首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mapping the spatial distribution of soil nutrient contents from sample data has received much attention in the recent decade. Accurately mapping soil nutrients purely based on sample data, however, is difficult due to the sparsity and high cost of samples. Land use types usually influence the contents of soil nutrients at the local level and it is desirable to integrate such information into predictive mapping. The area-and-point kriging (AAPK) method, which was proposed recently, may provide an interpolation technique for such purposes. This study mapped the soil total nitrogen (TN) distribution of Hanchuan County, China, using AAPK with sample data (consisting of 402 points) and land use information. Ordinary kriging (OK) and residual kriging (RK) were compared to evaluate the performance of AAPK. Results showed that: (1) land use types had important impacts on the spatial distribution of soil TN; (2) measured data at 135 validation locations had stronger correlation with the data predicted by AAPK than by RK and OK, and the mean error and root mean square error with AAPK were lower than with RK and OK; and (3) AAPK generated smaller error variances than RK and OK did. This suggests that AAPK represents an effective method for increasing the interpolation accuracy of soil TN. It should be pointed out that some of the land use polygons used in this study are very large and complex, which might impact the effectiveness of AAPK in improving the prediction accuracy. Segmenting them into simple smaller areas might be helpful.  相似文献   

2.
Hydro-ecological modelers often use spatial variation of soil information derived from conventional soil surveys in simulation of hydro-ecological processes over watersheds at mesoscale (10–100 km2). Conventional soil surveys are not designed to provide the same level of spatial detail as terrain and vegetation inputs derived from digital terrain analysis and remote sensing techniques. Soil property layers derived from conventional soil surveys are often incompatible with detailed terrain and remotely sensed data due to their difference in scales. The objective of this research is to examine the effect of scale incompatibility between soil information and the detailed digital terrain data and remotely sensed information by comparing simulations of watershed processes based on the conventional soil map and those simulations based on detailed soil information across different simulation scales. The detailed soil spatial information was derived using a GIS (geographical information system), expert knowledge, and fuzzy logic based predictive mapping approach (Soil Land Inference Model, SoLIM). The Regional Hydro-Ecological Simulation System (RHESSys) is used to simulate two watershed processes: net photosynthesis and stream flow. The difference between simulation based on the conventional soil map and that based on the detailed predictive soil map at a given simulation scale is perceived to be the effect of scale incompatibility between conventional soil data and the rest of the (more detailed) data layers at that scale. Two modeling approaches were taken in this study: the lumped parameter approach and the distributed parameter approach. The results over two small watersheds indicate that the effect does not necessarily always increase or decrease as the simulation scale becomes finer or coarser. For a given watershed there seems to be a fixed scale at which the effect is consistently low for the simulated processes with both the lumped parameter approach and the distributed parameter approach.  相似文献   

3.
Geological mapping of the Vindhyan and Deccan Trap terrain around Jhalawar was accomplished by aerial photointerpretation with limited field checks in parts, by conventional field mapping for part of the area and also by interpretation of LANDSAT imagery. A comparative assessment of the data producing capability and accuracy of these methods is made from the case study. Major geological formations comprising Semri, Kaimur, Rewa and Bhander groups of Vindhyan supergroup, Deccan Trap and recent fluvial sediments are equally interpretable from all three level (i.e. ground, air and space) surveillance data. All the members and units are mappable on air photos and on ground but not on the LANSAT imagery. It is difficult to plot all the flows and flow units of Deccan Trap on a topographic base map during conventional field mapping but these are more or less separable on aerial photos. Structural trends are decipherable by photointerpretation but lineaments are well depicted on LANDSAT imagery. Physical and petrological characters of rocks can, however, only be studied in situ and by laboratory analysis of samples. Aerial photointerpretation techniques can be applied for geological mapping of Vindhyan and Deccan Trap terrain with high degree of confidence and reasonable accurate maps can be generated. LANDSAT imagery are useful for generation of small scale reconnalssance and lineament pattern maps. The best system of mapping such terrain would be photointerpretation with limited field check and collection of essential groundtruth and specimens for laboratory analysis along selected traverses thus minimising the time and cost of survey.  相似文献   

