首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three vulnerability index models were applied to assess the pollution potential of Nabeul-Hammamet shallow aquifer, Tunisia: DRASTIC, Pesticide DRASTIC and the Susceptibility Index (SI). An output map layer of each one was obtained using a geographic information system (GIS). The SI layer was overlain with DRASTIC and Pesticide DRASTIC and the percentage areas of agreement and divergence in vulnerability categories were extracted. DRASTIC results suggest the aquifer has mostly low vulnerability. Pesticide DRASTIC and SI identify three vulnerability categories (low, moderate, high) in the aquifer. Published data on current chemical groundwater composition indicate that parts of the aquifer are highly contaminated, revealing that DRASTIC underestimates the risk of pollution; Pesticide DRASTIC and SI reflect this risk better. Agreement in vulnerability categories between the two last models is found for 64 % of the aquifer area. To help manage land-use allocation and prevent Nabeul-Hammamet-aquifer contamination, DRASTIC is not recommended. Pesticide DRASTIC and SI are recommended but for slightly different applications. SI helps in the monitoring of current vulnerable areas and, thus, in contamination prevention. Pesticide DRASTIC could better intervene as a criterion in a multi-criteria analysis to select the best sites for specific on-the-ground practice or future land use.  相似文献   

2.
An aquifer vulnerability of the Benin Formation aquifer (Calabar, southern Nigeria) has been assessed using a combination of DRASTIC index and GIS technology. The assessment was necessitated by the fact that uncontrolled disposal of domestic, industrial and agricultural wastes have caused groundwater contamination. Therefore, prevention of contamination, monitoring and management of the aquifer was urgently required to increase the efficient use of the current water supplies. The DRASTIC method uses seven parameters (depth to groundwater table, net recharge, aquifer media, soil media, topography, influence of vadose zone and hydraulic conductivity), which were used to produce vulnerability maps. The drastic vulnerability index ranged between 124 and 170. The vulnerability map shows that the aquifer is highly vulnerable in southeastern parts of the area covering about 22 %. The medium vulnerability area covers about 56.8 % of Calabar extending from the southwest to northern parts. 21.2 % of the area covering the central and northern parts the area lies within the low vulnerability zone. The present industrial and activities are located in the eastern and western parts, which falls within the low-medium vulnerability areas. Documented nitrate concentration in hand-dug wells and boreholes are in agreement with vulnerability zones. Sensitivity analysis was performed to evaluate the sensitivity of each parameter between map layers such that subjectivity can be reduced to an extent and new weights computed for each DRASTIC parameter. As management options sensitive areas, especially in the southern parts of Calabar area, should be protected from future development.  相似文献   

3.
The groundwater vulnerability indices are valuable tools for the development of agrochemicals management strategies based on environmental/agricultural policies. The groundwater vulnerability methods of LOS, SINTACS, DRASTIC, Pesticide DRASTIC, GOD and AVI were applied for the agricultural fields of Sarigkiol basin (Northern Greece). The results of the aforementioned methods were examined and discussed in order to show how the dissimilarities in the vulnerability assessment approaches may become an advantage. The results of the methods were used to propose a combined conceptual approach which adds another two dimensions (depth and time) in the current two-dimensional vulnerability mapping (longitude, latitude) procedures. The LOS method provided information about the intrinsic vulnerability of the topsoil (30 cm) to water (+conservative pollutants) and nitrogen losses, and the AVI method described the vulnerability of the unsaturated zone to allow pollutants to reach the aquifer while the aquifer vulnerability was analysed using SINTACS, DRASTIC, Pesticide DRASTIC and GOD. In this study, the results of the SINTACS method were found more accurate to describe the local aquifer conditions. The final conceptual approach provided a stratified vulnerability (dimension of depth) of the overall hydrogeologic system using LOS for the topsoil, AVI for unsaturated zone and SINTACS for the aquifer. The dimension of time was introduced by the LOS and AVI methods, which provide quantitative results in time. The use of LOS method also highlighted the basic limitation of the other methods to describe the potential contribution to pollution of areas (especially upland areas) which are out of the aquifer boundaries.  相似文献   

