首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The effective control of the odor pollutants of benzene series (BTEX) is critical for cleaner production in the sewage sludge drying process. Based on the determination of BTEX emission and its contents in four types of sludge (dyeing, leather-tanning, paper mill and municipal), its release characteristics are investigated under drying conditions in the lab and their potential effects on exposed individuals are also evaluated. Results show that in the range of 50–300°C, the total BTEX release from the four types of sludge varies from 4.20 to 161.90 μg m−3, suggesting that the emission rate of BTEX is in control of the drying temperature. The emission rate accelerates significantly after drying temperature exceeds 150°C, whereas only 5.09% of the total emission is collected below 100°C. A significant positive correlation between BTEX emission and its total contents in sludge at different drying temperatures is observed. Therefore, BTEX content of sludge also determines its release. The sludge drying process under 150–300°C conditions would pose a benzene-related carcinogenic risk to exposed individuals, especially to females. Application of low-temperature drying techniques in sludge disposal is necessary to control BTEX emission and thereby reduces the carcinogenic risks.  相似文献   

2.
Fluorine in coal is important because of not only its association with indicators of mineralization, but also environmental concerns relevant to the health of plants, animals and humans. In order to analyze the fluorine emission characteristics, this paper summarizes the laboratory data from a number of Chinese literatures of fluorine emission of coal and clay minerals for high-temperature heating. The range of temperature to which specimens have been exposed is room temperature to 1200 °C. The variation of fluorine emission has a significant increase with increasing temperature between the ranges 400–1200 °C, especially above 600 °C. Besides, environmental humidity has obvious influence on fluorine releasing.  相似文献   

3.
The behaviour of two types of limestones having a different porosity, Maastricht and Euville limestone, laden with aqueous solutions of equimolar mixtures of sodium sulphate/sodium nitrate or sodium sulphate/potassium sulphate was investigated. At 50 % RH, the efflorescences on Maastricht samples during the first 30 h of drying consisted of similar amounts of thenardite and darapskite in case of an equimolar mixture of sodium sulphate/sodium nitrate while those on Euville samples under the same conditions contained mainly darapskite. After drying at 20 °C and 85 % RH, thenardite, formed through the precipitation and dehydration of mirabilite, was mostly detected in the efflorescences on both Maastricht and Euville samples. Re-wetting by increasing the RH from 50 to 85 % resulted in substantial damage on Maastricht stone laden with an equimolar mixture of sodium sulphate/sodium nitrate as a consequence of high supersaturation of mirabilite. In case of a contamination with equimolar amounts of sodium sulphate and potassium sulphate, the efflorescence on both limestones during drying at 50 % RH contained predominantly aphthitalite. The observed crystallisation behaviour is compared to the theoretical behaviour. The results indicate a strong influence of stone properties on the crystallisation behaviour of salt mixtures.  相似文献   

4.
Variations in the mechanical properties (compressive strength, elastic modulus, tensile strength, and fracture toughness) of granite were analyzed as functions of temperature. It was found that above 200 °C, tensile strength and fracture toughness tended to decrease with temperature, while variations in the compressive strength and elastic modulus demonstrated decreasing trends when the heating temperature exceeded 400 °C. The temperature ranges of room temperature—200 and above 600 °C—corresponded to an undamaged state and strongly/completely damaged state, respectively. It is suggested that 400 °C might be a critical threshold of thermal damage to granite. Based on results of statistical tests, a sharp decrease in mechanical properties can be recognized, accompanied by a drastic growth in peaking strain and acoustic emission rate. This phenomenon may be associated with the α/β phase transition of quartz.  相似文献   

