首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 522 毫秒
1.
The present work was carried out in Nalbari district of Assam (India) with an objective to assess the quality of groundwater and to check its suitability for drinking and irrigation purposes. Groundwater samples were collected from 50 different locations during pre- and post-monsoon seasons of 2016. Results of chemical analysis revealed that mean concentration of cations varied in the order Ca2+?>?Na+?>?Mg2+?>?K+, while for anions the order was HCO3 ??>?Cl??>?SO42??>?NO32??>?F? during both pre- and post-monsoon seasons. The suitability of groundwater samples for drinking purpose was assessed by comparing the results of physico-chemical analysis of groundwater with Indian Standards. Further, its suitability for irrigation purpose was assessed by evaluating several parameters like sodium adsorption ratio (SAR), sodium percentage (Na%), magnesium ratio, Kelly’s ratio and residual sodium carbonate (RSC). The SAR values obtained for all the samples were plotted against EC values in the US Salinity Laboratory diagram, and it was revealed that the most of the samples fall under water type C2-S1 indicating medium salinity and low SAR. Further, it was found that the majority of the samples belong to Ca–Mg–HCO3 hydrochemical facies followed by Ca–Mg–Cl–SO4, whereas only a few samples belong to Na–K–HCO3 hydrochemical facies.  相似文献   

2.
The present study assesses the impact of coal mining on surface and groundwater resources of Korba Coalfield, Central India. Accordingly, water samples collected from various sources are analyzed for major ions, trace elements, and other mine effluent parameters. Results show that the groundwater samples are slightly acidic, whereas river water and mine water samples are mildly alkaline. Elevated concentrations of Ca2+, Na+, HCO3 ?, and SO4 2? alongside the molar ratios (Ca2++Mg2+)/(SO4 2?+HCO3 ?) <1 and Na+/Cl? >1 suggest that silicate weathering (water-rock interaction) coupled with ion exchange are dominant solute acquisition processes controlling the chemistry of groundwater in the study area. The overall hydrogeochemistry of the area is dominated by two major hydrogeochemical facies (i.e., Ca–Cl–SO4 and Ca–HCO3). Analysis of groundwater and river water quality index (GRWQI) elucidates that majority (82%) of samples are of “excellent” to “good” category, and the remaining 12% are of “poor” quality. Similarly, the effluent water quality index (EWQI) indicates that 6 out of 8 samples belong to excellent quality. Concentration of trace element constituents such as As, Zn, Cu, Cr, and Cd is found to be well within the stipulated limits for potable use, except for Fe, Mn, and Pb. Suitability of water samples for irrigation purpose, established using standard tools like Wilcox and USSL diagrams, reveal “excellent to permissible” category for majority of the samples. The present study also substantiates the effectiveness of the measures implemented for the treatment of mine effluent water.  相似文献   

3.
Groundwater survey has been carried out in the area of Gummanampadu sub-basin located in Guntur District, Andhra Pradesh, India for assessing the factors that are responsible for changing of groundwater chemistry and consequent deterioration of groundwater quality, where the groundwater is a prime source for drinking and irrigation due to non-availability of surface water in time. The area is underlain by the Archaean Gneissic Complex, over which the Proterozoic Cumbhum rocks occur. The results of the plotting of Ca2+ + Mg2+ versus HCO3 ? + CO3 2?, Ca2+ + Mg2+ versus total cations, Na+ + K+ versus total cations, Cl? + SO4 2? versus Na+ + K+, Na+ versus Cl?, Na+ versus HCO3 ? + CO3 2?, Na+ versus Ca2+ and Na+: Cl? versus EC indicate that the rock–water interaction under alkaline condition is the main mechanism in activating mineral dissociation and dissolution, causing the release of Ca2+, Mg2+, Na+, K+, HCO3 ?, CO3 2?, SO4 2? and F? ions into the groundwater. The ionic relations also suggest that the higher concentrations of Na+ and Cl? ions are the results of ion exchange and evaporation. The influences of anthropogenic sources are the other cause for increasing of Mg2+, Na+, Cl?, SO4 2? and NO3 ? ions. Further, the excess alkaline condition in water accelerates more effective dissolution of F?-bearing minerals. Moreover, the chemical data plotted in the Piper’s, Gibbs’s and Langelier–Ludwig’s diagrams, computed for the chloro-alkaline and saturation indices, and analyzed in the principal component analysis, support the above hypothesis. The groundwater quality is, thus, characterized by Na+ > Ca2+ > Mg2+ > K+: HCO3 ? + CO3 2? > Cl? > SO4 2? > NO3 ? > F? facies. On the other hand, majority of groundwater samples are not suitable for drinking with reference to the concentrations of TDS, TH, Mg2+ and F?, while those are not good for irrigation with respect to USSL’s and Wilcox’s diagrams, residual sodium carbonate, and magnesium hazard, but they are safe for irrigation with respect to permeability index. Thus, the study recommends suitable management measures to improve health conditions as well as to increase agricultural output.  相似文献   