4.
A DRASTIC-model method based on a geographic information system (GIS) was used to study groundwater vulnerability in Egirdir Lake basin (Isparta, Turkey), an alluvial area that has suffered agricultural pollution. ‘Lineament’ and ‘land use’ were added to the DRASTIC parameters, and an analytic hierarchy process (AHP) method determined the rating coefficients of each parameter. The effect of lineament and land-use parameters on the resulting vulnerability maps was determined with a single-parameter sensitivity analysis. Of the DRASTIC parameters, land use affects the aquifer vulnerability map most and lineament affects it least, after topography. A simple linear regression analysis assessed the statistical relation between groundwater nitrate concentration and the aquifer vulnerability areas; the highest R 2 value was obtained with the modified-DRASTIC-AHP method. The DRASTIC vulnerability map shows that only the shoreline of Egirdir Lake and the alluvium units have high contamination potential. In this respect, the modified DRASTIC vulnerability map is quite similar. According to the modified-DRASTIC-AHP method, the lakeshore areas of Senirkent-Uluborlu and Hoyran plains, and all of the Yalvaç-Gelendost plain, have high contamination potential. Analyses confirm that groundwater nitrate content is high in these areas. By comparison, the modified-DRASTIC-AHP method has provided more valid results.  相似文献   

5.
The existing different human activities and planned land uses put the groundwater resources in Jordan at considerable risk. There are evidences suggesting that the quality of groundwater supplies in north Jordan is under threat from a wide variety of point and non-point sources including agricultural, domestic, and industrial. Vulnerability maps are designed to show areas of greatest potential for groundwater contamination on the basis of hydrogeological conditions and human impacts. DRASTIC method incorporates the major geological and hydrogeological factors that affect and control groundwater movement: depth to groundwater (D), net recharge (R), lithology of the aquifer (A), soil texture (S), topography (T), lithology of vadose zone (I), and hydraulic conductivity (C). The main goal of this study is to produce vulnerability maps of groundwater resources in the Yarmouk River basin by applying the DRASTIC method to determine areas where groundwater protection or monitoring is critical. ArcGIS 9.2 was used to create the groundwater vulnerability maps by overlaying the available hydrogeological data. The resulting vulnerability maps were then integrated with lineament and land use maps as additional parameters in the DRASTIC model to assess more accurately the potential risk of groundwater to pollution. The general DRASTIC index indicates that the potential for polluting groundwater is low in the whole basin, whereas the resulting pesticide DRASTIC vulnerability map indicates that about 31% of the basin is classified as having moderate vulnerability, which may be attributed to agricultural activities in the area. Although high nitrate concentrations were found in areas of moderate vulnerability, DRASTIC method did not depict accurately the nitrate distribution in the area.  相似文献   

6.
Jordan Valley is one of the important areas in Jordan that involves dense agricultural activities, which depend on groundwater resources. The groundwater is exploited from an unconfined shallow aquifer which is mainly composed of alluvial deposits. In the vicinity of the Kafrein and South Shunah, the shallow aquifer shows signs of contamination from a wide variety of non-point sources. In this study, a vulnerability map was created as a tool to determine areas where groundwater is most vulnerable to contamination. One of the most widely used groundwater vulnerability mapping methods is SINTACS, which is a point count system model for the assessment of groundwater pollution hazards. SINTACS model is an adaptation for Mediterranean conditions of the well-known DRASTIC model. The model takes into account several environmental factors: these include topography, hydrology, geology, hydrogeology, and pedology. Spatial knowledge of all these factors and their mutual relationships is needed in order to properly model aquifer vulnerability using this model. Geographic information system was used to express each of SINTACS parameters as a spatial thematic layer with a specific weight and score. The final SINTACS thematic layer (intrinsic vulnerability index) was produced by taking the summation of each score parameter multiplied by its specific weight. The resultant SINTACS vulnerability map of the study area indicates that the highest potential sites for contamination are along the area between Er Ramah and Kafrein area. To the north of the study area there is a small, circular area which shows fairly high potential. Elsewhere, very low to low SINTACS index values are observed, indicating areas of low vulnerability potential.  相似文献   

