首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Numerical, experimental and theoretical models of fluvial architecture and palaeosol development are tested with outcrops of Upper Pliocene-Lower Pleistocene sediment in the southern Rio Grande rift, New Mexico. The sediment was deposited and subsequently exhumed in the Jornada del Muerto basin, a westward-tilted half graben whose footwall corresponds to the Rincon Hills and San Diego Mountain fault blocks. The axial river, the ancestral Rio Grande, shared time between the Jornada del Muerto basin and the adjacent Corralitos basin. The ancestral Rio Grande entered the Jornada del Muerto basin via a gap between the footwall blocks, periodically flowing southward towards San Diego Mountain, or making a broad northward sweep into the northern fluvial salient towards the Rincon Hills fault block and unfaulted northern edge of the basin. Ten logged sections up to 35 m thick are correlated using the top of the formation (La Mesa surface), a 1·59 Ma pumice conglomerate, and a ground-water carbonate/opal bed. Additionally, one of the sections is dated by reversal magnetostratigraphy. Consistent with the model of Bridge & Leeder (1979 ) and Bridge & Mackey (1993a ), differential tilting of the Jornada del Muerto half graben resulted in sections directly adjacent to the faults that consist almost exclusively of multistorey channel sands/sandstones, whereas more distal sections contain a greater proportion of crevasse-splay fine sand and overbank mudstone and calcic palaeosols. Along the axis of the northern fluvial salient, a northward decrease in channel/floodplain ratio, a decrease in channel recurrence interval from 171 kyr to 685 kyr, and an increase in the maturity of calcic palaeosols are consistent with southward tilt of the unfaulted northern edge of the basin. An upsection decrease in sediment accumulation rate in the northern fluvial salient from 0·036 mm/ yr to 0·017 mm/ yr corresponds to an increase in the ratio of channel/floodplain facies and in the number of multistorey channel sands/sandstones, and is consistent with the model of Bridge & Leeder (1979 ) in which avulsion frequency is independent of sediment accumulation rate. Stage II and III calcic palaeosols indicate 103−105 year of landscape stability and soil formation between periods of floodplain deposition in response not only to basin tilting but also because the ancestral Rio Grande had multiple paths within the Jornada del Muerto basin and shared time between the Corralitos and Jornada del Muerto basins.  相似文献   

2.
Increased groundwater withdrawals for the growing population in the Rio Grande Valley and likely alteration of recharge to local aquifers with climate change necessitates an understanding of the groundwater connection between the Jornada del Muerto Basin and the adjoining and more heavily used aquifer in the Mesilla Basin. Separating the Jornada and Mesilla aquifers is a buried bedrock high from Tertiary intrusions. This bedrock high or divide restricts and/or retards interbasin flow from the Jornada aquifer into the Mesilla aquifer. The potentiometric surface of the southern Jornada aquifer near part of the bedrock high indicates a flow direction away from the divide because of a previously identified damming effect, but a groundwater outlet from the southern Jornada aquifer is necessary to balance inputs from the overall Jornada aquifer. Differences in geochemical constituents (major ions, δD, δ18O, δ34S, and 87Sr/86Sr) indicate a deeper connection between the two aquifers through the Tertiary intrusions where Jornada water is geochemically altered because of a geothermal influence. Jornada groundwater likely is migrating through the bedrock high in deeper pathways formed by faults of the Jornada Fault Zone, in addition to Jornada water that overtops the bedrock high as previously identified as the only connection between the two aquifers. Increased groundwater withdrawals and lowering of the potentiometric surface of the Jornada aquifer may alter this contribution ratio with less overtopping of the bedrock high and a continued deeper flowpath contribution that could potentially increase salinity values in the Mesilla Basin near the divide.  相似文献   