4.
This study was carried out to analyze groundwater quality in selected villages of Nalbari district, Assam, India, where groundwater is the main source of drinking water. 40 groundwater samples collected from hand pumps and analyzed for pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 , SO4 2−, Cl and F. Chemical analysis of the groundwater showed that mean concentration of cations in (mg/L) is in the order Ca2+ > Mg2+ > Na+ > K+ while for anions it is HCO3  > Cl > SO4 2− > F. Fluoride concentration was recorded in the range of 0.02–1.56 mg/L. As per the desirable and maximum permissible limits for fluoride in drinking water recommended by WHO and by Bureau of Indian Standards (BIS), which is 1.5 mg/L, the groundwater of about 97% of the samples were found to be suitable for drinking purpose. The suitability of the groundwater for irrigation purpose was investigated by some determining factors such as sodium adsorption ratio, soluble sodium percentage, Kelly’s ratio and electrical conductivity. The value of the sodium absorption ratio and electrical conductivity of the groundwater samples were plotted in the US Salinity laboratory diagram for irrigation water. Most of the groundwater samples fall in the field of C2S1 and C3S1 indicating medium to high salinity and low sodium water, which can be used for irrigation on almost all types of soil with little doubt of exchangeable sodium. The hydrochemical facies shows that the groundwater is Ca-HCO3 type.  相似文献   

5.
Hydogrochemical investigation of groundwater resources of Paragraph district has been carried out to assess the solute acquisition processes and water quality for domestic and irrigation uses. Fifty-five groundwater samples were collected and analyzed for pH, electrical conductivity, total dissolved solids, hardness, major anions (F?, Cl?, NO3, HCO3 ?, SO4 2?) and cations (Ca2+, Mg2+, Na+, K+). Study results reveal that groundwater of the area is alkaline in nature and HCO3 ?, Cl?, Mg2+, Na+ and Ca2+ are the major contributing ions to the dissolved solids. The hydrogeochemical data suggest that weathering of rock forming minerals along with secondary contributions from agricultural and anthropogenic sources are mainly controlling the groundwater composition of Pratapgarh district. Alkaline earth metals (Ca2++Mg2+) exceed alkalis (Na++K+) and weak acid (HCO3 ?) dominate over strong acids (Cl?+SO4 2?) in majority of the groundwater samples. Ca-Mg-HCO3 and Ca-Mg-Cl-HCO3 are the dominant hydrogeochemical facies in the groundwater of the area. The computed saturation indices demonstrate oversaturated condition with respect to dolomite and calcite and undersaturated with gypsum and fluorite. A comparison of groundwater quality parameters in relation to specified limits for drinking water shows that concentrations of TDS, F?, NO3 ? and total hardness exceed the desirable limits in many water samples. Quality assessment for irrigation uses reveal that the groundwater is good for irrigation. However, values of salinity, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), %Na and Kelley index are exceeding the prescribed limit at some sites, demanding adequate drainage and water management plan for the area.  相似文献   