7.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

8.
Groundwater is a very important natural resource in Khanyounis Governorate (the study area) for water supply and development. Historically, the exploitation of aquifers in Khanyounis Governorate has been undertaken without proper concern for environmental impact. In view of the importance of quality groundwater, it might be expected that aquifer protection to prevent groundwater quality deterioration would have received due attention. In the long term, however, protection of groundwater resources is of direct practical importance because, once pollution of groundwater has been allowed to occur, the scale and persistence of such pollution makes restoration technically difficult and costly. In order to maintain basin aquifer as a source of water for the area, it is necessary to find out, whether certain locations in this groundwater basin are susceptible to receive and transmit contamination. This study aims to: (1) assess the vulnerability of the aquifer to contamination in Khanyounis governorate, (2) find out the groundwater vulnerable zones to contamination in the aquifer of the study area, and (3) provide a spatial analysis of the parameters and conditions under which groundwater may become contaminate. To achieve that, DRASTIC model within geographic information system (GIS) environment was applied. The model uses seven environmental parameters: depth of water table, net recharge, aquifer media, soil media, topography, impact of vadose zone, and hydraulic conductivity to evaluate aquifer vulnerability. Based on this model and by using ArcGIS 9.3 software, an attempt was made to create vulnerability maps for the study area. According to the DRASTIC model index, the study has shown that in the western part of the study area the vulnerability to contamination ranges between high and very high due to the relatively shallow water table with moderate to high recharge potential, and permeable soils. To the east of the previous part and in the south-eastern part, vulnerability to contamination is moderate. In the central and the eastern part, vulnerability to contamination is low due to depth of water table. Vulnerability analysis of the DRASTIC Model indicates that the highest risk of contamination of groundwater in the study area originates from the soil media. The impact of vadose zone, depth to water level, and hydraulic conductivity imply moderate risks of contamination, while net recharge, aquifer media, and topography impose a low risk of aquifer contamination. The coefficient of variation indicates that a high contribution to the variation of vulnerability index is made by the topography. Moderate contribution is made by the depth to water level, and net recharge, while impact of vadose zone, hydraulic conductivity, soil media, and Aquifer media are the least variable parameters. The low variability of the parameters implies a smaller contribution to the variation of the vulnerability index across the study area. Moreover, the “effective” weights of the DRASTIC parameters obtained in this study exhibited some deviation from that of the “theoretical” weights. Soil media and the impact of vadose zone were the most effective parameters in the vulnerability assessment because their mean “effective” weights were higher than their respective “theoretical” weights. The depth of water table showed that both “effective” and “theoretical” weights were equal. The rest of the parameters exhibit lower “effective” weights compared with the “theoretical” weights. This explains the importance of soil media and vadose layers in the DRASTIC model. Therefore, it is important to get the accurate and detailed information of these two specific parameters. The GIS technique has provided an efficient environment for analysis and high capabilities of handling large spatial data. Considering these results, DRASTIC model highlights as a useful tool that can be used by national authorities and decision makers especially in the agricultural areas applying chemicals and pesticides which are most likely to contaminate groundwater resources.  相似文献   

9.
The Nubian Sandstone Aquifer (NSSA) is the main groundwater resource of the El-Bahariya Oasis, which is located in the middle of the Western Desert of Egypt. This aquifer is composed mainly of continental clastic sediments of sandstone with shale and clay intercalations of saturated thickness ranging between 100 and 1500 m. Vulnerability assessment to delineate areas that are more susceptible to contamination from anthropogenic sources has become an important element for sustainable resources management and land use planning. Accordingly, this research aims to estimate the vulnerability of NSSA by applying the DRASTIC model as well as utilising sensitivity analyses to evaluate the relative importance of the model parameters for aquifer vulnerability in the study area. The main objective is to demonstrate the combined use of the DRASTIC and the GIS techniques as an effective method for groundwater pollution risk assessment, and mapping the areas that are prone to deterioration of groundwater quality and quantity. Based on DRASTIC index (DI) values, a groundwater vulnerability map was produced using the GIS. The aquifer analysis in the study area highlighted the following key points: the northeastern and western parts of the NSSA were dominated by ‘High’ vulnerability classes while the northwestern and southeastern parts were characterised by ‘Medium’ vulnerability classes. The elevated central part of the study area displayed ‘Low’ aquifer vulnerability. The vulnerability map shows a relatively greater risk imposed on the northeastern part of the NSSA due to the larger pollution potential of intensive vegetable cultivation. Depth-to-water, topography and hydraulic conductivity parameters were found to be more effective in assessing aquifer vulnerability.  相似文献   