5.
Differentiation of mantle-derived, hydrous, basaltic magmas is a fundamental process to produce evolved intermediate to SiO2-rich magmas that form the bulk of the middle to shallow continental and island arc crust. This study reports the results of fractional crystallization experiments conducted in a piston cylinder apparatus at 0.7 GPa for hydrous, calc-alkaline to arc tholeiitic magmas. Fractional crystallization was approached by synthesis of starting materials representing the liquid composition of the previous, higher temperature experiment. Temperatures ranged from near-liquidus at 1,170 °C to near-solidus conditions at 700 °C. H2O contents varied from 3.0 to more than 10 wt%. The liquid line of descent covers the entire compositional range from olivine–tholeiite (1,170 °C) to high-silica rhyolite (700 °C) and evolves from metaluminous to peraluminous compositions. The following crystallization sequence has been established: olivine → clinopyroxene → plagioclase, spinel → orthopyroxene, amphibole, titanomagnetite → apatite → quartz, biotite. Anorthite-rich plagioclase and spinel are responsible for a marked increase in SiO2-content (from 51 to 53 wt%) at 1,040 °C. At lower temperatures, fractionation of amphibole, plagioclase and Fe–Ti oxide over a temperature interval of 280 °C drives the SiO2 content continuously from 53 to 78 wt%. Largest crystallization steps were recorded around 1,040 °C and at 700 °C. About 40 % of ultramafic plutonic rocks have to crystallize to generate basaltic–andesitic liquids, and an additional 40 % of amphibole–gabbroic cumulate to produce granitic melts. Andesitic liquids with a liquidus temperature of 1,010 °C only crystallize 50 % over an 280 °C wide range to 730 °C implying that such liquids form mobile crystal mushes (<50 % crystals) in long-lived magmatic systems in the middle crust, allowing for extensive fractionation, assimilation and hybridization with periodic replenishment of more mafic magmas from deeper magma reservoirs.  相似文献   

6.
The salt assemblages precipitated during evaporation of concentrated brine collected from Gasikule Salt Lake (GSL) were studied to better understand the formation of potassium deposits in the Qaidam Basin. The study included isothermal evaporation at 25 °C in the laboratory and solar evaporation in the ponds at GSL field. Brines increased in density and became moderately acidic (pH?≈?5.30) while major ion geochemistry and precipitate mineralogy all showed broad agreement between both systems. Four salt assemblages were identified in the isothermal evaporation experiment: halite?→?halite?+?hexahydrite?→?halite?+?bischofite?+?carnallite?→?bischofite. Alternately, three salt assemblages were recognized in the solar evaporation: halite?→?halite?+?epsomite?+?carnallite?→?halite?+?carnallite?+?bischofite. The key difference in salt assemblages between the two systems is attributed to differences in relative humidity and temperature conditions. Although the GSL has deep spring inflow recharge, the high abundance of MgSO4 salts demonstrates that the salt assemblages are similar to normal seawater evaporation. Thus, different proportions of deep spring inflow and river water could form both MgSO4-deficient potassium evaporite and normal seawater potassium evaporites. Therefore, nonmarine water may form diverse potassium evaporite deposits in continental basins when the geological structure as well as hydrogeological and climatic conditions is appropriate.  相似文献   

7.
Fluid inclusion studies in combination with hydrogen, oxygen and sulphur isotope data provide novel insights into the genesis of giant amethyst-bearing geodes in Early Cretaceous Paraná continental flood basalts at Amestita do Sul, Brazil. Monophase liquid inclusions in colourless quartz, amethyst, calcite, barite and gypsum were analysed by microthermometry after stimulating bubble nucleation using single femtosecond laser pulses. The salinity of the fluid inclusions was determined from ice-melting temperatures and a combination of prograde and retrograde homogenisation temperatures via the density maximum of the aqueous solutions. Four mineralisation stages are distinguished. In stage I, celadonite, chalcedony and pyrite formed under reducing conditions in a thermally stable environment. Low δ34SV-CDT values of pyrite (?25 to ?32?‰) suggest biogenic sulphate reduction by organotrophic bacteria. During the subsequent stages II (amethyst, goethite and anhydrite), III (early subhedral calcite) and IV (barite, late subhedral calcite and gypsum), the oxidation state of the fluid changed towards more oxidising conditions and microbial sulphate reduction ceased. Three distinct modes of fluid salinities around 5.3, 3.4 and 0.3 wt% NaCl-equivalent characterise the mineralisation stages II, III and IV, respectively. The salinity of the stage I fluid is unknown due to lack of fluid inclusions. Variation in homogenisation temperatures and in δ18O values of amethyst show evidence of repeated pulses of ascending hydrothermal fluids of up to 80–90 °C infiltrating a basaltic host rock of less than 45 °C. Colourless quartz and amethyst formed at temperatures between 40 and 80 °C, while the different calcite generations and late gypsum precipitated at temperatures below 45 °C. Calculated oxygen isotope composition of the amethyst-precipitating fluid in combination with δD values of amethyst-hosted fluid inclusions (?59 to ?51?‰) show a significant 18O-shift from the meteoric water line. This 18O-shift, high salinities of the fluid inclusions with chloride-sulphate composition, and high δ34S values of anhydrite and barite (7.5 to 9.9?‰) suggest that sedimentary brines from deeper parts of the Guaraní aquifer system must have been responsible for the amethyst mineralisation.  相似文献   