6.
As one of the most arid regions in the world, the study area, Zhangye Basin is located in the middle reaches of the Heihe River, northwest China. Besides aridity, rapid social and economic development also stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. In this study, the conventional hydrochemical techniques and statistical analyses were applied to examine the major ions chemistry and hydrochemical processes of groundwater in the Zhangye Basin. The results of chemical analysis indicate that no one pair of cations and anions proportions is more than 50% in the groundwater samples of the study area. High-positive correlations were obtained among the following ions: HCO3 ?–Mg2+, SO4 2?–Mg2+, SO4 2?–Na+ and Cl?–Na+. TDS depends mainly on the concentration of major ions such as HCO3 ?, SO4 2?, Cl?, Mg2+ and Na+. The hydrochemical types in the area can be divided into two major groups: the first group includes Mg2+–Na+–HCO3 ?, Mg2+–Na+–Ca2+–HCO3 ?–SO4 2? and Mg2+–Ca2+–Na+–SO4 2?–HCO3 ? types. The second group comprises Mg2+–Ca2+–SO4 2? type, Mg2+–Ca2+–SO4 2?–Cl? type and Mg2+–Na+–SO4 2?–Cl? type. The ionic ratio plot and saturation index calculation suggests that the silicate weathering, to some extent, and evaporation are dominant factors that determine the major ionic composition in the study area.  相似文献   

7.
Agricultural activities act as dominant polluter of groundwater due to increased fertilizers and pesticides usage. Bist-Doab region, Punjab, India, is one such region facing deterioration of groundwater quality due to usage of fertilizers. This study aims in delineating and evaluating the groundwater quality in the region. Water samples are collected from canals, reservoir, and shallow and deep groundwater. Water types in canal and reservoir in Kandi region are Mg2+HCO3 ? and Mg2+Ca2+Na+HCO3 ?, respectively. While water types of shallow and deep groundwaters are found to be of two types: Na+Mg2+Ca2+HCO3 ? and Ca2+Mg2+Na+HCO3 ?. Presence of Mg2+ in groundwater at locations adjoining canals indicates recharge due to canal. The major ion (Na+, Mg2+, Ca2+, HCO3 ?) chemistry of the region is due to weathering of rocks that are rich in sodic minerals and kankar. Deep groundwater quality in the region meets BIS and WHO standards for drinking purpose, unlike shallow groundwater which is of poor quality at many locations. Both shallow and deep groundwater with high sodium concentration (>1.5 meq/l) affect cropping yield and permeability of soil matrix. High concentration of SO4 2? and NO3 2? (>1 meq/l) in shallow groundwater at few locations indicates influence of anthropogenic (fertilizer) activity. Factor analysis indicates that the major cations, bicarbonate and chloride are derived from weathering/dissolution of source rocks. Higher concentration of nitrate and presence of sulphate in shallow groundwater at few locations is due to usage of fertilizers and pesticides.  相似文献   

8.
9.
Twenty groundwater samples were collected from Enugu metropolis over two seasonal periods in order to characterize the groundwater and to determine its quality for domestic and irrigation purposes. The results show that groundwater of the area is strongly acidic to slightly alkaline in nature and varied from “soft water” to “moderately hard” water type. The major ionic trend is in the order Cl> Na> HCO3 ? > K> Mg2+ > Ca2+ > SO4 2?and Mg2+ > Cl> Na> K> Ca2+ > HCO 3 > SO4 2? in abundance for dry and rainy seasons, respectively. The results also reveal that there is an increase in trend of the ionic concentrations during the dry season, which arises from weathering of the host rocks and anthropogenic activities. Two hydrochemical facies were identified, namely, Na+ –K+ –Cl? –SO4 2?and Ca2+ –Mg2+ –Cl? –SO4 2? , with Na+ –K+ –Cl? –SO4 2? as the dominant facies for the two seasons. Groundwater quality ranges from “very poor water” to “good water” and “water unsuitable for drinking purposes” to “good water” for the dry season and rainy season investigations, respectively. The groundwater is suitable for irrigation purposes for the two seasons.  相似文献   