10.
In this paper, groundwater aquifer vulnerability map has been developed by incorporating the major geological and hydro-geological factors that affect and control the groundwater contamination using GIS based DRASTIC model. This work demonstrates the potential of GIS to derive a map by overlying various spatially referenced digital data layers that portrays cumulative aquifer sensitivity ratings across the Kathmandu Valley, Nepal, providing a relative indication of groundwater vulnerability to contamination. In fact, the groundwater is the major natural resources in Kathmandu for drinking purpose. The decline in groundwater levels due to the over exploitation and thus extracted water from shallow aquifer has been contaminated by the infiltration of pollutants from polluted river and land surface is continuous and serious. As the demand for water for human and industrial use has escalated and at the same time, the engineering and environmental costs are much higher for new water supplies than maintaining the existing sources already in use. Management of groundwater source and protecting its quality is therefore essential to increase efficient use of existing water supplies. Aquifer vulnerability maps developed in this study are valuable tools for environmental planning and predictive groundwater management. Further, a sensitivity analysis has been performed to evaluate the influence of single parameters on aquifer vulnerability assessment such that some subjectivity can be reduced to some extent and then new weights have been computed for each DRASTIC parameters.  相似文献   

11.
Road salt is pervasively used throughout Canada and in other cold regions during winter. For cities relying exclusively on groundwater, it is important to plan and minimize the application of salt accordingly to mitigate the adverse effects of high chloride concentrations in water supply aquifers. The use of geospatial data (road network, land use, Quaternary and bedrock geology, average annual recharge, water-table depth, soil distribution, topography) in the DRASTIC methodology provides an efficient way of distinguishing salt-vulnerable areas associated with groundwater supply wells, to aid in the implementation of appropriate management practices for road salt application in urban areas. This research presents a GIS-based methodology to accomplish a vulnerability analysis for 12 municipal water supply wells within the City of Guelph, Ontario, Canada. The chloride application density (CAD) value at each supply well is calculated and related to the measured groundwater chloride concentrations and further combined with soil media and aquifer vadose- and saturated-zone properties used in DRASTIC. This combined approach, CAD-DRASTIC, is more accurate than existing groundwater vulnerability mapping methods and can be used by municipalities and other water managers to further improve groundwater protection related to road salt application.  相似文献   

12.
Groundwater, the most vital water resource being used for irrigation, domestic and industrial purposes is nowadays under severe threat of contamination. Groundwater contamination risk assessment is an effective tool for groundwater management. In the study, a DRASTIC model which is based on the seven hydrogeological parameters viz: depth of water, net-recharge, aquifer media, soil media, topography, impact of vadose zone and hydraulic conductivity was used to evaluate the groundwater pollution potentiality of upper Betwa watershed. ArcGIS was used to create the ground water vulnerability map by overlaying the seven layers. Based on groundwater vulnerability map, the watershed has been divided in three vulnerable zones viz; low vulnerability zone with 42.83 km2 of area, moderate with 369.21 km2 area and high having 270.96 km2 of area. Furthermore, the DRASTIC model has been validated by nitrate concentration over the area. Results of validation have shown that in low vulnerable zone, no nitrate contamination has been recorded. While in the moderate zone nitrate has been found in the range of 1.6-10ppm. However, in high vulnerable zone 11-40ppm of nitrate concentration in groundwater has been recorded, which proves that the DRASTIC model is applicable for the prediction of groundwater vulnerability in the watershed and in similar areas too.  相似文献   

13.
Sustainable development requires the management and preservation of water resources indispensable for all human activities. When groundwater constitutes the main water resource, vulnerability maps therefore are an important tool for identifying zones of high pollution risk and taking preventive measures in potential pollution sites. The vulnerability assessment for the Eocene aquifer in the Moroccan basin of Oum Er-Rabia is based on the DRASTIC method that uses seven parameters summarizing climatic, geological, and hydrogeological conditions controlling the seepage of pollutant substances to groundwater. Vulnerability maps were produced by using GIS techniques and applying the “generic” and “agricultural” models according to the DRASTIC charter. Resulting maps revealed that the aquifer is highly vulnerable in the western part of the basin and areas being under high contamination risk are more extensive when the “agricultural” model was applied.  相似文献   