4.
This paper presents a case study of the utility of Landsat MSS imagery for soil resoruces mapping in Silent Valley and its environs covering about 33,000 sq. km. area. A collective approach involving monoscopic visual interpretation of Landsat imagery in conjunction with the lithological and topographical information supported by limited field check has been followed to prepare a soil map on 1:250,000 scale showing sub-groups/association of sub-groups. Future prospect of using spaceborne data for soil mapping has also been discussed.  相似文献   

5.
Soil Organic Carbon (SOC) is one of the key soil properties, but the large spatial variation makes continuous mapping a complex task. Imaging spectroscopy has proven to be an useful technique for mapping of soil properties, but the applicability decreases rapidly when fields are partially covered with vegetation. In this paper we show that with only a few percent fractional maize cover the accuracy of a Partial Least Square Regression (PLSR) based SOC prediction model drops dramatically. However, this problem can be solved with the use of spectral unmixing techniques. First, the fractional maize cover is determined with linear spectral unmixing, taking the illumination and observation angles into account. In a next step the influence of maize is filtered out from the spectral signal by a new procedure termed Residual Spectral Unmixing (RSU). The residual soil spectra resulting from this procedure are used for mapping of SOC using PLSR, which could be done with accuracies comparable to studies performed on bare soil surfaces (Root Mean Standard Error of Calibration = 1.34 g/kg and Root Mean Standard Error of Prediction = 1.65 g/kg). With the presented RSU approach it is possible to filter out the influence of maize from the mixed spectra, and the residual soil spectra contain enough information for mapping of the SOC distribution within agricultural fields. This can improve the applicability of airborne imaging spectroscopy for soil studies in temperate climates, since the use of the RSU approach can extend the flight-window which is often constrained by the presence of vegetation.  相似文献   

6.
为了提高高光谱影像分类精度,提出了一种基于生成式对抗网络的高光谱影像分类方法。生成式对抗网络由生成器、判别器和分类器3部分组成,其中生成器用于模拟高光谱样本的数据分布,生成特定类别的样本;判别器是一个二值分类器,用于判断输入的样本是否为真实数据;分类器用于对输入的样本进行分类。利用反向传播算法依次更新生成器、判别器和分类器的网络参数使损失函数最小,从而达到训练网络的目的。生成器和判别器能够模拟高光谱影像的样本分布来辅助训练分类器,因此能够提高高光谱影像的分类精度。分别采用Pavia大学和Salinas高光谱数据集进行分类试验,试验结果表明提出的分类方法能够在小样本条件下提高高光谱影像的分类精度。  相似文献   

7.
Complex categorical variables are usually classified into many classes with interclass dependencies, which conventional geostatistical methods have difficulties to incorporate. A two‐dimensional Markov chain approach has emerged recently for conditional simulation of categorical variables on line data, with the advantage of incorporating interclass dependencies. This paper extends the approach into a generalized method so that conditional simulation can be performed on grid point samples. Distant data interaction is accounted for through the transiogram – a transition probability‐based spatial measure. Experimental transiograms are estimated from samples and further fitted by mathematical models, which provide transition probabilities with continuous lags for Markov chain simulation. Simulated results conducted on two datasets of soil types show that when sufficient sample data are conditioned complex patterns of soil types can be captured and simulated realizations can reproduce transiograms with reasonable fluctuations; when data are sparse, a general pattern of major soil types still can be captured, with minor types being relatively underestimated. Therefore, at this stage the method is more suitable for cases where relatively dense samples are available. The computer algorithm can potentially deal with irregular point data with further development.  相似文献   

8.
测绘成果质量检查与验收是测绘生产项目全过程中非常重要的一环。现有的检验手段主要是利用全站仪和GNSS RTK外业采点,外业工作量大、采点数量少。随着新技术不断涌现,传统手段无法满足数据快速更新、精度不断提高的要求。车载激光扫描测量技术作为现代测绘领域比较前沿的技术之一,具有数据采集速度快、处理自动化程度高、成果直观、精度高、机动性强的特点,非常适用于各类测绘数据成果的质量检查。本文利用SSW车载激光建模测量系统扫描采集了15个样本区的数据,经过特征点全自动提取、筛选,得到用于检查的数据成果,与常规方法获取的数据进行比较,验证了该技术用于质检工作的可行性。  相似文献   