10.
Groundwater samples collected from the East Bokaro coalfield of Jharkhand state, India during the dry and rainy seasons of the year 2012. Samples were analyzed for the assessment of groundwater quality in the study area. The results of the chemical analysis indicate that the pH values were found alkaline in nature during both the season. The major cations in groundwater was in the order of Na+>Ca2+>Mg2+>K+ during the dry season while Ca2+>Na+>Mg2+>K+ during the rainy season. The abundance of the major anions was of HCO3->SO42->Cl->NO3->F- did not change on the seasonal basis. The average NO3-concentration was exceeded the desirable limit for drinking water as per Indian standard in the rainy season. Silicate weathering was inferred to be a dominant process, controlling the groundwater chemistry in both seasons, with lesser contributions by carbonate weathering and ion exchange. Leaching of salts from the unsaturated zone also has a major impact on groundwater quality during the rainy season. The water quality data indicate that groundwater is generally suitable for irrigation. However, higher salinity and residual sodium carbonate values at some sites may limit groundwater use and therefore an adequate drainage and water management plan for the study area is required.  相似文献   

11.
Quality assessment as well as hydrogeochemical characterization of 45 representative groundwater samples around Umrer coal mine area was undertaken. The pH of the water lies in the normal range i.e. from 7.5 to 8.5, the electrical conductivity varies from 826 to 1,741, the total hardness varies from 289 to 1,302 and the TDS values range from 528.6 to 1,114.2 mg/l which reflects variation in lithology and thus, the distinction in hydrogeological regime. The cation chemistry is dominated by Ca2+ and Mg2+ while anion chemistry is dominated by Cl? and HCO3 ?. Out of total ten hydrochemical facies, the two dominant facies are Mg–Ca–HCO3 (37.7 %) and Ca–Mg–SO4–HCO3 (17.7 %). The groundwater in the study area, in general, is useful for drinking and domestic use; however, it has marginal utility for irrigation purpose. Standard US Salinity Laboratory classification shows that water of the study area belongs to C2–S1 and C3–S1 classes. The concentration of 9 trace elements analysed from 18 samples did not exceed the desirable limit.  相似文献   

12.
Continual expansion of population density, urbanization, agriculture, and industry in most parts of the world has increased the generation of pollution, which contributes to the deterioration of surface water quality. This causes the dependence on groundwater sources for their daily needs to accumulate day by day, which raises concerns about their quality and hydrogeochemistry. This study was carried out to increase understanding of the geological setup and assess the groundwater hydrogeochemical characteristics of the multilayered aquifers in Lower Kelantan Basin. Based on lithological data correlation of exploration wells, the study area can be divided into three main aquifers: shallow, intermediate and deep aquifers. From these three aquifers, 101 groundwater samples were collected and analyzed for various parameters. The results showed that pH values in the shallow, intermediate and deep aquifers were generally acidic to slightly alkaline. The sequences of major cations and anions were Na+ > Ca2+ > Mg2+ > K+ and HCO3? > Cl? > SO42? > CO32?, respectively. In the intermediate aquifer, the influence of ancient seawater was the primary factor that contributed to the elevated values of electrical conductivity (EC), Cl? and total dissolved solids (TDS). The main facies in the shallow aquifer were Ca–HCO3 and Na–HCO3 water types. The water types were dominated by Na–Cl and Na–HCO3 in the intermediate aquifer and by Na–HCO3 in the deep aquifer. The Gibbs diagram reveals that the majority of groundwater samples belonged to the deep aquifer and fell in the rock dominance zone. Shallow aquifer samples mostly fell in the rainfall zone, suggesting that this aquifer is affected by anthropogenic activities. In contrast, the results suggest that the deep aquifer is heavily influenced by natural processes.  相似文献   