8.
This paper presents the results of experiments on the physicochemical conditions for the formation of picromerite in the five-component brine system K-Na-Mg-Cl-SO4-H2O and the process of isothermal evaporation-crystallization of picromerite from brines. The metastable phase fields of picromerite at 15.10 and 5°C and its stable equilibrium phase field at -5°C have been established. In addition. the phase equilibrium relationships have also been established for other salt minerals. The lower limit of formation temperature of picromerite has been deduced on the basis of experimental results. The isothermal evaporation crystallization path of the invariant assemblage (point D) of picromerite, epsomite. sylvite and halite at 25, 15, 10 and 5°C has been revealed. Furthermore, some controversial problems are approached concerning the 25°C “solar” diagram and the 25°C metastable phase diagram of this system.  相似文献   

9.
The generation of huge amount of liquid waste known as palm oil mill effluent is a major problem in oil palm industry. Meanwhile, anaerobic biodegradation of such organic effluent at thermophilic condition is a promising treatment technology due to its high efficiency. However, storage and transportation of thermophilic mixed culture sludge are challenging due to constant biogas generation and heating requirement. Hence, drying of thermophilic sludge was conducted to obtain dormant thermophiles and thus enables easier handling. In this study, thermophilic sludge was dried using heat pump at 22 and 32 °C as well as hot air oven at 40, 50, 60, and 70 °C. Subsequently, quality of dried sludge was examined based on most probable number enumeration, chemical oxygen demand, and methane yield. Average drying rate was found to increase from 3.21 to 17.84 g H2O/m2 min as drying temperatures increases while average moisture diffusivity values ranges from 5.07 × 10?9 to 4.34 × 10?8 m2/s. Oven drying of thermophilic mixed culture resulted in highest chemical oxygen demand removal and lowest log reduction of anaerobes at 53.41% and 2.16, respectively, while heat pump drying resulted in the highest methane yield and lowest log reduction of methanogens at 53.4 ml CH4/g COD and 2.09, respectively. To conclude, heat pump at 22 °C was most suitable drying technique for thermophilic mixed culture as the original methane-producing capability was largely retained after drying, at a slightly lower yet still comparable chemical oxygen demand removal when palm oil mill effluent was treated with the rehydrated culture.  相似文献   

10.
Deterioration of grottoes induced by the negative impacts of the variable temperature and moisture conditions has been an important issue in the conservation of heritage sites in China. In this case study, the spatial distributions and varying patterns of moisture and temperature in the caves of Yungang Grottoes, China, were investigated. The relative air humidity was approximately 100 % in the deep zone of the unsaturated surrounding rocks of the grottoes where the temperature remained almost steady at around 9.4 °C. However, the indoor air temperature, relative humidity, and rock surface temperature in the caves varied significantly because of the active exchange of the air with the outside atmosphere. The condensation water appeared on cave walls in the summer when the dew point in the air was higher than the rock surface temperature. Preliminary assessments with a special collection device indicated that the thickness of the transient condensation water could reach 0.03–0.10 mm on the back wall of a cave. The occurrence of this condensation water is expected to worsen salt deterioration of the sculptures in the grottoes. As revealed by long-term observations, a wooden building in front of a cave can weaken the indoor air temperature fluctuation and reduce the condensation water, and consequently, prevent the negative effects of the microclimate for the sculptures.  相似文献   