3.
Ages of channels of the anastomosing upper Columbia River, south‐eastern British Columbia, Canada, were investigated in a cross‐valley transect by 14C dating of subsurface floodplain organic material from beneath levees. The avulsion history within the transect was deduced from these data, and morphological stages in channel development were recognized. Additionally, floodplain sedimentation rates were established. The new data demonstrate that the upper Columbia River is a long‐lived, dynamic anastomosing system. Results show that anastomosis at the study location has persisted since at least 2700 cal. years BP, with avulsions occurring frequently. At least nine channels have formed in the studied cross‐valley transect within the past 3000 years. Channel lifetimes from formation to abandonment appear to be highly variable, ranging from approximately 800 to 3000 years. Log jams provoking avulsions and/or silting up of old channels are proposed as reasons for this variability. Long‐term average floodplain sedimentation rates appear to be significantly lower than previously proposed by Smith (1983, Int. Assoc. Sedimentol. Spec. Publ., 6, 155–168). A long‐term (4550 years) average of 1·75 mm year?1 (after compaction) was based on 14C dates, while a short‐term sedimentation rate of 0·8 mm was determined for a single, relatively small, seasonal flood in 1994 using sediment traps. However, short‐term sedimentation rates vary considerably over the floodplain, with levees aggrading up to four times faster than floodbasins. Channels of the upper Columbia River anastomosed reach follow a consistent pattern in their development, with each stage being characterized by different morphology and processes. Channel evolution comprises the following succession: (1) avulsion stage, in which a crevasse splay channel deepens by scour and levee sedimentation; (2) widening and deepening stage, in which bank slumping and bed scouring dominates; (3) infilling stage, in which either channel narrowing (bank accretion) or channel shallowing (bed accretion) takes place; and (4) abandonment stage, in which the residual (remnant) channel is filled exclusively by silt, clay and organic material. Vertical stacking (super‐ imposition) of active channels on recent channel‐fill sand bodies is a notable feature of the upper Columbia River, which suggests that reoccupation of residual channels is a common process.  相似文献   

4.
The Pliocene-early Pleistocene history of the ancestral Rio Grande and Quaternary history of the Rio Mimbres in the southern Rio Grande rift, New Mexico, illustrate how axial rivers may alternately spill into and subsequently abandon extensional basins. Three types of spillover basins are recognized, based on the angle at which the axial river enters the basin and whether it descends the hanging wall dip slope or footwall scarp to reach the basin floor. In the Mimbres basin type, the axial river enters and flows through the spillover basin nearly parallel to the footwall scarp, resulting in a narrow belt of basin-axis-parallel channel sand bodies located near the footwall scarp. In contrast, an axial river may enter a spillover basin at a high angle to its axis, either descending the hanging wall dip slope (Columbus basin type) or footwall scarp (Tularosa basin type), and construct a fluvial fan, consisting of radiating distributary channels orientated nearly perpendicular to the basin axis. Faulting exerts significant control on river spillover by creating the topographic gaps through which the axial river moves and by terminating spillover by subsequently uplifting or tilting the gap. Spillover may also be autocyclic in origin as a result of aggradation to the level of a pre-existing gap, headward erosion creating and/or intersecting a gap, or simple river avulsion upstream of a gap. Predicting facies architecture in the three types of spillover basins is critical to successful subsurface exploration for hydrocarbon reservoirs, groundwater aquifers or placer mineral deposits.  相似文献   

5.
Although general trends in transgressive to highstand sedimentary evolution of river‐mouth coastlines are well‐known, the details of the turnaround from retrogradational (typically estuarine) to aggradational–progradational (typically coastal/deltaic) stacking patterns are not fully resolved. This paper examines the middle to late Holocene eustatic highstand succession of the Po Delta: its stratigraphic architecture records a complex pattern of delta outbuilding and coastal progradation that followed eustatic stabilization, since around 7·7 cal kyr bp . Sedimentological, palaeoecological (benthic foraminifera, ostracods and molluscs) and compositional criteria were used to characterize depositional conditions and sediment‐dispersal pathways within a radiocarbon‐dated chronological framework. A three‐stage progradation history was reconstructed. First, as soon as eustasy stabilized (7·7 to 7·0 cal kyr bp ), rapid bay‐head delta progradation (ca 5 m year?1), fed mostly by the Po River, took place in a mixed, freshwater and brackish estuarine environment. Second, a dominantly aggradational parasequence set of beach‐barrier deposits in the lower highstand systems tract (7·0 to 2·0 cal kyr bp ) records the development of a shallow, wave‐dominated coastal system fed alongshore, with elongated, modestly crescent beaches (ca 2·5 m year?1). Third, in the last 2000 years, the development of faster accreting and more rapidly prograding (up to ca 15 m year?1) Po delta lobes occurred into 30 m deep waters (upper highstand systems tract). This study documents the close correspondence of sediment character with stratal distribution patterns within the highstand systems tract. Remarkable changes in sediment characteristics, palaeoenvironments and direction of sediment transport occur across a surface named the ‘A–P surface’. This surface demarcates a major shift from dominantly aggradational (lower highstand systems tract) to fully progradational (upper highstand systems tract) parasequence stacking. In the Po system, this surface also reflects evolution from a wave‐dominated to river‐dominated deltaic system. Identifying the A–P surface through detailed palaeoecological and compositional data can help guide interpretation of highstand systems tracts in the rock record, especially where facies assemblages and their characteristic geometries are difficult to discern from physical sedimentary structures alone.  相似文献   