9.
应用GA-SVM的渭河水质参数多光谱遥感反演   总被引:3,自引:1,他引:2  
建立了基于支持向量机的遥感水质参数反演模型, 构建了基于浮点数编码的遗传算法优选模型参数。以渭河为研究对象, 基于高分辨率多光谱遥感SPOT-5数据和水质实地监测数据, 分别建立了一元和多元经验模型进行渭河水质参数的反演。在样本数目有限的情况下, 提出的GA-SVM方法的反演结果比神经网络和传统的统计回归方法好, 且各方法的多元回归结果均好于一元回归的结果。SVM具有强的非线性映射能力, 适合小样本情况, 由GA实现了模型参数的自动优选, 使GA-SVM用于解决回归问题表现出优势。将机器学习和全局优化智能  相似文献   

10.
Designing and validating digital soil mapping (DSM) techniques can facilitate precision agriculture implementation. This study generates and validates a technique for the spatial prediction of soil properties based on C-band radar data. To this end, (i) we focused on working at farm-field scale and conditions, a fact scarcely reported; (ii) we validated the usefulness of Random Forest regression (RF) to predict soil properties based on C-band radar data; (iii) we validated the prediction accuracy of C-band radar data according to the coverage condition (for example: crop or fallow); and (iv) we aimed to find spatial relationship between soil apparent electrical conductivity and C-band radar. The experiment was conducted on two agricultural fields in the southern Argentine Pampas. Fifty one Sentinel 1 Level-1 GRD (Grid) products of C-band frequency (5.36 GHz) were processed. VH and VV polarizations and the dual polarization SAR vegetation index (DPSVI) were estimated. Soil information was obtained through regular-grid sample scheme and apparent soil electrical conductivity (ECa) measurements. Soil properties predicted were: texture, effective soil depth, ECa at 0-0.3m depth and ECa at 0-0.9m depth. The effect of water, vegetation and soil on the depolarization from SAR backscattering was analyzed. Complementary, spatial predictions of all soil properties from ordinary cokriging and Conditioned Latin hypercube sampling (cLHS) were evaluated using six different soil sample sizes: 20, 40, 60, 80, 100 and the total of the grid sampling scheme. The results demonstrate that the prediction accuracy of C-band SAR data for most of the soil properties evaluated varies considerably and is closely dependent on the coverage type and weather dynamics. The polarizations with high prediction accuracy of all soil properties showed low values of σVVo and σVHo, while those with low prediction accuracy showed high values of σVVo and low values of σVHo. The spatial patterns among maps of all soil properties using all samples and all sample sizes were similar. In conditions when summer crops demand large amount of water and there is soil water deficit backscattering showed higher prediction accuracy for most soil properties. During the fallow season, the prediction accuracy decreased and the spatial prediction accuracy was closely dependent on the number of validation samples. The findings of this study corroborates that DSM techniques at field scale can be achieved by using C-band SAR data. Extrapolation y applicability of this study to other areas remain to be tested.  相似文献   

11.
This paper studies a specific one-class classification problem where the training data are corrupted by significant outliers. Specifically, we are interested in the one-class support vector machine (OCSVM) approach that normally requires good training data. However, perfect training data are usually hard to obtain in most real-world applications due to the inherent data variability and uncertainty. To address this issue, we propose an OCSVM-based data editing and classification method that can iteratively purify the training data and learn an appropriate classifier from the trimmed training set. The proposed method is compared with a general OCSVM approach trained from two types of bootstrap samples, and applied to the mapping and compliance monitoring tasks for the U.S. Department of Agriculture's Conservation Reserve Program using remotely sensed imagery. Experimental results show that the proposed method outperforms the general OCSVM using bootstrap samples at a lower computational load.  相似文献   

12.
Flagrant soil erosion in Morocco is an alarming sign of soil degradation. Due to the considerable costs of detailed ground surveys of this phenomenon, remote sensing is an appropriate alternative for analyzing and evaluating the risks of the expansion of soil degradation. In this paper, we characterize the state of land degradation in a small Mediterranean watershed using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and ground-based spectroradiometric measurements. The two visible, the near-infrared and six shortwave infrared bands of the above sensor were calibrated using ground measurements of the spectral reflectance. Field measurements were carried out in the Saboun experimental basin located in the marl soil region of the Moroccan western Rif. The study leads to the development and evaluation of a new spectral approach to express land degradation. This index called Land degradation index (LDI) is based on the concept of the soil line derived from spectroradiometric ground measurements. In this study, we compare LDI and the spectral angle mapping (SAM) approaches to assess and map land degradation. Results show that LDI provides more accurate results for mapping land degradation (Kappa = 0.79) when compared to the SAM method (Kappa = 0.61). Validation and evaluation of the results are based on the thematic maps derived from the ground data (organic matter, clay, silt and sand) by kriging, DEM, slope gradient and photointerpretation.  相似文献   