11.
Arenal volcano is nearly unique among arc volcanoes with its 42 year long (1968–2010) continuous, small-scale activity erupting compositionally monotonous basaltic andesites that also dominate the entire, ~7000 year long, eruptive history. Only mineral zoning records reveal that basaltic andesites are the result of complex, open-system processes deriving minerals from a variety of crystallization environments and including the episodic injections of basalt. The condition of the mafic input as well as the generation of crystal-rich basaltic andesites of the recent, 1968–2010, and earlier eruptions were addressed by an experimental study at 200 MPa, 900–1,050 °C, oxidizing and fluid-saturated conditions with various fluid compositions [H2O/(H2O + CO2) = 0.3–1]. Phase equilibria were determined using a phenocryst-poor (~3 vol%) Arenal-like basalt (50.5?wt% SiO2) from a nearby scoria cone containing olivine (Fo92), plagioclase (An86), clinopyroxene (Mg# = 82) and magnetite (Xulvö = 0.13). Experimental melts generally reproduce observed compositional trends among Arenal samples. Small differences between experimental melts and natural rocks can be explained by open-system processes. At low pressure (200 MPa), the mineral assemblage as well as the mineral compositions of the natural basalt were reproduced at 1,000 °C and high water activity. The residual melt at these conditions is basaltic andesitic (55 wt% SiO2) with 5 wt% H2O. The evolution to more evolved magmas observed at Arenal occurred under fluid-saturated conditions but variable fluid compositions. At 1,000 °C and 200 MPa, a decrease of water content by approximately 1 wt% induces significant changes of the mineral assemblage from olivine + clinopyroxene + plagioclase (5 wt% H2O in the melt) to clinopyroxene + plagioclase + orthopyroxene (4 wt% H2O in the melt). Both assemblages are observed in crystal-rich basalt (15 vol%) and basaltic andesites. Experimental data indicate that the lack of orthopyroxene and the presence of amphibole, also observed in basaltic andesitic tephra units, is due to crystallization at nearly water-saturated conditions and temperatures lower than 950 °C. The enigmatic two compositional groups previously known as low- and high-Al2O3 samples at Arenal volcano may be explained by low- and high-pressure crystallization, respectively. Using high-Al as signal of deeper crystallization, first magmas of the 1968–2010 eruption evolved deep in the crust and ascent was relatively fast leaving little time for significant compositional overprint by shallower level crystallization.  相似文献   

12.
This paper presents an investigation of the decay of bricks in the chancel vault of Brarup Church located close to the Baltic Sea at the island of Falster in Denmark. The aim of the work was to study a peculiar phenomenon in order to prescribe appropriate treatment. Although protected by a lime plaster, some bricks were pulverized up to 50 mm deep from the topside. The decay occurred in a random pattern over the structure, with undamaged bricks positioned next to deteriorated bricks. The brick structure was investigated by Mercury Intrusion Porosiometry. All bricks had a majority of pores in the range 1–10 μm, but the decayed bricks also had a fraction of pores with a diameter less than 100 nm. The difference may be due to a lower firing temperature, or it may be a consequence of the salt decay. Salt analysis proved that the deteriorated bricks were contaminated with sodium chloride, which could have degraded the brick structure. However, the powdering of the bricks may be caused by the precipitation of gypsum, which was found in the brick powder but not in the deteriorated brick itself. According to calculations with the computer program RUNSALT, the precipitation of gypsum is much influenced by the presence of sodium chloride. The gypsum precipitates due to changes in temperature between 0 and 30°C and variations in relative humidity between 75 and 95%. Seasonal climatic changes in the attic were measured to cover this interval. Perhaps sodium chloride acted as a catalyst that facilitated the accumulation and precipitation of gypsum at the topside of the bricks. A sacrificial plaster, which is the traditional treatment for salt contaminated structures, would not prevent such decay.  相似文献   