6.
In order to evaluate potential effects of tectonics and climate change on the behaviour of the axial Rio Grande in the Rio Grande rift, a 16·5 km stretch of modern floodplain and Holocene terraces were mapped in the tectonically active Palomas half graben, south‐central New Mexico, USA. In addition, 51 cores and natural exposures were logged and 20 radiocarbon dates were obtained from charcoal, bulk organic matter, mollusc shells and pedogenic calcite. The Holocene alluvium comprises four terraces above the modern floodplain, each of which formed by a period of river incision followed by stability and renewed floodplain construction to a level below that of the previous terraces. Estimated times of incision between Terraces I and II, II and III, and III and IV are after 12 400, 8040 to 5310, and 760 to 550 yr bp , respectively, whereas the incision between Terrace IV and the modern floodplain occurred within the last 260 years. Although there is some evidence for tectonic control on river behaviour in the southern part of the basin, terrace formation is interpreted as being related to climate change, with periods of incision corresponding to times of increased aridity and low sediment/water discharge ratio in the Rio Grande. This process may have resulted from a reduction in intensity and magnitude of summer storms which supply sediment to the axial river, coupled with an increase in spring discharge peak caused by snowmelt in upstream mountain catchments.  相似文献   

7.
We derive a slip rate for a frontal thrust in the western Hexi Corridor along the northern Qilian Shan by combining topographic profiling and 10Be exposure dating. The active Yumen‐Beidahe thrust fault offsets late Pleistocene alluvial‐fan deposits, and a prominent north‐facing scarp is well preserved. To quantify the slip rate, we surveyed the uplifted terraces and sampled quartz‐rich pebbles on terrace surfaces and river channels to determine surface exposure ages and pre‐depositional inheritance. The minimum vertical slip rate of the fault is 0.73 ± 0.09 mm a?1. This represents a horizontal shortening rate of 1.26 ± 0.31 mm a?1 for a fault dip of 30 ± 5°. This estimated slip rate supports the inference made from previous geological and GPS constraints that NNE‐directed shortening across the western Qilian Shan and the Hexi Corridor is distributed on several active faults with a total shortening rate of 4–10 mm a?1.  相似文献   

8.
Oceanic anoxic events are clues to ocean processes and are correlation datums. In North America only OAE 1a and 2 are well documented. Based on a low-resolution sampling program, a multi-proxy geochemical approach constrained by a biostratigraphic framework was utilized to identify OAE 1d in the upper part of the upper Albian Mesilla Valley Formation near El Paso, Texas. Chronostratigraphic and biostratigraphic evidence indicate that the OAE 1d event in the Mesilla Valley section is located in the lower part of the upper Albian–Cenomanian Ovoidinium verrucosum zone, which correlates with the uppermost Albian Parathalmanninella appenninica and Stoliczkaia dispar zones. The chronostratigraphic age of the geochemical event in the Mesilla Valley Formation is uppermost Albian (97.39–97.30 Ma).The classic geochemical signatures for OAEs are enriched total organic carbon (TOC) concentrations and coupled positive δ13C excursions. OAE 1d at this location records TOC values ranging from 0.25 to 0.69 wt.% throughout the Mesilla Valley Formation, where TOC increases during the OAE (21.0–40.0 m) to more than 0.40 wt.%. Interestingly, the organic matter in the Mesilla Valley is dominantly type III, which indicates a pervasive terrigenous source. Although marine organic matter is abundant from the base into the middle of the proposed OAE interval, it is progressively replaced by terrestrial material above the OAE section during progradation. The δ13Corganic values record a positive δ13C shift of +1.6‰ from −26.41 to −24.80‰ across the stratigraphic interval from 21.0 to 40.0 m, which correlates with OAE 1d.Mn and Fe geochemistry suggest the depositional conditions of the Mesilla Valley Formation were dominated by anoxic and possibly Fe-rich bottom waters, specifically during the time period associated with the OAE 1d event. This interpretation is supported by the presence of Fe enrichment recorded by FeTotal/Al and FeHighly Reactive/FeT with the lack of Fepyrite/FeHighly Reactive associated with Mn depletion.  相似文献   