13.
The hydrochemical characteristics and quality of groundwater in Lokoja basement area have been evaluated based on different indices for assessing groundwater for drinking and irrigation purposes. Twenty groundwater samples were collected and analyzed for physicochemical parameters, major ions and heavy metals. The results revealed that the groundwater is slightly alkaline, with little variations in chemical composition. For example, electrical conductivity (EC) ranges from 242μS/cm to 1835μS/cm. The abundance of the major ions is in the order of Ca2+ >Na+>Mg2+>K+> Fe2+/3+ = HCO3 >Cl? >NO3 >SO4 >PO4. Based on the hydrochemical data, four hydrochemical facies were identified namely, Ca-Mg-HCO3, Na-K-HCO3, Na-K-Cl-SO4 and Ca-Mg-Cl-SO4 and these facies depict groundwater recharge zone, transition flow zone, deep flow zone and mixed water zone respectively. Groundwater from the area is unsuitable for drinking and domestic purposes as some of the ions and heavy metals of health concerns are well above the stipulated guideline values. Irrigation water quality indicators (salinity, Na % and Mg %), reveal that the groundwater is unsuitable for irrigation purposes. Interpreted statistical analysis reveals that the groundwater chemical compositions are controlled predominantly by weathering of litho units of the basement rocks and by drainage from domestic wastes.  相似文献   

14.
Idu–Karmo of the federal capital territory, Abuja, is located within the weathered basement aquifers of Northern Nigeria. Fifteen groundwater samples obtained were analysed for their major ionic components. The physical properties show that the water is slightly acidic to neutral (6.0–7.0) and has moderate to very high values of electrical conductivity (155–2230 µS/cm).The dominant hydrochemical facies of groundwater is the Ca–Cl2 groundwater type. Irrigation parameters measured include: SAR which ranges from 0.12 to 1.06; TH which ranges from 0.8 to 196; KR ranges from 0.03 to 0.42; PI which ranges from 46 to 199; and RSC ranges from ??131.90 to 3.43. These parameters (SAR, total hardness, Kelly’s ratio, permeability index and residual sodium carbonate) show that the water is suitable for agricultural purpose except for the magnesium ratio which has a high unsuitability for irrigation, probably due to the presence of ferro-magnesian minerals contained in the calc-alkaline basement rocks of the Idu–Karmo area. The results of the geochemical survey reveal major ionic components are in the order Cl??>?HCO3??>?NO3??>?SO42? and Mg2+?>?Ca2+?>?Na+?>?K+. Comparison with WHO and APHA standards shows that all the ionic concentrations satisfy all permissible limits for drinking purpose except for elevated concentrations of nitrate which probably may have arisen from poor handling of domestic wastes, leakages from nearby septic tanks/soak-away and the excessive use of fertilisers. Qualitatively, treatment is required especially on the nitrate-contaminated areas to make the water fit for drinking and irrigation.  相似文献   

15.
The main aims of the present study are to identify the major factors affecting hydrogeochemistry of groundwater resources in the Marand plain, NW Iran and to evaluate the potential sources of major and trace elements using multivariate statistical analysis such as hierarchical clustering analysis (HCA) and factor analysis (FA). To achieve these goals, groundwater samples were collected in three sampling periods in September 2013, May 2014 and September 2014 and analyzed with regard to ions (e.g., Ca2+, Mg2+, Na+ and K+, HCO3 ?, SO4 2?, Cl?, F? and NO3 ?) and trace metals (e.g., Cr, Pb, Cd, Mn, Fe, Al and As). The piper diagrams show that the majority of samples belong to Na–Cl water type and are followed by Ca–HCO3 and mixed Ca–Na–HCO3. Cross-plots show that weathering and dissolution of different rocks and minerals, ion exchange, reverse ion exchange and anthropogenic activities, especially agricultural activities, influence the hydrogeochemistry of the study area. The results of the FA demonstrate that 6 factors with 81.7% of total variance are effective in the overall hydrogeochemistry, which are attributed to geogenic and anthropogenic impacts. The HCA categorizes the samples into two clusters. Samples of cluster C1, which appear to have higher values of some trace metals like Pb and As, are spatially located at the eastern and central parts of the plain, while samples of cluster C2, which express the salinization of the groundwater, are situated mainly westward with few local exceptions.  相似文献   

