s−1, generates waves with significant wave heights of 0.25 m and a wave periodicity of 1.7 s that are capable of eroding the bed over the shallow, ca. 1.5 m-deep mudflats. Waves also influence sedimentation within and near salt marsh areas. An estuarine turbidity maximum (ETM) occurs in the Tavy's main channel, close to the limit of salt intrusion at HW. Suspended particulate matter (SPM) concentrations typically are less than 40 mg l−1 at HW, although concentrations can exceed 80 mg l−1 when tides and winds are strong. Flood-tide SPM inputs to the Tavy from the Tamar are greater during high runoff events in the River Tamar and also at spring tides, when the Tamar has a high-concentration ETM. Higher SPM concentrations are experienced on the mudflats following initial inundation. Without wave resuspension, this is followed by a rapid decrease in SPM for most of the tide, indicating that the mudflats are depositional at those times. SPM concentrations on the mudflats again increase sharply prior to uncovering. Peak ebb tidal speeds at 0.15 m above the mudflat bed can exceed 0.26 m s−1 at spring tides and 0.4 m s−1 following high runoff events, which are sufficient to cause resuspension. Time-series measurements of sediment bed levels show strong seasonal variability. Higher and lower freshwater flows are associated with estimated, monthly-mean sediment transport that is directed out of, or into, the upper sub-estuary, respectively. Seasonal sediment transfers between the estuary and its sub-estuary are discussed.  相似文献   

11.
From January 2003 to December 2004 microphytobenthic primary production was estimated both from in situ (MPPs) and in the laboratory (MPPp) 14C-incubation of slurries collected in a coastal site of the Gulf of Trieste (northern Adriatic Sea). MPPs values varied from −7.54 ± 3.12 to 34.59 ± 7.66 mg C m−2 h−1 over the whole period. The lowest MPPs were observed in November 2003 and August 2004, while the highest MPPs in July 2003 and May 2004, in correspondence with high PAR at the bottom. Significant correlations between MPPs and the microphytobenthic biomass (BIOM) (r = 0.75, p < 0.001), between MPPs and PAR at the bottom (r = 0.54, p < 0.01) and between MPPs and OXY (r = 0.50, p < 0.05) were revealed. MPPp values were higher than MPPs ones in 15 out of 23 observations, with the highest MPPp recorded in July 2003. At 17 m depth a seasonal pattern of sampling months was revealed by the cluster analysis. The role of abiotic parameters in determining this seasonal pattern was highlighted by the PCA, with the first axis correlated with MPPs and PAR, and the second one with temperature. Applying the fuzzy sets it resulted that spring months showed a higher degree of membership with MPPs, summer months with temperature and autumn–winter months with OXY. The microphytobenthic community did not seem to be photosynthetically active throughout the study period. From August–September to December low or negative MPPs values were recorded. We infer that during these months a shift from the autotrophic to heterotrophic metabolism of the benthic microalgae occurred in correspondence with low PAR and/or high temperature at the bottom. Despite the progressive lowering of the trophy of the study area occurred during the last 20 years, we found higher primary production values than those estimated two decades earlier.  相似文献   