9.
The Miocene Siwalik Group (upsection, the Chinji, Nagri, and Dhok Pathan Formations) in northern Pakistan records fluvial and lacustrine environments within the Himalayan foreland basin. Thick (5 m to tens of metres) sandstones are composed of channel bar and fill deposits of low-sinuousity (1·08–1·19), single-channel meandering and braided rivers which formed large, low-gradient sediment fans (or ‘megafans’). River flow was dominantly toward the south-east and likely perennial. Palaeohydraulic reconstructions indicate that Chinji and Dhok Pathan rivers were small relative to Nagri rivers. Bankfull channel depths of Chinji and Dhok Pathan rivers were generally ≤ 15 m, and up to 33 m for Nagri rivers. Widths of channel segments (including single channels of meandering rivers and individual channels around braid bars) were 320–710 m for Chinji rivers, 320–1050 m for Nagri rivers, and 270–340 m for Dhok Pathan rivers. Mean channel bed slopes were on the order of 0·000056–0·00011. Bankfull discharges of channel segments for Chinji and Dhok Pathan rivers were generally 700–800 m3s?1, with full river discharges possibly up to 2400 m3s?1. Bankfull discharges of channel segments for Nagri rivers were generally 1800–3500 m3s?1, with discharges of some larger channel segments possibly on the order of 9000–32 000 m3s?1. Full river discharges of some of the largest Nagri braided rivers may have been twice these values. Thin (decimetres to a few metres) sandstones represent deposits of levees, crevasse channels and splays, floodplain channels, and large sheet floods. Laminated mudstones represent floodplain and lacustrine deposits. Lakes were both perennial and short-lived, and likely less than 10 m deep with maximum fetches on the order of a few tens of kilometres. Trace fossils and body fossils within all facies indicate the former existence of terrestrial vertebrates, molluscs (bivalves and gastropods), arthropods (including insects), worms, aquatic fauna (e.g. fish, turtles, crocodiles), trees, bushes, grasses, and aquatic flora. Palaeoenvironmental reconstructions are consistent with previous palaeoclimatic interpretations of monsoonal conditions.  相似文献   

10.
Continental ‘overfilled’ conditions during rift initiation are conventionally explained as due to low creation of accommodation compared with sediment supply. Alternatively, sediment supply can be relatively high from the onset of rifting due to an antecedent drainage system. The alluvial Lower Group of the western Plio–Pleistocene Corinth rift is used to investigate the interaction of fluvial sedimentation with early rifting. This rift was obliquely superimposed on the Hellenide mountain belt from which it inherited a significant palaeorelief. Detailed sedimentary logging and mapping of the well‐exposed syn‐rift succession document the facies distributions, palaeocurrents and stratigraphic architecture. Magnetostratigraphy and biostratigraphy are used to date and correlate the alluvial succession across and between fault blocks. From 3·2 to 1·8 Ma, a transverse low sinuosity braided river system flowed north/north‐east to east across east–west‐striking active fault blocks (4 to 7 km in width). Deposits evolved downstream from coarse alluvial conglomerates to fine‐grained lacustrine deposits over 15 to 30 km. The length scale of facies belts is much greater than, and thus not directly controlled by, the width of the fault blocks. At its termination, the distributive river system built small, stacked deltas into a shallow lake margin. The presence of a major antecedent drainage system is supported by: (i) a single major sediment entry point; (ii) persistence of a main channel belt axis; (iii) downstream fining at the scale of the rift basin. The zones of maximum subsidence on individual faults are aligned with the persistent fluvial axis, suggesting that sediment supply influenced normal fault growth. Instead of low accommodation rate during the early rift phase, this study proposes that facies progradation can be controlled by continuous and high sediment supply from antecedent rivers.  相似文献   