16.
Fifty groundwater samples were collected from Al-Hasa to analyze the pH, electrical conductivity (EC, dS m?1), total dissolved solids (TDS), major anions (HCO3?, CO32?, Cl?, SO42?, and NO3?), major cations (Ca2+, Mg2+, Na+, and K+), and total hardness. The analyzed data plotted in the Piper, Gibbs, and Durov diagrams, and water quality index (WQI) were calculated to evaluate the groundwater geochemistry and its water quality. The results reveal that most of the investigated samples are Ca2+, Mg2+, SO42?, Cl? and Na+, and HCO3? water types using the Piper diagram. Na+?>?Ca2+?>?Mg2+ are the dominant cations, while Cl??>?HCO3??>?SO42??>?CO32? are the dominant anions. Sodium adsorption ratio (SAR) values varied from 0.79 to 10; however, the Kelly ratio (KR) ranged between 0.1 and 2.2. The permeability index (PI) showed that well water is suitable for irrigation purposes with 75% or more of maximum permeability. The US salinity diagram revealed that the water quality classes of studied waters were CIII-SI, CIII-SII, and CIV-SII, representing height hazards of salinity and medium- to low-sodium hazard. The water quality index (WQI) results indicated that total dissolved solids are out of the drinking water standard limits in Saudi Arabia. The WQI revealed that 38% of the studied wells were considered as poor water (class III), 52% are found as very poor water class (IV), and 10% are unsuitable water for drinking class (V).  相似文献   

17.
The Narava basin in Visakhapatnam district situated on the east coast is a productive agricultural area, and is also one of the fastest growing urban areas in India. The agricultural and urban-industrialization activities have a lot of impact on this coastal aquifer water quality. The hydrochemistry of the groundwater was analyzed in the basin area with reference to drinking and agricultural purposes. The area is underlain by Precambrian rocks like khondalites, charnockites and migmatites. The water samples were collected from shallow wells for the year 2008. Physical and chemical parameters of groundwater such as pH, total alkalinity (TA), electrical conductivity (EC), total dissolved solids (TDS), total hardness (TH), Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ?, F? were determined. The analytical results revealed that the most of the groundwater found to be in polluted category. Geographical information system (GIS) was utilized to generate different spatial distribution maps of various chemical constituents in the study area. The analytical data were used to compute certain parameters such as salinity hazard, percent sodium (Na%), sodium adsorption ratio (SAR), residual sodium carbonate (RSC), permeability index (PI), Kelley??s ratio (KR) and corrosivity ratio (CR) to determine the quality of water for agricultural purposes. The abundance of the major ions in the basin area was found to be in the following sequence: Na+?>?Ca2+?>?Mg2+?>?K+:Cl??>?HCO3 ??>?SO4 2??>?NO3 ??>?F?. According to Gibbs?? diagram most of the samples fall under rock dominance. As per Wilcox and USSL classification most of the groundwater samples are suitable for irrigation except few samples which are unsuitable due to the presence of high salinity and high sodium hazard. From the obtained data, it can be concluded that the water quality profile was good and useful for normal irrigation agriculture.  相似文献   