12.
Measurement and modeling of bed shear stress under solitary waves   总被引:1,自引:0,他引:1  
Direct measurements of bed shear stresses (using a shear cell apparatus) generated by non-breaking solitary waves are presented. The measurements were carried out over a smooth bed in laminar and transitional flow regimes (~ 104 < Re < ~ 105). Measurements were carried out where the wave height to water depth (h/d) ratio varied between 0.12 and 0.68; maximum near bed velocity varied between 0.16 m/s and 0.51 m/s and the maximum total shear stress (sum of skin shear stress and Froude–Krylov force) varied between 0.386 Pa and 2.06 Pa. The total stress is important in determining the stability of submarine sediment and in sheet flow regimes. Analytical modeling was carried out to predict total and skin shear stresses using convolution integration methods forced with the free stream velocity and incorporating a range of eddy viscosity models. Wave friction factors were estimated from skin shear stress at different instances over the wave (viz., time of maximum positive total shear stress, maximum skin shear stress and at the time of maximum velocity) using both the maximum velocity and the instantaneous velocity at that phase of the wave cycle. Similarly, force coefficients obtained from total stress were estimated at time of maximum positive and negative total stress and at maximum velocity. Maximum positive total shear stress was approximately 1.5 times larger than minimum negative total stress. Modeled and measured positive bed shear stresses are well correlated using the best convolution model, but the model underestimates the data by about 4%. Friction factors are dependent on the choice of normalizing using the maximum velocity, as is conventional, or the instantaneous velocity. These differ because the stress is not in phase with the velocity in general. Friction factors are consistent with previous data for monochromatic waves, and vary inversely with the square-root of the Reynolds number. The total shear stress leads the free stream fluid velocity by approximately 50°, whereas the skin friction shear stress leads by about 30°, which is similar to that reported by earlier researchers.  相似文献   

13.
Fluxes of dissolved forms of iron and manganese across the sediment–water interface were studied in situ in the Gulf of Finland and the Vistula Lagoon (Baltic Sea), and in the Golubaya Bay (Black Sea) from 2001 to 2005. Fluxes were measured using chamber incubations, and sediment cores were collected and sliced to assess the porewater and solid phase metal distribution at different depths. Measured and calculated benthic fluxes of manganese and iron were directed out of sediment for all sites and were found to vary between 70–4450 and 5–1000 µmole m− 2 day− 1 for manganese and iron, respectively. The behavior of the studied metals at various redox conditions in the near-bottom water and in the sediment was the main focus in this study. Our results show the importance of bottom water redox conditions for iron fluxes. We measured no fluxes at oxic conditions, intermediate fluxes at anoxic conditions (up to 200 μmole m− 2 day− 1) and high fluxes at suboxic conditions (up to 1000 μmole m− 2 day− 1). Total dissolved iron fluxes were generally dominated by iron(II). Contribution of iron(III) to the total iron flux did not exceed 20%. Obtained fluxes of manganese at all studied regions showed a linear correlation (r2 = 0.97) to its concentration in the porewater of the top sediment layer (0–5 mm) and did not depend on dissolved oxygen concentrations of bottom water. Organically complexed iron and manganese were in most cases not involved in the benthic exchange processes.  相似文献   

14.
Measurements of submarine groundwater discharge (SGD) along the South American coast and over fractured rock aquifers are rare. The rate and distribution of SGD was measured using three types of vented benthic chambers on the floor of Flamengo Bay located at the southeast coast of Brazil. Discharge rates were found up to almost 400 cm day−1, although typically less than 100 cm d−1. Large variations in SGD rates were seen over distances of a few meters which are attributed to the geomorphologic features of the fracture rock aquifer underlying a thin blanket of coastal sediments; clustering of fractures and the topography of the rock–sediment interface might be focusing or dispersing the discharge of groundwater. SGD was modulated by the tides with the highest values occurring at times of low tide, but the interaction was non-linear and, the correlation was weak at tidal ranges less than 1 m. The effect was masked by devices that integrated the SGD, but detected on continuously recording devices.  相似文献   