11.
Products of Pliocene (2–4 Ma) mafic to intermediate volcanism in the northwestern Cerros del Rio, a dominantly mafic volcanic field in the Española Basin of the Rio Grande Rift (RGR), range from 49% to 63% SiO2 and exhibit diversity in silica saturation, trace-element patterns, and isotopic compositions. Tholeiites, which are largely confined to west of the Rio Grande, have trace-element abundances that resemble those of oceanic basalts, but with mild depletions in Nb and Ta, and high 87Sr/86Sr, low 143Nd/144Nd, and high δ18O compared to typical OIB. They are regarded as asthenospherically-derived magmas contaminated with continental crust. Alkali basalts and hawaiites erupted from vents east of the Rio Grande are geochemically distinct, having generally higher overall incompatible-element abundances, but with pronounced depletions in K, Rb, Nb and Ta with respect to Th and LREE. Spatially-associated benmoreites, mugearites and latites (collectively termed “evolved” lavas) have similar trace-element characteristics to the mafic mildly-alkaline compositions, but are typically not as depleted in K. Hawaiites and evolved lavas exhibit a good negative correlation of 143Nd/144Nd with SiO2, due to interaction with lower continental crust. The most silicic “evolved” lavas carry the highest proportions of crustal material, and consequently have higher K/Th than the related hawaiites. Several (mostly mafic) lavas contain abundant crustally-derived resorbed quartz xenocrysts in O-isotope disequilibrium with the host magma. The δ18O values of xenocrystic quartz range over 4‰, indicating a variety of quartz-bearing crustal contaminants beneath the Española Basin. The hawaiites, with their unusual combination of trace-element enrichments and depletions, cannot be generated by any process of fractionation or crustal contamination superposed on a common mantle source type (oceanic or arc-source). It is a regional mantle source type, inasmuch as it was also present beneath NW Colorado during the mid-late Cenozoic. We argue that the hawaiite source must have originally existed as arc-source mantle enriched in LILE, generated during Mesozoic to early Cenozoic subduction at the western margin of North America. This arc-source mantle lost K, Rb and Ba, but not Th or LREE, prior to magmagenesis. Selective element loss may have occurred during lithospheric thinning and uprise of hydrated phlogopitebearing peridotite-possibly as a thermal boundary layer between lithosphere and asthenosphere — to shallow mantle depths, with consequent conversion of phlogopite to amphibole (an inferior host for K, Rb and Ba). We suggest that this occurred during the early extensional phase of the northern RGR. Further extension was accompanied by partial melting and release of magma from this source and the underlying asthenosphere, which by the Pliocene was of oceanic type. The hawaiite source mantle is the product of a long history of subduction succeeded by lithospheric extension of the formerly overriding plate. Similar chemical signatures may have developed in the mantle beneath other regions with comparable histories.  相似文献   

12.
Abstract A study of the seafloor of the Gulf of Cadiz west of the Strait of Gibraltar, using an integrated geophysical and sedimentological data set, gives new insights into sediment deposition from downslope thermohaline bottom currents. In this area, the Mediterranean Outflow (MO) begins to mix with North Atlantic waters and separates into alongslope geostrophic and downslope ageostrophic components. Changes in bedform morphology across the study area indicate a decrease in the peak velocity of the MO from >1 m s?1 to <0·5 m s?1. The associated sediment waves form a continuum from sand waves to muddy sand waves to mud waves. A series of downslope‐oriented channels, formed by the MO, are found where the MO starts to descend the continental slope at a water depth of ≈700 m. These channels are up to 40 km long, have gradients of <0·5°, a fairly constant width of ≈2 km and a depth of ≈75 m. Sand waves move down the channels that have mud wave‐covered levees similar to those seen in turbidite channel–levee systems, although the channel size and levee thickness do not decrease downslope as in typical turbidite channel systems. The channels terminate abruptly where the MO lifts off the seafloor. Gravity flow channels with lobes on the basin floor exist downslope from several of the bottom current channels. Each gravity flow system has a narrow, slightly sinuous channel, up to 20 m deep, feeding a depositional lobe up to 7 km long. Cores from the lobes recovered up to 8·5 m of massive, well‐sorted, fine sand, with occasional mud clasts. This work provides an insight into the complex facies patterns associated with strong bottom currents and highlights key differences between bottom current and gravity flow channel–levee systems. The distribution of sand within these systems is of particular interest, with applications in understanding the architecture of hydrocarbon reservoirs formed in continental slope settings.  相似文献   