13.
Impacts of subsurface heat storage on aquifer hydrogeochemistry   总被引:3,自引:3,他引:0  
The use of shallow aquifers for subsurface heat storage in terms of energy management and building climatisation can lead to a temperature rise in the aquifer to 70 °C and above. The influence of temperature changes on individual mineral and sorption equilibria, reaction kinetics and microbial activity is largely known. However, the impact of heating to temperatures as high as 70 °C on the aquifer overall system has not been quantified yet. Temperature-related changes in sediment ion exchange behaviour, dimension and rates of mineral dissolution and precipitation as well as microbially enhanced redox processes were studied in column experiments using aquifer sediment and tap water at 10, 25, 40, and 70 °C. At 70 °C, a change in sediment sorption behaviour for cations and organic acids was postulated based on temporal changes in pH, magnesium, and potassium concentration in the experimental solution. No clear changes of pH, TIC and major cations were found at 10–40 °C. Redox zoning shifted from oxic conditions towards nitrate and iron(III) reducing conditions at 25 and 40 °C and sulphate reducing conditions at 70 °C. This was attributed to (a) a temperature-related increase in microbial reduction activity, and (b) three times higher release of organic carbon from the sediment at 70 °C compared to the lower temperatures. The findings of this study predict that a temperature increase in the subsurface up to 25 °C and above can impair the usability of ground water as drinking and process water, by reducing metal oxides and thus possibly releasing heavy metals from the sediment. Generally, at 70 °C, where clear cation and organic carbon desorption processes were observed and sulphate reducing conditions could be achieved, a site-specific assessment of temperature effects is required, especially for long-term operations of subsurface heat storage facilities.  相似文献   

14.
A set of experiments have been performed on volcanic materials from Etna, Stromboli and Vesuvius in order to evaluate how the exposure to thermal and redox conditions close to that of active craters affects the texture and composition of juvenile pyroclasts. Selected samples were placed within a quartz tube, in presence of air or under vacuum, and kept at T between 700 and 1,130 °C, for variable time (40 min to 12 h). Results show that reheating reactivates the melt, which, through processes of chemical and thermal diffusion, reaches new equilibrium conditions. In all the experiments performed at T = 700–750 °C, a large number of crystal nuclei and spherulites grows in the groundmass, suggesting conditions of high undercooling. This process creates textural heterogeneities at the scale of few microns but only limited changes of groundmass composition, which remains clustered around that of the natural glasses. Reheating at T = 1,000–1,050 °C promotes massive groundmass crystallization, with a different mineral assemblage as a function of the redox conditions. Morphological modifications of clasts, from softening to sintering as temperature increases, occur under these conditions, accompanied by progressive smoothing of external surfaces, and a reduction in size and abundance of vesicles, until the complete obliteration of the pre-existing vesicularity. The transition from sintering to welding, characteristic of high temperature, is influenced by redox conditions. Experiments at T = 1,100–1,130 °C and under vacuum produce groundmass textures and glass compositions similar to that of the respective starting material. Collapse and welding of the clasts cause significant densification of the whole charge. At the same temperature, but in presence of air, experimental products at least result sintered and show holocrystalline groundmass. In all experiments, sublimates grow on the external surfaces of the clasts or form a lining on the bubble walls. Their shape and composition is a function of temperature and fO2 and the abundance of sublimates shows a peak at 1,000 °C. The identification of the features recorded by pyroclasts during complex heating–cooling cycles allows reconstructing the complete clasts history before their final emplacement, during weakly explosive volcanic activity. This has a strong implication on the characterization of primary juvenile material and on the interpretation of eruption dynamics.  相似文献   