14.
Groundwater aquifer vulnerability has been assessed by incorporating the major geological and hydrogeological factors that affect and control the groundwater contamination using GIS-based DRASTIC model along with solute transport modeling. This work demonstrates the potential of GIS to derive a vulnerability map by overlying various spatially referenced digital data layers (i.e., depth to water, net recharge, aquifer media, soil media, topography, the impact of vadose zone and hydraulic conductivity) that portrays cumulative aquifer sensitivity ratings in Kishangarh, Rajasthan. It provides a relative indication of groundwater aquifer vulnerability to contamination. The soil moisture flow and solute transport regimes of the vadose zone associated with specific hydrogeological conditions play a crucial role in pollution risk assessment of the underlying groundwater resources. An effort has been made to map the vulnerability of shallow groundwater to surface pollutants of thestudy area, using soil moisture flow and contaminant transport modeling. The classical advection-dispersion equation coupled with Richard’s equation is numerically simulated at different point locations for assessing the intrinsic vulnerability of the valley. The role of soil type, slope, and the land-use cover is considered for estimating the transient flux at the top boundary from daily precipitation and evapotranspiration data of the study area. The time required by the solute peak to travel from the surface to the groundwater table at the bottom of the soil profile is considered as an indicator of avulnerability index. Results show a high vulnerability in the southern region, whereas low vulnerability is observed in the northeast and northern parts. The results have recognized four aquifer vulnerability zones based on DRASTIC vulnerability index (DVI), which ranged from 45 to 178. It has been deduced that approximately 18, 25, 34, and 23% of the area lies in negligible, low, medium and high vulnerability zones, respectively. The study may assist in decision making related to theplanning of industrial locations and the sustainable water resources development of the selected semi-arid area.  相似文献   

15.
An extension to the DRASTIC model is proposed in order to assess aquifer vulnerability to pollution. In contrast to the DRASTIC model, which considers the unsaturated and saturated zones together and computes a global intrinsic vulnerability index, the suggested approach discriminates between the aquifer vertical vulnerability (a concept related to the pollutant percolation) and the groundwater susceptibility (a concept that depends on the behaviour and uses of the groundwater). This approach is applied to the Haouz aquifer (Morocco) that supplies water to the Marrakech area. This aquifer is widely overexploited and there is evidence that the groundwater quality is threatened by various sources of pollution. Evaluation of the vertical vulnerability indicates that the aquifer mainly presents a moderate-to-weak vertical vulnerability. The zones potentially most favourable to pollutant percolation are mainly located in Central Haouz, along or near the surface wadis. The aquifer susceptibility is high in places located near the N’Fis, Baaja and Issil wadis. Everywhere else, low-to-moderate susceptibility is observed. This new approach therefore enables areas of vertical vulnerability and areas of susceptibility to be delineated separately. As a result, it constitutes a valuable decision-making tool for optimising the management of aquifer water resources and land-use planning.  相似文献   

16.
Groundwater plays a key role in arid regions as the majority of water is supplied by it. Groundwater pollution is a major issue, because it is susceptible to contamination from land use and other anthropogenic impacts. A study was carried out to build a vulnerability map for the Ordos Plateau using the DRASTIC model in a GIS environment. The map was designed to show the areas of the highest potential for groundwater pollution based on hydrogeological conditions. Seven environmental parameters, such as depth to water table, net recharge, aquifer media, soil media, topography, impact of the vadose zone media, and hydraulic conductivity of the aquifer, were incorporated into the DRASTIC model and GIS was used to create a groundwater vulnerability map by overlaying the available data. The results of this study show that 24.8 % of the study area has high pollution potential, 24.2 % has moderate pollution potential, 19.7 % has low pollution potential, and the remaining 31.3 % of the area has no risk of groundwater pollution. The regional distribution of nitrate is well correlated with the DRASTIC vulnerability index. In contrast to this, although the DRASTIC model indicated that the western part had no risk, nitrate concentrations were higher in some of these areas. In particular, higher nitrate concentrations were recorded along river valleys and around lakes, such as the Mulin River valley. This is mainly caused by the intensive agricultural development and favorable conditions for recharge along river valleys.  相似文献   