13.
Well-exposed, vertically dipping, glacially polished outcrops of the Neoproterozoic Windermere Supergroup in the southern Canadian Cordillera include basin-floor deposits of the Upper Kaza Group overlain by slope channel complexes of the Isaac Formation. Within the 2·5 km thick Kaza and Isaac succession is an up to 360 m thick interval composed of diverse deep-water stratal elements including scour and interscour deposits, distributary channels, fine-grained turbidites, terminal splays, mass-transport deposits, erosional and levéed channels and avulsion splays, which collectively were formed during the development of an ancient passive-margin channel-lobe system. The proportion and vertical and lateral arrangement of stratal elements reveal three distinct complexes. The lower complex, consisting mostly of distributary channels and small and large scours, is interpreted to represent the detachment of lobes from an upflow levéed channel, wherein a well-developed channel-lobe transition zone was formed by efficient, siliciclastic flows during a period of sustained transport bypass and limited deposition coincident with the onset of falling relative sea level. The middle, comparatively thicker and more sandstone-rich complex, comprises distributary channel fills, fine-grained turbidites and lesser terminal splays that are interspersed with small scours, capped by a slope levéed channel filled with coarser-grained siliciclastic sediment. The abundance of basin-floor elements suggests negligible separation between the levéed channel and lobe, and therefore a poorly-developed channel-lobe transition zone, resulting from inefficient, siliciclastic-rich depositional flows that became dominant during lowstand and/or ensuing transgression. The stratal makeup of the upper complex resembles the lower detached complex, suggesting a return to efficient flows, and an abrupt change to mixed carbonate–siliciclastic sediments associated with highstand conditions. Accordingly, the stratigraphic architecture and stacking pattern of the Kaza–Isaac interval, which relate to the formation of multiple channel-lobe transition zones, were controlled by temporal changes in sediment supply and flow characteristics during the long-term progradation of the Laurentian continental margin.  相似文献   

14.
Little is known about controls on river avulsion at geological time scales longer than 104 years, primarily because it is difficult to link observed changes in alluvial architecture to well‐defined allogenic mechanisms and to disentangle allogenic from autogenic processes. Recognition of Milankovitch‐sale orbital forcing in alluvial stratigraphy would provide unprecedented age control in terrestrial deposits, and also exploit models of allogenic forcing enabling more rigorous testing of allocyclic and autocyclic controls. The Willwood Formation of the Bighorn Basin is a lower Eocene fluvial unit distinctive for its thick sequence of laterally extensive lithological cycles on a scale of 4 to 10 m. Intervals of red palaeosols that formed on overbank mudstones are related to periods of relative channel stability when gradients between channel belts and floodplains were low. The intervening drab, heterolithic intervals with weak palaeosol development are attributed to episodes of channel avulsion that occurred when channels became super‐elevated above the floodplain. In the Deer Creek Amphitheater section in the McCullough Peaks area, these overbank and avulsion deposits alternate with a dominant cycle thickness of ca 7·1 m. Using integrated stratigraphic age constraints, this cyclicity has an estimated period of ca 21·6 kyr, which is in the range of the period of precession climate cycles in the early Eocene. Previous analyses of three older and younger sections in the Bighorn Basin showed a similar 7 to 8 m spacing of red palaeosol clusters with an estimated duration close to the precession period. Intervals of floodplain stability alternating with episodes of large‐scale reorganization of the fluvial system could be entirely autogenic; however, the remarkable regularity and the match in time scales documented here indicate that these alternations were probably paced by allogenic, astronomically forced climate change.  相似文献   

15.
Thick bay‐fill sequences that often culminate in strandplain development serve as important sedimentary archives of land–ocean interaction, although distinguishing between internal and external forcings is an ongoing challenge. This study employs sediment cores, ground‐penetrating radar surveys, radiocarbon dates, palaeogeographic reconstructions and hydrodynamic modelling to explore the role of autogenic processes – notably a reduction in wave energy in response to coastal embayment infilling – in coastal evolution and shoreline morphodynamics. Following a regional 2 to 4 m highstand at ca 5·8 ka, the 75 km2 Tijucas Strandplain in southern Brazil built from fluvial sediments deposited into a semi‐enclosed bay. Holocene regressive deposits are underlain by fluvial sands and a Pleistocene transgressive–regressive sequence, and backed by a highstand barrier‐island. The strandplain is immediately underlain by 5 to 16 m of seaward‐thickening, fluvially derived, Holocene‐age, basin‐fill mud. Several trends are observed from the landward (oldest) to the seaward (youngest) sections of the strandplain: (i) the upper shoreface and foreshore become finer and thinner and shift from sand‐dominated to mud‐dominated; (ii) beachface slopes decrease from >11° to ca 7°; and (iii) progradation rates increase from 0·4 to 1·8 m yr?1. Hydrodynamic modelling demonstrates a correlation between progressive shoaling of Tijucas Bay driven by sea‐level fall and sediment infilling and a decrease in onshore wave‐energy transport from 18 to 4 kW m?1. The combination of allogenic (sediment supply, falling relative sea‐level and geology) and autogenic (decrease in wave energy due to bay shoaling) processes drove the development of a regressive system with characteristics that are rare, if not unique, in the Holocene and rock records. These findings demonstrate the complexities in architecture styles of highstand and regressive systems tracts. Furthermore, this article highlights the diverse internal and external processes and feedbacks responsible for the development of these intricate marginal marine sedimentary systems.  相似文献   