15.
A numerical study of tidal asymmetry in Okatee Creek,South Carolina   总被引:1,自引:0,他引:1  
The Okatee River, South Carolina is characterized by a narrow tidal channel and an extensive area of intertidal salt marshes. Current measurements in the upstream portion Okatee Creek show that tidal flow features an asymmetric pattern: ebb current is stronger than flood current. The ebb dominance is mainly caused by deformation of the dominant astronomical tidal constituent M2. An unstructured grid, finite volume coastal ocean model (FVCOM) with wet-dry point treatment method is applied to examine physical mechanisms of M4 overtide generation. Model experiments show that mean absolute amplitude and phase errors are 3.1 cm and 1.7° for M2 elevation, 2.4 cm s−1 and 0.8° for M2 current major axis, 2.1 cm and 1.8° for M4 elevation, and 2.1 cm s−1 and 24.6° for M4 current major axis. The overall pattern of tidal asymmetry is qualitatively reproduced. Various sensitivity experiments suggest that the generation of M4 overtide is a result of nonlinear interaction of tidal currents with irregular creek geometry and bottom topography. Consistent with the classical view, the large volume of intertidal water storage is the major reason for ebb dominance in the creek. However, the zero-inertia assumption (i.e., negligible advective terms) is probably not valid for the entire tidal cycle. Besides the pressure gradient force and the bottom friction force, terms related to lateral shear of the along-estuary velocity (i.e., advective inertia and horizontal eddy viscosity) may also contribute in horizontal momentum balance. Exclusion of the flooding-draining processes over the intertidal zone will severely underestimate tidal currents in the river channel and make the tidal asymmetry less prominent.  相似文献   

16.
In situ experiments using isotopically labeled mercury species (199Hg(II) and Me201Hg) are used to investigate mercury transformation mechanisms, such as methylation, demethylation and reduction, in coastal and marine surface waters of the Mediterranean Sea. The aim of this work is to assess the relative contribution of photochemical versus biological processes to Hg transformation mechanisms. For this purpose, potential transformation rates measured under diurnal and dark incubation conditions are compared with major biogeochemical parameters (i.e. hydrological and biological data) in order to obtain the relative contribution of various biotic and abiotic mechanisms in both surface (high light) and bottom (low light) waters of the euphotic zone. The results demonstrate that coastal and marine euphotic zones are significant reactors for all Hg transformations investigated (i.e. methylation, demethylation, reduction). A major outcome demonstrates that Hg methylation is taking place in oxic surface seawater (0.3–6.3% day− 1) and is mainly influenced by pelagic microorganism abundance and activities (phyto- and bacterioplankton). This evidences a new potential MeHg source in the marine water column, especially in oligotrophic deep-sea basins in which biogeochemistry is mostly governed by heterotrophic activity. For coastal and marine surface waters, although MeHg is mainly photochemically degraded (6.4–24.5% day− 1), demethylation yields observed under dark condition may be attributed to microbial or chemical pathways (2.8–10.9% day− 1). Photoreduction and photochemical reactions are the major mechanisms involved in DGM production for surface waters (3.2–16.9% day− 1) but bacterial or phytoplanktonic reduction of Hg(II) cannot be excluded deeper in the euphotic zone (2.2–12.3% day− 1). At the bottom of the euphotic zone, photochemical processes are thus avoided due to the attenuation of UV-visible sunlight radiation allowing biotic processes to be the most significant. These results suggest a new potential route for Hg species cycling in surface seawater and especially at the maximum biomass depth located at the bottom of the euphotic zone (i.e. maximum chlorophyll fluorescence). In this environment, DGM production and demethylation mechanisms are thus probably reduced whereas Hg methylation is enhanced by autotrophic and heterotrophic processes. Experimental results on mercury species uptake during these investigations further evidenced the strong affinity of MeHg for biogenic particles (i.e. microorganisms) that correspond to the first trophic level of the pelagic food web.  相似文献   

17.
Time series of temperature and salinity collected from a station in the NE Arabian Sea during March, April, May, October, and November was utilized to explain the behavior of internal tides. Analysis revealed the existence of semi-diurnal internal tides and high frequency (HF) internal waves (IW). It was observed that the amplitudes of HF IWs were determined by the degree of stratification in the thermocline. Corresponding to an increase in the density gradient in thermocline (0.016 kg/m4 in April to 0.14 kg/m4 in October), the temperature fluctuations due to internal tides increased from <0.2°C to >1.5°C, respectively. Brunt-Vaiisala frequency also showed similar variations (~10 cph to 22 cph). Within the thermocline, semi-diurnal internal tides caused fluctuations of >10m in the isotherm depths. A linear regression equation was fitted to parameterize the amplitude of HF IWs and its upper frequency limit in terms of thermocline gradient. The IW and one-dimensional models simulated the presence of internal tides and diurnal cycling in the temperature field, respectively. Coupling of these models showed improvement in the simulation of temperature.  相似文献   