15.
《International Geology Review》2012,54(10):1226-1245
Monzogabbro stocks including felsic enclaves (monzosyenite) around the Bafra (Samsun) area at the western edge of the Eastern Pontides cut Eocene-aged volcanic and sedimentary units. The monzogabbros contain plagioclase, alkali feldspar, clinopyroxene, olivine, hornblende, biotite, apatite, and iron-titanium oxides, whereas the felsic enclaves contain alkali feldspar, plagioclase, hornblende, biotite, clinopyroxene, and iron-titanium oxides. Mineral chemistry data suggest that magmas experienced hydrous and anhydrous crystallization in deep and shallow crustal magma chambers. Several thermobarometers were used to estimate temperatures of crystallization and emplacement for the mafic and felsic magmas. Clinopyroxene thermobarometry yielded 1100–1232 C and 5.9–8.1 kbar for monzogabbros, and 931–1109 C and 1.8–6.9 kbar for felsic enclaves. Hornblende thermobarometry and oxygen fugacity estimates reveal 739–971°C, 7.0–9.2 kbar and 10?9.71 for monzogabbros and 681–928°C, 3.0–6.1 kbar and 10?11.34 for felsic enclaves. Biotite thermobarometry shows elevated oxygen fugacity varying from 10?18.9–10?11.07 at 632–904°C and 1.29–1.89 kbar for monzogabbros, to 10?15.99 –10?11.82 at 719–873°C and 1.41–1.77 kbar for felsic enclaves. The estimated zircon and apatite saturation temperatures are 504–590°C and 693–730°C for monzogabbros and 765–775°C and 641–690°C for felsic enclaves, respectively. These data imply that several phases in the gabbroic and syenitic magmas did not necessarily crystallize simultaneously and further indicate that the mineral compositions may register intervals of disequilibrium crystallization. Besides, thermobarometry contrasts between monzogabbro and felsic enclave may be partly a consequence of extended interactions between the mafic and felsic magmas by mixing/mingling and diffusion. Additionally, the hot felsic magma was close to liquidus conditions (crystallinity < 30%) when injected into cooler mafic magma (crystallinity > 50%), and thus, the monzogabbro stocks reflect hybrid products from the mingling and incomplete mixing of these two magmas.  相似文献   

16.
We conducted reversed deliquescence experiments in saturated NaCl–NaNO3–H2O, KNO3–NaNO3–H2O, and NaCl–KNO3–H2O systems from 90 to 120°C as a function of relative humidity and solution composition. NaCl, NaNO3, and KNO3 represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV. Discrepancy between model prediction and experiment can be as high as 8% for relative humidity and 50% for dissolved ion concentration. The discrepancy is attributed primarily to the use of 25°C models for Cl–NO3 and K–NO3 ion interactions in the current Yucca Mountain Project high-temperature Pitzer model to describe the nonideal behavior of these highly concentrated solutions.  相似文献   

17.
Most igneous charnockites are interpreted to have crystallized at hot and dry conditions, i.e. at >800?°C and <3 wt.% H2O and with an important CO2 component in the system. These charnockites are metaluminous to weakly peraluminous and their formation involves a significant mantle-derived component. This study, in contrast, investigates the crystallization conditions of strongly peraluminous, metasediment-sourced charnockites from the Qinzhou Bay Granitic Complex, South China. To constrain the temperature-melt H2O crystallization paths for the studied peraluminous charnockites, petrographic characterization was combined with fluid inclusion compositional data, mineral thermometry, and thermodynamic modelling. The uncertainties of the thermodynamic modelling in reconstructing the crystallization conditions of the granitic magmas have been evaluated by comparison between modelled and experimental phase relations for a moderately evolved, peraluminous granite (~70 wt.% SiO2). The comparison suggests that the modelling reproduces the experimentally derived phase saturation boundaries with uncertainties of 20–60?°C and 0.5–1 wt.% H2O for systems with ≤1–2 wt.% initial melt H2O at ~0.2 GPa. For the investigated natural systems, the thermometric estimates and modelling indicate that orthopyroxene crystallized at relatively low temperature (750–790?±?30?°C) and moderately high to high melt H2O content (3.5–5.6?±?0.5 wt.%). The charnockites finally solidified at relatively “cold” and “wet” conditions. This suggests that thermodynamic modelling affords a possible approach to constrain charnockite crystallization as tested here for peraluminous, moderately low pressure (≤0.3 GPa), and overall H2O-poor systems (≤1–2 wt.% H2O total), but yields results with increasing uncertainty for high-pressure or H2O-rich granitic systems.  相似文献   