16.
Crystalline continental rocks and associated crust‐contaminated basaltic rocks were unexpectedly dredged on the crest and at seamounts of the Rio Grande Rise, South Atlantic. Zircon U–Pb ages of one gabbro (ca. 2,200 Ma) and four granitoids (between ca. 1,430–480 Ma) indicate that the breakup of SW Gondwana left behind continental fragments of dominantly African age. These rocks may have been incorporated into the oceanic lithosphere by complex processes including rifting and interaction of the Tristan‐Gough mantle plume with hyperextended continental margins. Until ca. 80–70 Ma, the Rio Grande Rise and an old portion of the Walvis Ridge formed a conjugate pair of aseismic ridges, and the Tristan‐Gough plume was positioned at the Mid‐Atlantic Ridge. The finding of continental rock fragments in one of these conjugate pairs opens new perspectives on the mechanisms of continental break‐up, the nature of this conjugate pair, and the geodynamic evolution of rifted Gondwana margins in the South Atlantic.  相似文献   

17.
Quantitative interpretation of an evolving ancient river system   总被引:3,自引:0,他引:3  
Multistorey sandstone bodies described from the Upper Devonian-Lower Carboniferous of Kerry Head (Ireland) are interpreted as deposits of aggrading, perennial, river channels migrating laterally across alluvial plains. Point bars displayed surface features such as scroll bars, chute channels and chute bars. Relatively uncommon channel fills are both coarse- and fine-grained. Quantitative interpretation of the sandstone bodies was accomplished by comparison with a physical model that predicts the sedimentology of single point bar deposits developed in channels of prescribed geometry and hydraulics. This analysis reveals that the separate storeys (point bars) in each sandstone body were deposited in a single channel belt in which channel geometry and hydraulics varied little with time (order of 103 yr) and space (order of 103 m). Two southerly flowing rivers of markedly different size were responsible for all sandstone bodies: bankfull widths, depths and mean velocities of both rivers varied little with time (order of 105 yr), implying a stable climatic setting. Channel sinuosities were usually 1.15–1.2 throughout the succession. Both rivers decreased in mean channel slope as time progressed, in association with a rising base-level and a shoreline encroaching from the south. Using Bridge & Leeder's (1979) alluvial stratigraphy model, the nature and distribution of channel sandstone bodies relative to overbank deposits in the succession can be explained by an average (compacted) floodplain deposition rate of about 0.005 m yr?1, if avulsion occurred with a frequency of about once every 103 yr. Local variation in the relative amount of channel sandstone in the succession is probably due to local tectonic control of deposition.  相似文献   

18.
Distributary channel systems are an important component of deltaic systems, but details of their branching pattern, stream‐order, internal variability and relation with adjacent levée, bay and bayhead delta are rather poorly documented in ancient examples. Photomosaic and measured sections collected along a gooseneck‐shaped canyon in southern Utah allow direct mapping of the branching pattern of an ancient distributary system. The main channel belt is ca 250 m wide and narrows to ca 200 m downstream of the branching point. A subordinate channel belt, ca 80 m wide, branches off of the main channel, forming a distinctly asymmetrical branching pattern. Water discharge in the main channel is estimated to be 85 to 170 m3 sec?1. Comparison with palaeodischarge estimates of trunk rivers mapped in previous studies suggests that the branching documented in this study probably is a fourth‐order split. The distributary channels are characterized by a U‐shaped geometry filled with medium‐grained, cross‐bedded sandstone, and are dominated by lateral accretion, suggesting limited lateral migration and moderate sinuosity. Tidally influenced facies and limited trace fossils indicate direct marine influence. The distributary channels erode into adjacent levée and underlying heterolithic bay‐fill deposits, and the marine influence suggests that they were deposited on a lower delta plain, rather than on a non‐marine floodplain. The subordinate channel fed a bayhead delta, suggesting that it was formed by a partial avulsion, rather than bifurcation around a mouth bar, as is more characteristic of terminal distributary channels. Channel‐floor drapes, bar‐accretion drapes and abandoned channel fills within the sandstone channel belts represent the most important heterogeneity from the perspective of reservoir characterization.  相似文献   