13.
Here, we demonstrate the application of Decision Tree Classification (DTC) method for lithological mapping from multi-spectral satellite imagery. The area of investigation is the Lake Magadi in the East African Rift Valley in Kenya. The work involves the collection of rock and soil samples in the field, their analyses using reflectance and emittance spectroscopy, and the processing and interpretation of Advanced Spaceborne Thermal Emission and Reflection Radiometer data through the DTC method. The latter method is strictly non-parametric, flexible and simple which does not require assumptions regarding the distributions of the input data. It has been successfully used in a wide range of classification problems. The DTC method successfully mapped the chert and trachyte series rocks, including clay minerals and evaporites of the area with higher overall accuracy (86%). Higher classification accuracies of the developed decision tree suggest its ability to adapt to noise and nonlinear relations often observed on the surface materials in space-borne spectral image data without making assumptions on the distribution of input data. Moreover, the present work found the DTC method useful in mapping lithological variations in the vast rugged terrain accurately, which are inherently equipped with different sources of noises even when subjected to considerable radiance and atmospheric correction.  相似文献   

14.
An accurate map of forest types is important for proper usage and management of forestry resources. Medium resolution satellite images (e.g., Landsat) have been widely used for forest type mapping because they are able to cover large areas more efficiently than the traditional forest inventory. However, the results of a detailed forest type classification based on these images are still not satisfactory. To improve forest mapping accuracy, this study proposed an operational method to get detailed forest types from dense Landsat time-series incorporating with or without topographic information provided by DEM. This method integrated a feature selection and a training-sample-adding procedure into a hierarchical classification framework. The proposed method has been tested in Vinton County of southeastern Ohio. The detailed forest types include pine forest, oak forest, and mixed-mesophytic forest. The proposed method was trained and validated using ground samples from field plots. The three forest types were classified with an overall accuracy of 90.52% using dense Landsat time-series, while topographic information can only slightly improve the accuracy to 92.63%. Moreover, the comparison between results of using Landsat time-series and a single image reveals that time-series data can largely improve the accuracy of forest type mapping, indicating the importance of phenological information contained in multi-seasonal images for discriminating different forest types. Thanks to zero cost of all input remotely sensed datasets and ease of implementation, this approach has the potential to be applied to map forest types at regional or global scales.  相似文献   

15.
Spaceborne passive microwave data have been available for the past 27 years, and have supported the development of several algorithms for the retrieval of snow water equivalent and snow depth that, in turn, can be used for mapping snow-covered areas. In contrast, only recently has the application of spaceborne active microwave instruments been investigated for remote sensing of snow on a global scale. This raises the question of whether a technique combining active and passive microwave data can improve the mapping of snow parameters with respect to techniques based solely on passive data. In this letter, we report results concerning the mapping of snow-covered area (SCA) in the Northern Hemisphere between the years 2000 and 2004 derived from the combination of the brightness temperatures at 19.35 and 37 GHz measured by the Special Sensor Microwave Imager Radiometer with backscatter coefficients at 13.4 GHz measured by the NASA's QuickSCAT. SCA derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) is used as a reference to evaluate the performance of the microwave-based techniques and their combination. Results show that, generally, the technique using passive data provides better agreement with MODIS SCA than the technique using only scatterometer data. However, the results when both datasets are used show considerable improvement, demonstrating the potential benefits of a multisensor approach  相似文献   