18.
SWAN model predictions, initialized with directional wave buoy observations in 550-m water depth offshore of a steep, submarine canyon, are compared with wave observations in 5.0-, 2.5-, and 1.0-m water depths. Although the model assumptions include small bottom slopes, the alongshore variations of the nearshore wave field caused by refraction over the steep canyon are predicted well over the 50 days of observations. For example, in 2.5-m water depth, the observed and predicted wave heights vary by up to a factor of 4 over about 1000 m alongshore, and wave directions vary by up to about 10°, sometimes changing from south to north of shore normal. Root-mean-square errors of the predicted wave heights, mean directions, periods, and radiation stresses (less than 0.13 m, 5°, 1 s, and 0.05 m3/s2 respectively) are similar near and far from the canyon. Squared correlations between the observed and predicted wave heights usually are greater than 0.8 in all water depths. However, the correlations for mean directions and radiation stresses decrease with decreasing water depth as waves refract and become normally incident. Although mean wave properties observed in shallow water are predicted accurately, nonlinear energy transfers from near-resonant triads are not modeled well, and the observed and predicted wave energy spectra can differ significantly at frequencies greater than the spectral peak, especially for narrow-band swell.  相似文献   

19.
The effect of using time-averaged wave statistics in a simple empirical model for shoreline change is investigated. The model was first calibrated with a six-year time series of hourly wave conditions and weekly shoreline position at the Gold Coast, Australia. The model was then recalibrated with the hourly waves averaged over intervals up to 1 year. With wave averaging up to 2 days, model performance was approximately constant (squared correlation r2 ~ 0.61–0.62), with only small changes in the values of empirical model parameters (e.g. the beach response coefficient c varied by less than 4%). With between 2 and 40 day averaging, individual storms are not resolved; model skill decreased only modestly (r2 ~ 0.55), but c varied erratically by up to 40% of the original value. That is, optimal model coefficients depend on wave averaging, an undesirable result. With increased averaging (> 40 days) seasonal variability in the wave field is not resolved well and model skill declined markedly. Thus, temporal averaging of wave conditions increases numerical efficiency, but over-averaging degrades model performance and distorts best-fit values of model free parameters.  相似文献   

20.
Variations in abundance, biomass, vertical profile and cell size of heterotrophic dinoflagellates (HDFs) between summer and winter and its controlling factors were studied in the northern South China Sea (SCS). It was found that HDF abundance and carbon biomass were 4–102 × 103 cells L−1 and 0.34–12.3 mg C L−1 in winter (February 2004), respectively, while they were 2–142 × 103 cells L−1 and 0.22–31.4 μg C L−1 in summer (July, 2004), respectively, in the northern SCS. HDF abundance and carbon biomass decreased from the estuary to inshore and then offshore. Vertical profiles of HDF abundance were heterogeneous, which accorded well with that of chlorophyll a (Chl.a). Higher abundance of HDFs was often observed at a depth of 30–70 m offshore waters, matching well with the Chl.a maximum, while it showed high abundance at the surface in some coastal and estuary stations. Small HDFs (≤20 μm) dominated the assemblage in term of abundance accounting for more than 90%. However, large HDFs (>20 μm) generally contributed equally in terms of carbon biomass, accounting for 47% on average. HDFs showed different variation patterns for the different study regions; in the estuarine and continental shelf regions, abundance and biomass values were higher in summer than those in winter, while it was the reverse pattern for the slope waters. Hydrological factors (e.g. water mass, river outflow, monsoon and eddies) associated with biological factors, especially the size-fractionated Chl.a, seemed to play an important role in regulating HDF distribution and variations in the northern South China Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号