19.
Spinel lherzolite and pyroxenite xenoliths from the Rio Puerco Volcanic Field, New Mexico, were analyzed for oxygen isotope ratios by laser fluorination. In lherzolites, olivine δ18O values are high (+5.5‰), whereas δ18O values for pyroxenes are low (cpx=+5.1‰; opx=+5.4‰) compared to average mantle values. Pyroxenite δ18O values (cpx=+5.0‰; opx=+5.3‰) are similar to those of the lherzolites and are also lower than typical mantle oxygen isotope compositions. Texturally and chemically primary calcite in pyroxenite xenoliths is far from isotopic equilibrium with other phases, with δ18O values of +21‰. The isotopic characteristics of the pyroxenite xenoliths are consistent with a petrogenetic origin from mixing of lherzolitic mantle with slab-derived silicate and carbonatite melts. The anomalously low δ18O in the pyroxenes reflects metasomatism by a silicate melt from subducted altered oceanic crust, and high δ18O calcite is interpreted to have crystallized from a high δ18O carbonatitic melt derived from subducted ophicarbonate. Similar isotopic signatures of metasomatism are seen throughout the Rio Puerco xenolith suite and at Kilbourne Hole in the southern Rio Grande rift. The discrete metasomatic components likely originated from the subducted Farallon slab but were not mobilized until heating associated with Rio Grande rifting occurred. Oxygen diffusion modeling requires that metasomatism leading to the isotopic disequilibrium between calcite and pyroxene in the pyroxenites occurred immediately prior to entrainment. Melt infiltration into spinel-facies mantle (xenoliths) prior to eruption was thus likely connected to garnet-facies melting that resulted in eruption of the host alkali basalt.  相似文献   

20.
The development of mudwaves on the levees of the modern Toyama deep‐sea channel has been studied using gravity core samples combined with 3·5‐kHz echosounder data and airgun seismic reflection profiles. The mudwaves have developed on the overbank flanks of a clockwise bend of the channel in the Yamato Basin, Japan Sea, and the mudwave field covers an area of 4000 km2. Mudwave lengths range from 0·2 to 3·6 km and heights vary from 2 to 44 m, and the pattern of mudwave aggradation indicates an upslope migration direction. Sediment cores show that the mudwaves consist of an alternation of fine‐grained turbidites and hemipelagites whereas contourites are absent. Core samples demonstrate that the sedimentation rate ranged from 10 to 14 cm ka?1 on the lee sides to 17–40 cm ka?1 on the stoss sides. A layer‐by‐layer correlation of the deposits across the mudwaves shows that the individual turbidite beds are up to 20 times thicker on the stoss side than on the lee side, whereas hemipelagite thicknesses are uniform. This differential accretion of turbidites is thought to have resulted in the pattern of upcurrent climbing mudwave crests, which supports the notion that the mudwaves have been formed by spillover turbidity currents. The mudwaves are interpreted to have been instigated by pre‐existing large sand dunes that are up to 30 m thick and were created by high‐velocity (10°ms?1), thick (c. 500 m) turbidity currents spilling over the channel banks at the time of the maximum uplift of the Northern Japan Alps during the latest Pliocene to Early Pleistocene. Draping of the dunes by the subsequent, lower‐velocity (10?1ms?1), mud‐laden turbidity currents is thought to have resulted in the formation of the accretionary mudwaves and the pattern of upflow climbing. The dune stoss slopes are argued to have acted as obstacles to the flow, causing localized loss of flow strength and leading to differential draping by the muddy turbidites, with greater accretion occurring on the stoss side than on the lee slope. The two overbank flanks of the clockwise channel bend show some interesting differences in mudwave development. The mudwaves have a mean height of 9·8 m on the outer‐bank levee and 6·2 m on the inner bank. The turbidites accreted on the stoss sides of the mudwaves are 4–6 times thicker on the outer‐bank levee than their counterparts on the inner‐bank levee. These differences are attributed to the greater flow volume (thickness) and sediment flux of the outer‐bank spillover flow due to the more intense stripping of the turbidity currents at the outer bank of the channel bend. Differential development of mudwave fields may therefore be a useful indicator in the reconstruction of deep‐sea channels and their flow hydraulics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号