18.
The study of groundwater hydrogeochemistry of a hard rock aquifer system in Thoothukudi district has resulted in a large geochemical data set. A total of 100 water samples representing various lithologies like Hornblende Biotite Gneiss, Alluvium Marine, alluvium Fluvial, Quartzite, Charnockite, Granite and Sandstone were collected for two different seasons and analyzed for major ions like Ca2+, Mg2+, Na+, K+, HCO3 ?, Cl?, SO4 2?, NO3 ?, PO4 ?, F? and H4SiO4. Statistical analysis of the data has been attempted to unravel the hidden relationship between ions. Correlation analyses and factor analyses were applied to classify the groundwater samples and to identify the geochemical processes controlling groundwater geochemistry. Factor analysis indicates that sea water intrusion followed by leaching of secondary salts, weathering and anthropogenic impacts are the dominant factors controlling hydrogeochemistry of groundwater in the study area. Factor score overlay indicate major active hydrogeochemical regimes are spread throughout the Eastern, Northwestern and Southeastern parts of the study area. The dominant ions controlling the groundwater chemistry irrespective of season are Cl?, Na+, Mg2+, Ca2+, SO4 2?, K+ and NO3 ?. An attempt has also been made to note the seasonal variation of the factor representations in the study area. This study also illustrates the usefulness of statistical analysis to improve the understanding of groundwater systems and estimates of the extent of salinity/salt water intrusion.  相似文献   

19.
The present study aims to discuss the hydrogeochemical processes in the Aosta Valley region and assess the quality of its groundwater for suitability of drinking and irrigation purposes. One hundred twenty-two samples were collected from the Aosta Valley region in the years 2007 and 2008 (61 per year), and analysed for pH, electrical conductivity, total dissolved solids (TDS), total hardness, major cations and anions. The pH of the samples in both years indicated a near-neutral to alkaline nature of the groundwater. The cation and anion chemistry showed the general ionic abundance as: Ca2+ > Mg2+ > Na+ > K+ and HCO3 ?>SO4 2?>Cl?>NO3 ?>F? in both years. Ca2+-Mg2+-HCO3 ? and Ca2+-Mg2+-Cl?-SO4 2? were the dominant hydrogeochemical facies. The computed saturation indices demonstrated that the groundwater was supersaturated with respect to dolomite and calcite in both years. The groundwater chemistry of the study area was mainly controlled by the dissolution of carbonate, sulphate and silicate minerals, as well as ion exchange processes. A comparison of the groundwater quality in relation to drinking water standards showed that most of the water samples were suitable for drinking and domestic uses. The computed water quality index (WQI) values of the study area groundwater ranged from 24 to 84 in the year 2007 and from 22 to 82 in the year 2008, and all the location fell under the Excellent to Good category. Quality assessment for irrigation uses revealed that the groundwater was good to permissible quality for irrigation; however, locally higher salinity, residual sodium carbonate (RSC) and magnesium hazard (MH) restricted its suitability for irrigation at a few sites. These results will be useful in implementing future measures in groundwater resource management at regional and national level.  相似文献   

20.
Investigations were undertaken into the quality of surface water and groundwater bodies within the Upper Tigris Basin in Turkey to determine their suitability for potable and agricultural use. In the study area, the majority of the groundwater and surface water samples belong to the calcium–magnesium–bicarbonate type (Ca–Mg–HCO3) or magnesium–calcium–bicarbonate type (Mg–Ca–HCO3). Chemical analysis of all water samples shows that the mean cation concentrations (in mg/L) were in the order Ca2+ > Mg2+ > Na+ > K+ and that of anions are in the order \( \text{HCO}_{3}^{ - } \) > \( \text{SO}_{4}^{2 - } \) > Cl? > \( \text{CO}_{3}^{ - } \) for all groundwater and surface water samples. The Mg2+/Ca2+ ratio ranges from 0.21 to 1.30 with most of the values greater than 0.5, indicating that weathering of dolomites is dominant in groundwater. The analysis reveals that all of the samples are neutral to slightly alkaline (pH 7.0–8.7). Groundwater and surface water suitability for drinking usage was evaluated according to the World Health Organization and Turkish Standards (TSE-266) and suggests that most of the samples are suitable for drinking. Various determinants such as sodium absorption ratio, percent sodium (Na %), residual sodium carbonate and soluble sodium percentage revealed that most of the samples are suitable for irrigation. According to MH values, all of the well water samples were suitable for irrigation purposes, but 80 and 81.82% of Zillek springs and surface water samples were unsuitable. As per the PI values, the water samples from the study area are classified as Class I and Class II and are considered to be suitable for irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号