17.
A detailed hydrogeological and hydrochemical study was carried out in Yamuna-Krishni sub-basin which is a part of the vast central Ganga plain. Groundwater is the major source of water supply for agricultural, domestic and industrial uses. The excess use of groundwater has resulted in depletion of water levels. The groundwater quality, too, has deteriorated in areas dominated by industrial activity. This has led to the preparation of a groundwater vulnerability map in relation to contamination. Groundwater vulnerability maps are valuable derivative maps that show, quantitatively or qualitatively, certain characteristics of the sub-surface environment that determine vulnerability of groundwater to contamination. The modified DRASTIC method was used to prepare vulnerability map. The parameters like depth to water, net recharge, aquifer media, soil media, impact of vadose zone, hydraulic conductivity and land use pattern, owing to its bearing on groundwater regime, were considered to prepare vulnerability map. The vulnerability index is computed as the sum of the products of weight and rating assigned to each of the input considered as above. The vulnerability index ranges from 140 to 180, and is classified into four classes i.e. 140–150, 150–160, 160–170 and 170–180 corresponding to low, medium, high and very high vulnerability zones respectively. Using this index, a groundwater vulnerability potential map was generated which shows that 7%, 40% and 53% of the study area falls in low, medium and high to very high vulnerability zones respectively. The map, thus generated, can be used as a tool for protection and management of aquifers from contamination.  相似文献   

18.
The area of Thal Doab is located in the Indus Basin and is underlain by a thick alluvial aquifer called the Thal Doab aquifer (TDA). The TDA is undergone intense hydrological stress owing to rapid population growth and excessive groundwater use for livestock and irrigated agricultural land uses. The potential impact of these land uses on groundwater quality was assessed using a DRASTIC model in a Geographic Information System environment. Seven DRASTIC thematic maps were developed at fixed scale and then combined into a groundwater vulnerability map. The resultant vulnerability index values were grouped into four zones as low, moderate, high and very high. The study has established that 76% of the land area that is underlain by the TDA has a high to very high vulnerability to groundwater contamination mainly because of a thin soil profile, a shallow water table and the presence of soils and sediments with high hydraulic conductivity values. In addition, only 2 and 22% of the total area lie in low and moderate vulnerability zones, respectively. The outcomes of this study can be used to improve the sustainability of the groundwater resource through proper land-use management.  相似文献   

19.
As a systematic approach to waste disposal site screening for groundwater pollution protection, the DRASTIC system developed by the US Environmental Protection Agency (USEPA), was introduced at Younggwang County in Korea. Hydrogeological spatial databases for the system include information on depth to water, net recharge, aquifer media, soil media, topographic slope, hydraulic conductivity and lineament. Using the databases, the DRASTIC system and a GIS, the regional groundwater pollution vulnerability of the study area was assessed. The fracture density extracted from lineament maps was added to the DRASTIC system to take into account the preferential migration of contaminants through fractures. From the results of the study, a degree of groundwater pollution vulnerability through the study area was easily interpreted, and waste disposal sites could be screened for groundwater protection.  相似文献   

20.
Groundwater resources are vulnerable to contamination especially in shallow aquifers. The aquifer hydrogeological parameters and the Land Uses category combinations lead to subdivide areas according to their contamination likelihood. In arid and semi-arid regions, shallow aquifers are more exposed to groundwater contamination due to high population densities (extensive uses) and agricultural activities (nitrate contamination). Moreover, these regions are characterized by low rainfall and high evaporation. Furthermore, the spread of farmland, industrial and domestic sectors, is the principal contaminant producer which threats the groundwater quality. To protect these limited resources, the groundwater vulnerability assessment was developed in Maritime Djeffara shallow aquifer (Southeastern Tunisia). The study area is essentially occupied by agricultural areas (intensive use of chemical fertilizers) in addition to the discharge of industrial zones. The main objective of this study is to assess the aquifer vulnerability using the Susceptibility Index (SI) method as a specific vulnerability model. The results show that the study area is classified into five classes of vulnerability: very low, low, medium, high, and very high (1.54, 20, 41.54, 35.9, and 1.02%, respectively) with an uneven spatial distribution. The risk results exhibit three degrees: low, moderate, and high. The validation of the vulnerability model was performed by using salinity values and nitrate concentrations with a correlation coefficient of about 57 and 55%, respectively. This study could serve as a scientific basis for sustainable land use planning and groundwater management in the study area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号