16.
张伟  赵理君  郑柯  唐娉 《测绘通报》2017,(10):34-38
快速、准确地从卫星遥感影像上获取水体信息已成为水资源调查及监测、湿地保护、洪涝灾害评估等领域的重要技术手段。本文以GF-4卫星的PMS传感器影像为数据源,提出了一种改进光谱角匹配(MSAM)的水体信息提取方法,以内蒙古中东部和长江中下游两个试验区为研究对象,对比分析了MSAM与单波段阈值法、NDWI阈值法、支持向量机和光谱角匹配等传统方法的水体信息提取结果,并进行了精度评价。试验结果表明,本文提出的MSAM方法不仅能准确地提取水体信息,而且能很好地区分水体与云阴影,对细小水体的提取也具有很好的效果。在内蒙古中部和长江中下游两个试验区的水体提取精度分别达到99.86%和98.37%,在5种水体提取方法中的精度最高,可以有效地提取水体信息。  相似文献   

17.
高分五号(GF-5)搭载的高光谱传感器兼顾宽覆盖和高分辨率的特性,但在实际应用中宽覆盖范围内各种地物类别的标注十分困难。当标记样本很少甚至没有标记样本时,遥感图像分类异常困难。此时,可以采用域适应方法,借助已标记的历史数据(源域)实现对未标记数据(目标域)的分类。本文提出了一种基于稀疏矩阵变换的关联对齐域适应分类算法。首先,利用稀疏矩阵变换估计源域和目标域的协方差矩阵;然后,运用协方差关联对齐方法估计源域到目标域的变换矩阵;接着,运用估计得到的变换矩阵将源域数据进行变换,使得其与目标域对齐;最后,在变换后的源域数据上建立分类器,实现对目标域数据的分类。本文的算法在两个真实的GF-5高光谱数据集上进行了验证。实验结果表明,本文算法要优于常用的子空间对齐算法和关联对齐算法。特别地,在黄河口GF-5数据上,本文算法比原始关联对齐方法的最近邻分类准确率提升了3.5%,支持向量机分类准确率提升了2.3%。  相似文献   

18.
多分类器实例协同训练遥感图像检索   总被引:1,自引:0,他引:1  
李士进  陶剑  万定生  冯钧 《遥感学报》2010,14(3):500-512
提出一种基于多分类器协同训练的遥感图像检索方法,该方法在不同特征集上分别建立分类器,利用不同分类器的协同性自动标记未知样本,从而有效解决了小样本问题。通过与相关反馈方法进行实验比较分析,结果表明,这两种方法各有优劣,检索结果基本相当,然而多分类器协同训练方法避免了相关反馈过程中人工的多次反馈,自动化程度更高。  相似文献   

19.
Urban impervious surface information is essential for urban and environmental applications at the regional/national scales. As a popular image processing technique, spectral mixture analysis (SMA) has rarely been applied to coarse-resolution imagery due to the difficulty of deriving endmember spectra using traditional endmember selection methods, particularly within heterogeneous urban environments. To address this problem, we derived endmember signatures through a least squares solution (LSS) technique with known abundances of sample pixels, and integrated these endmember signatures into SMA for mapping large-scale impervious surface fraction. In addition, with the same sample set, we carried out objective comparative analyses among SMA (i.e. fully constrained and unconstrained SMA) and machine learning (i.e. Cubist regression tree and Random Forests) techniques. Analysis of results suggests three major conclusions. First, with the extrapolated endmember spectra from stratified random training samples, the SMA approaches performed relatively well, as indicated by small MAE values. Second, Random Forests yields more reliable results than Cubist regression tree, and its accuracy is improved with increased sample sizes. Finally, comparative analyses suggest a tentative guide for selecting an optimal approach for large-scale fractional imperviousness estimation: unconstrained SMA might be a favorable option with a small number of samples, while Random Forests might be preferred if a large number of samples are available.  相似文献   

20.
张磊  邵振峰  周熙然  丁霖 《测绘学报》2014,43(8):855-861
本文提出了一种聚类特征和SVM组合的高光谱影像半监督协同分类方法。利用构建的协同分类框架能够将KSFCM聚类算法与半监督SVM分类器相结合,同时利用聚类和分类优势,提高分类器的分类准确率。其中,通过聚类损耗函数、分类一致函数、分类差异性、样本差异性四个指数用以构建协同分类框架,以充分利用少量类标签样本信息,避免高光谱类标签样本获取困难问题,在一定程度上解决SVM支持向量随着训练样本增加而线性增加的问题,从而寻求最佳分类结果。实验结果表明,本文所提方法得到的分类精度优于直接利用SVM进行半监督分类。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号