18.
Oxidation of magnetite pellet concentrates (from LKAB, Sweden) during drying and storage was studied using thermogravimetric analysis (TGA). The Fe2+content of a standard LKAB pellet feed decreased by 0.2% during heat treatment at 105 °C for 2 days. The results indicate that magnetite concentrates of pelletizing fineness already start to oxidize to γ-hematite during drying at 105 °C, although 105 °C is recommended by ISO 7764 and ISO 3087 and given as the maximum allowable drying temperature in ISO 3082. The importance of drying time for the amount of magnetite oxidized should also be recognized, but is not mentioned in the ISO standards. The sensitivity of magnetite particles for oxidation during drying could not be predicted by measuring the BET surface area. A simple isothermal TGA run gives exact experimental data and is recommended as a standard procedure before choosing the drying temperature for magnetite concentrate samples.Oxidation during storage at room temperature was observed as well. The Fe2+content in a standard Luossavaara-Kiirunavaara (LKAB) pellet feed decreased by 0.3% Fe2+during 4 years of storage at room temperature. Oxidation during storage was completely hindered when the samples were stored in a freezer at −50 °C. Therefore, freezer storage is recommended for all magnetite reference materials. These materials are used over several years and are especially susceptible to oxidation because they are usually finely ground and high in Fe2+content. The results also show that if the magnetite sample has partly oxidized to γ-hematite, the oxidation curve obtained by TGA will overestimate the Fe2+content of the sample, if background correction is necessary.  相似文献   

19.
The Oligocene Yao’an syenite porphyry, associated with gold mineralisation, and the Machangqing alkali granite porphyry–monzonite porphyry, associated with Cu mineralisation, belong to the Red River–Jinshajiang alkaline igneous belt that formed in a continental setting in southwestern China. A study of the mineral chemistry of major silicate minerals in these two mineralised intrusions provides insights into their overall crystallisation conditions. The temperature and pressure conditions, derived from amphibole–plagioclase and perthite–plagioclase geothermometry and Al-in-amphibole barometry, suggest that the Yao’an intrusion crystallised at around 820?±?50°C and 0.9–1.3 kbar, whereas the Machangqing intrusion crystallised at around 730?±?50°C and 2.2–2.8 kbar. The higher temperature and lower pressure of crystallisation for the Yao’an intrusion relative to the Machangqing intrusion indicates that it was emplaced at a shallower crustal level. Based on biotite composition, the two intrusions formed under imposed oxygen fugacities above the Ni–NiO buffer (NNO), and the Yao’an intrusion crystallised under more oxidising conditions than the Machangqing intrusion. The results show that the intrusions associated with Cu–Au mineralisation in the Red River–Jinshajiang alkaline igneous belt were emplaced at a relatively high fO2, which, together with the weakly fractionated magma, favoured Au enrichment relative to Cu in the belt.  相似文献   

20.
Crystallization experiments of basaltic andesite mafic endmember from the 24 ka Lower Pollara eruption (Salina, Aeolian Islands, Italy) were investigated at 200 MPa, 950–1100 °C, in the H2O activity (aH2O) range ~0.3 to 1, and at two ranges of oxygen fugacity (fO2) between ~FMQ to FMQ+1 and ~FMQ+2 to FMQ+3.3 (log bars, FMQ is fayalite-magnetite-quartz). Comparison of the produced phase assemblages and phase compositions with the natural sample reveals that the storage conditions were ~1050 °C, ~2.8 wt% H2O in the melt (aH2O ~0.5), and relatively oxidizing (~FMQ+2.5). The composition of plagioclase in the groundmass indicates a period of cooling to ≤950 °C. The overall differentiation trends of the Salina volcanics can be explained by fractional crystallization close to H2O saturated conditions (~5 wt% H2O in the melt at 200 MPa) and most likely by accumulation of plagioclase, i.e., in basaltic andesites, and by various degree of mixing–mingling between the corresponding differentiates. The slightly elevated K2O contents of the most mafic basaltic andesites that can be found in the lowermost unit of the Lower Pollara pyroclastics reveal earlier processes of moderately hydrous fractional crystallization at higher temperature (>~1050 °C). Fractional crystallization with decreasing influence of H2O causes a moderate decrease of MgO and a significant increase of K2O relative to SiO2 in the residual liquids. It is exemplarily shown that the crystallization of SiO2-rich phases at high temperature and low aH2O of only moderately K2O-rich calc-alkaline basalts can produce shoshonitic and high potassic rocks similar to those of Stromboli and Volcano. This suggests that the observed transition from calc-alkaline to shoshonitic and high potassic volcanism at the Aeolian Arc over time can be initiated by a general increase of magmatic temperatures and a decrease of aH2O in response to the extensional tectonics and related increase of heat flow and declining influence of slab-derived fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号